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A two-dimensional (2D) binary colloidal system consisting of interacting dipoles is investigated using an
analytical approach. Within the harmonic approximation we obtain the phonon spectrum of the system as a
function of the composition, dipole-moment ratio, and mass ratio between the small and big particles. Through
a systematic analysis of the phonon spectra we are able to determine the stability region of the different lattice
structures of the colloidal alloys. The gaps in the phonon frequency spectrum, the optical frequencies in the long-
wavelength limit, and the sound velocity are discussed as well. Using the modified Lindemann criterion and within
the harmonic approximation we estimate the melting temperature of the sublattice generated by the big particles.
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I. INTRODUCTION

Colloids are useful model systems not only for important
physical phenomena such as crystallization and melting [1,2]
but also for solids, especially because of the orders-of-
magnitude slower temporal and larger spatial scales that allow
the use of videomicroscopy techniques [3,4] and, therefore,
properties such as structure, phonons, and melting can be
studied in real time [5]. There are several possibilities (e.g., at
interfaces, in between glass plates, and patterned substrates) to
stabilize the colloidal particles into a reduced dimensional sys-
tem such as channels and planar substrates. Additionally, the
interaction between the colloidal particles and thus the physical
properties of the system can be externally controlled, e.g., by
means of external magnetic [6] and/or electric fields [7].

Colloidal systems composed of two different types of dipo-
lar particles confined in a monolayer structure have attracted
the attention of many theoretical and experimental researchers.
Stirner et al. [8] performed molecular dynamics simulations
at finite temperatures of a binary colloidal monolayer of two
different particle sizes at an oil-water interface whose interpar-
ticle interaction is governed by an effective dipole potential.
The simulations showed that for certain ratios of small (B) to
large (A) particles, e.g., 2:1 (AB2) and 6:1 (AB6), the system
forms a two-dimensional (2D) crystal. In both cases the crystal
is composed of a hexagonal lattice of large particles with a unit
cell composed of one A particle and two B particles for AB2

and one A particle and six B particles for AB6. Studies of
the zero-temperature (T = 0) phase diagram of a 2D binary
system of dipoles using lattice-sum calculations [9] and genetic
algorithms [10,11] predicted the formation of several possible
lattice structures as a function of the composition and the
susceptibility ratio.

The structural behavior of binary mixtures of superpara-
magnetic colloidal particles at an air-water interface was
investigated using integral equation theory together with
computer simulations [12,13] and experiments [13,14]. Those
studies, however, found only a partial clustering of small
particles [12,13] and a local crystalline order [14].

More recently, an interesting experimental and theoretical
study [15] of a 2D binary colloidal system of large (A) and

small (B) silica particles at an octane-water interface was
presented as a function of the relative concentration of small
particles ξ = ρB/(ρA + ρB), where ρA, ρB are the 2D densities
of A and B particles, respectively. Due to the experimental
setup, the particles were supposed to interact through a
repulsive dipole-dipole potential and it was found that the
system self-assemblies in a hexagonal alloy phase (HAP).
Also, it was shown that while the HAP for ξ = 2/3 (AB2)
and ξ = 6/7 (AB6) are thermodynamically stable, the HAP
for ξ = 3/4 (AB3) and ξ = 5/6 (AB5) was unstable. A
comparison between the radial distribution function of the
small B particles around the A particles gAB(r) obtained from
the analytical MEC with the one obtained from T �= 0 Monte
Carlo simulations, which were based on a finite-size compu-
tational unit cell, was further used in order to determine if the
configuration was stable. The structure and melting behavior
of the system was also studied theoretically as a function of the
composition and the dipole-moment ratio, using a lattice-sum
method and Monte Carlo simulations [16]. By investigating
the radial distribution function for small particles gBB(r) as
a function of temperature, it was found that the melting
temperature of the AB2 and AB6 configurations was three
orders of magnitude larger than that of the AB5 structure [16].

In this work, we address the phonon spectrum and melting
of a 2D binary colloidal system of dipoles which consists of
particles with small and large dipole moments μB and μA,
respectively. Within the harmonic approximation we calculate
the phonon spectrum of the system for different values of the
dipole-moment ratio sB = μB/μA, the relative concentration
of small particles ξ , and mass ratio m∗ = mB/mA. The
motivation to do so is twofold: (1) it is possible to tune the
number and width of the phonon gaps, and the shape of
the phonon bands, by changing parameters such as the
dipole-moment ratio, composition, and mass ratio [17] and
(2) the study of the phonon spectra tells us additionally if the
colloidal alloys are stable, i.e., have real phonon frequencies.
Specifically, through a systematic analysis of the dispersion
relation we determine the interval of values of sB for which the
considered colloidal alloys are stable. Furthermore, the study
of the dispersion relation allows us to obtain the sound velocity
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FIG. 1. (Color online) Structures of the colloidal alloys (a) AB2,
(b) AB3, (c) AB5, (d) AB6, and (e) S(AB). The unit cell of each phase
is shown by the solid box and the primitive vectors are explicitly
shown.

and the optical frequencies in the long-wavelength limit. We
also present an estimation of the melting temperature of the
sublattice generated by the big particles (type A) as a function
of sB , ξ , and m∗ using the modified Lindemann criterion. As
a consequence, we found it is possible to specify the optimum
value of sB for which the melting temperature of the system
for a given composition is maximum.

In most part of this work, we will concentrate on the
perfectly ordered 2D hexagonal colloidal alloys in order to
model some of the configurations observed experimentally
in Ref. [15], namely the configurations for ξ = 2/3 (AB2),
ξ = 3/4 (AB3), ξ = 5/6 (AB5), and ξ = 6/7 (AB6). Ad-
ditionally, we also studied a 2D square alloy for ξ = 1/2
(S(AB)). The lattice structures for these colloidal alloys are
illustrated in Fig. 1. It is worth emphasizing that in our
calculations we considered crystal structures, i.e., perfect
periodic arrangements where defects and boundary effects are
absent, in contrast with real experiments where, in general,
defects, finite-size effects, or distortions of the crystal structure
away from HAP might be present. Thus, although a small
number of defects can be considered negligible from an
experimental point of view (they may act as a stabilizing
factor), they are determinant for the stability of the considered
lattice from a theoretical point of view. For example, we find
through analytical calculations (harmonic approach) that our
perfect hexagonal alloy phase (HAP) for ξ = 2/3 (AB2) is not
always stable even for the same set of parameters considered
in the experiments [15], which indicates that some distortion
with respect to the perfect HAP might be present in order to
stabilize the experimentally observed configuration. Indeed,
using Monte Carlo simulations (not shown), we find that a
slightly distorted crystal structure with respect to the perfect
HAP, which is similar to the one previously pointed out in
Refs. [11,16], is observed as the ground state for the same value
of the dipole-moment ratio (sB ≈ 0.027) found analytically.

The paper is organized as follows. In Sec. II, we introduce
the model, define the parameters used to characterize the

system, and present the colloidal alloys considered in this
work. In Sec. III, we present the calculation of the dispersion
relation and discuss the numerical results. In Sec. IV, we study
the melting behavior of the system. Our conclusions are given
in Sec. V.

II. MODEL

We study a 2D binary colloidal system of dipole particles.
The particles denoted by A and B have dipole moments μA

and μB , respectively, directed perpendicularly to the plane.
The interaction potential is of the dipole-dipole form and can
be written in two different ways:

Ukj (r) = μkμj

r3
(1)

or

βUkj (r) = �
sksja

3

r3
, (2)

where k,j = A,B and

� = μ2
A

kBT a3
, (3)

is the dimensionless interaction strength, which relates the
potential and the thermal energy, r is the distance between two
particles, kB the Boltzmann constant, T the temperature of the
system, a the lattice parameter of the A particles, β = 1/kBT ,
and sB = μB/μA is the dipole-moment ratio.

For the experimental system studied in Ref. [15], A and
B stand for the large and small synthetic amorphous silica
particles with diameters 3.00 ± 0.05 μm and 1.00 ± 0.05 μm,
respectively, located at an octane-water interface. In this
case, the dipoles are mainly due to the residual charges at
the particle-oil interface, and the considered dipole-moment
ratio was sB = 0.037. On the other hand, for the experi-
mental setup considered in Refs. [13] and [14], A and B

represent the large and small superparamagnetic colloidal
particles, respectively, at a water-air interface. For instance,
from Ref. [13], the big particles have diameter 4.7 μm,
mass density dA = 1.3 g/cm3, and magnetic susceptibility
χA = 6.2×10−11 Am2/T, while the small ones have diameter
2.8 μm, mass density dB = 1.5 g/cm3, and magnetic suscep-
tibility χB = 6.6×10−12 Am2/T. An external magnetic field
�B applied perpendicularly to the water-air interface induces in
each particle a magnetic moment �μi = χi

�B, where i = A,B.
Thus, the dipole-moment ratio is sB ≈ 0.1.

The colloidal alloy phases depend on the dipole-moment
ratio as well as the relative concentration of small particles,

ξ = ρB

ρA + ρB

, (4)

where ρA and ρB are the 2D densities of A and B particles,
respectively.

In the present paper we will study the phonons and melting
of (1) perfect 2D hexagonal colloidal alloys in order to
model the configuration found in Ref. [15]: the hexagonal
configurations for ξ = 2/3(AB2), ξ = 3/4 (AB3), ξ = 5/6
(AB5), and ξ = 6/7(AB6); and (2) a 2D square alloy for
ξ = 1/2(S(AB)).
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The system at hand is 2D with unit cell having one A

particle and n small B particles. Therefore, the equilibrium
positions of A particles and of n B particles are given by
�RA = �R, and �RBi

= �R + �ci , where �R = l1�a1 + l2�a2 with l1, l2
integers, �a1, �a2 are the primitive vectors, �ci = αi �a1 + βi �a2,
where αi,βi ∈ (0,1) are determined by minimizing the
energy for a given dipole-moment ratio, and i = 1, . . . ,n. The
primitive vectors of the hexagonal lattice are �a1 = a(1,0) and
�a2 = a(1/2,

√
3/2), while, for the square lattice, �a1 = a(1,0)

and �a2 = a(0,1). Since the colloidal alloys considered here
have only one A particle per unit cell, the density of A particles
ρA is given by ρAa2 = 2/

√
3 and ρAa2 = 1 for hexagonal and

square unit cells, respectively.

III. PHONON SPECTRUM

The phonon spectrum will be calculated within the har-
monic approximation. In this approach, one considers that each
particle executes small oscillations (compared to the average
distance between the particles) around its equilibrium position
and, therefore, one expands the potential energy up to the
second order in the deviations from its equilibrium position.
Due to the periodicity of the system, one introduces Bloch
plane wavelike solutions and thus one obtains (for a given
wave vector �q along the high-symmetry directions of the
first Brillouin zone) the dynamical matrix whose eigenvalues
and eigenvectors are the square frequencies of vibration,
ω2(�q,j ), and the direction of vibration, �e(�q,j ), respectively,
with j = 1, . . . ,2np, where np is the total number of particles
per unit cell.

The study of the dispersion relation gives us additionally
the stability of the mentioned colloidal alloys, for a given
dipole-moment ratio sB . The considered crystal structure
of the colloidal alloy is stable only if ω2(�q,j ) � 0 for
all �q and j [18–22]. For ω2(�q,j ) < 0 the frequencies are
imaginary, i.e., the amplitude of particle oscillation becomes
an exponentially increasing function of time [22]. It implies
that the corresponding crystal structure of the colloidal alloy
is unstable and will not exist.

All the colloidal alloys considered in this work have more
than one particle per unit cell. As a consequence, there are
several acoustical and optical modes which can be associated
to in-phase and out-of-phase vibrations of particles in the
unit cell, respectively. The acoustical branch is character-
ized by ω(�q) → 0 for �q → 0, while for the optical branch
ω(�q) → const in the limit �q → 0. Besides, the acoustical and
optical branches have a longitudinal, �e ‖ �q, and a transverse
mode, [22] �e ⊥ �q.

The dynamical matrix is given by [19,22,23]

Cαβ(kk′ | �q) = 1√
mkmk′

∑
l′

φαβ(lk,l′k′) e−i �q.( �Rlk− �Rl′k′ ), (5)

where φ(r) is the interaction potential and

φαβ(lk,l′k′) = ∂α∂βφ( �Rlk − �Rl′k′) (6)

are the force constants with α,β = x,y. Furthermore, �Rlk =
�R(l) + �R(k) is the equilibrium position vector of the kth

particle in the lth unit cell of the crystal, mk is its mass, and

�R(l) = �R. Besides, the force constants have the property∑
lk,l′k′

φαβ(lk,l′k′) = 0, (7)

which will be useful in our further calculations. Thus, the
equilibrium positions of A particles and of n B particles are
given by �RlA = �RA and �RlBi

= �RBi
. Furthermore, the order of

the dynamical matrix is t = 2np×2np, i.e., it depends on the
considered 2D lattice. The dynamical matrix can be written as

D =

⎛
⎜⎜⎜⎜⎜⎝

DAA DAB1 ... DABn

DB1A DB1B1 ... DB1Bn

. . ... .

. . ... .

. . ... .

DBnA DBnB1 ... DBnBn

⎞
⎟⎟⎟⎟⎟⎠ , (8)

where DAA, DAB1 , . . . , DBnBn are 2×2 block matrices. From
Eqs. (5) and (7), the elements of the block DAA are written by

DAA
αβ (�q) = 1

mA

[
SAA

αβ (0) +
∑

i

SI1ABi

αβ (0) − SAA
αβ (�q)

]
, (9)

where

SAA
αβ (�q) = −μ2

A lim
r→0

∂α∂βψ0(�r,�q), (10a)

SI1ABi

αβ (�q) = −sBμ2
A lim

r→0
∂α∂βψi

I1(�r,�q), (10b)

with

ψ0(�r,�q) =
∑
�R �=�0

e−i �q· �R

|�r + �R|3 , (11a)

ψi
I1(�r,�q) =

∑
�R

e−i �q·( �R+�ci )

|�r + �R + �ci |3
. (11b)

On the other hand, from Eq. (5) we found

D
ABi

αβ (�q) = 1√
mAmB

[−SI1ABi

αβ (�q)
]
. (12)

In the same spirit of Refs. [18–20], we used the Ewald
summation technique and transformed Eqs. (11a) and (11b)
into expressions which converge rapidly. Thus, we obtain [20]

ψ0(�r,�q) = πρA

∑
�G

ei(�q+ �G)·�rϒ
( |�q + �G|

2ε
,0

)
+ 2εe−ε2r2

√
πr2

− erf(εr)

r3
+

∑
�R �=�0

e−i �q· �R�1(|�r + �R|), (13)

with

ϒ

( |�q + �G|
2ε

,0

)

= 4ε√
π

e−|�q+ �G|2/4ε2 − 2|�q + �G|erfc

( |�q + �G|
2ε

)
(14a)

and

�1(x) = erfc(εx)

x3
+ 2ε√

π

e−ε2x2

x2
(14b)
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where the parameter ε > 0 is related to the density of large
particles, i.e., ε = √

πρA. Besides, we have

ψi
I1(�r,�q) = πρA

∑
�G

ei(�q+ �G)·�rei �G.�ci ϒ

( |�q + �G|
2ε

,0

)

+
∑

�R
e−i �q·( �R+�ci )�1(|�r + �R + �ci |) (15)

and, therefore, the block matrices DAA and DABi involve only
rapidly convergent sums. On the other hand, the block DBiBj ,
i �= j , and DBiBi are written as

D
BiBj

αβ (�q) = 1

mB

[−SII1
BiBj

αβ (�q)
]
, (16a)

D
BiBi

αβ (�q) = 1

mB

⎡
⎣s2

BSAA
αβ (0) +

∑
j �=i

SII1
BiBj

αβ (0)

+ SI1ABi

αβ (0) − s2
BSAA

αβ (�q)

⎤
⎦ , (16b)

with

SII1
BiBj

αβ (�q) = −s2
Bμ2

A lim
r→0

∂α∂βψ
ij

II1(�r,�q), (17a)

ψ
ij

II1(�r,�q) =
∑

�R

e−i �q.( �R+�cij )

|�r + �R + �cij |3
(17b)

�cij = �ci − �cj . (17c)

Again, the expression for ψ
ij

II1(�r,�q) using the Ewald method
is given by

ψ
ij

II1(�r,�q) = πρA

∑
�G

ei(�q+ �G)·�rei �G·�cij ϒ

( |�q + �G|
2ε

,0

)

+
∑

�R
e−i �q·( �R+�cij )�1(|�r + �R + �cij |). (18)

Since the dynamical matrix is Hermitian, we have DBiA =
[DABi ]† and DBj Bi = [DBiBj ]†. Because the dynamical
matrix involves the mass of the particles, we introduced the
parameter m∗ = mB/mA. For Brownian systems one can
consider m∗ = 1, i.e., the particles have the same mass, since
the inertial asymmetry between the colloids becomes irrelevant
in the overdampped regime [6,17,24]. On the other hand,
assuming that the dipole moment of each particle is μi = λD3

i ,
where λ is a constant of proportionality and Di is the radius
of the particle [10], and that the particles have the same mass
density, we obtain m∗ = sB = μB/μA. The case with different
masses is available experimentally in systems of colloids
between glass plates with no solvent [25]. In what follows, we
will restrict ourselves to the two cases m∗ = sB and m∗ = 1.

Figures 2 and 3 show the square of the phonon frequencies
in units of ω2

0 = μ2
Aρ

5/2
A /mA of the structure AB2 [Fig. 1(a)]

for sB = 0.015 and sB = 0.037, considering m∗ = sB and
m∗ = 1, respectively. The square frequencies are shown along
the high-symmetry directions in reciprocal space, where the
high-symmetry points are shown as insets. For sB = 0.015,

FIG. 2. Square of the phonon frequencies of the crystal phase
AB2 for m∗ = sB in units of ω2

0 = μ2
Aρ

5/2
A /mA (a) for sB = 0.015

and (b) sB = 0.037, along the high-symmetry directions in reciprocal
space. The high-symmetry points �, J , and X are shown in the inset
of (b). Only the lowest energy modes are shown in (b) in order to
enlarge the region around zero frequency.

we found ω2(�q,j ) � 0 for all the eigenvalues, indicating a
stable long-range AB2 ordered structure. On the other hand,
for the dipole-moment ratio sB = 0.037 considered in the
experiments performed by Law et al. [15], we found ω2(�q,j ) <

0 for some eigenvalues, indicating that the perfect hexagonal
AB2 structure is not stable for sB = 0.037. Actually, we found
that on the basis of the requirement of real phonon frequencies,
the range of stability for the phase AB2 is 0 � sB � 0.0269.
We stress that in our calculations the considered perfect

FIG. 3. Square of the phonon frequencies of the phase AB2 for
m∗ = 1 (a) for sB = 0.015 and (b) sB = 0.037. Only the lowest energy
modes are shown in (b).
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FIG. 4. Square of the phonon frequencies of the phase AB6 for
sB = 0.002 in units of ω2

0 = μ2
Aρ

5/2
A /mA for (a) m∗ = sB and (b)

m∗ = 1.

periodic structures are free of defects and boundary effects,
in contrast with the situation in real experiment where, in
general, defects and imperfections might be present. Thus,
although a small number of defects in the configuration
AB2 for sB = 0.037 can be considered negligible from an
experimental point of view, they can be determinative for the
stability from a theoretical point of view. Our results indicate
that the stable phase observed experimentally in Ref. [15]
must present some distortion from the perfect hexagonal alloy
phase. As a consequence, we did not find long-range order

FIG. 5. Dispersion relation of the phase S(AB) for sB = 0.25
along the high-symmetry directions in reciprocal space (a) for m∗ =
sB and (b) for m∗ = 1. The high-symmetry points �, X, and M are
shown in the inset of (b).

TABLE I. Interval of stability of some colloidal alloys. The phases
AB3 and AB5 are unstable and therefore are not listed.

Phases AB2 AB6 S(AB)

Stable 0 � sB � 0.0269 0 � sB � 0.0043 0.038 � sB � 0.29

for the perfect HAP AB2 for sB = 0.037, but we found it
for sB = 0.0269, which is a slightly lower value. Indeed, we
performed Monte Carlo simulations for the specific phase AB2

(not shown) and found that a slightly distorted crystal structure
with respect to the perfect HAP which is also similar to the
one previously pointed out in Refs. [11,16] is observed as the
ground state for the same value of the dipole-moment ratio
(sB ≈ 0.027) found analytically.

The presence of gaps in the phonon frequency spectrum
is another important characteristic of the structure AB2. No
vibrations are possible for frequencies within the gap. The
phonon gaps of the phase AB2 for m∗ = sB , i.e., when the
particles have different masses, are larger than the ones for
m∗ = 1. Furthermore, for m∗ = sB , the phonon gaps occur
between acoustical and optical modes as well as between some
of the optical modes, while for m∗ = 1 the phonon gaps appear
only between the optical modes. The thick line in Fig. 3 is due
to two optical branches very close to each other that are not
distinguishable on the scale used in the figure.

For the structures AB3 and AB5 shown in Figs. 1(b)
and 1(c), respectively, we found that they are unstable for any
dipole-moment ratio, since imaginary phonon frequencies are
found. In other words, long-range order is not possible for the
configurations AB3 and AB5 independently of the value of the
dipole-moment ratio. Since in the harmonic approximation,
the particles execute only small vibrations around their
equilibrium positions, one cannot state that the structures AB3

and AB5 are stable at T = 0. Our result clearly shows that
calculations of the energy of a given lattice structure, even
after minimization with respect to some parameters, at T = 0,
do not guarantee that the obtained MECs are stable.

In Fig. 4 we present the square of the phonon frequencies
of the phase AB6 for sB = 0.002. For the AB6 configuration,
we found that the interval of stability is 0 � sB � 0.0043.

FIG. 6. (Color online) The sound velocity in units of ν0 =
ω0/

√
ρA of the transverse acoustical mode of the phase AB2 as a

function of sB for m∗ = 1 and m∗ = sB .
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FIG. 7. (Color online) The sound velocity in units of ν0 =
ω0/

√
ρA of the transverse acoustical mode of the phase AB6 as a

function of sB for m∗ = 1 and m∗ = sB .

Therefore, if we considered not only the large A particles, there
is no long-range AB6 order for sB = 0.037 which is consistent
with the experiments reported in Ref. [15]. However, the most
important result for the AB6 configuration is the considerable
increase of the phonon gaps between the optical modes when
the particles have different masses. As a consequence, there
is a large number of frequencies for which the AB6 structure
cannot sustain vibrations. On the other hand, when the particles
have the same mass, only a small phonon gap is found, between
the optical modes, similarly to the phase AB2.

Figure 5 shows the dispersion relation of the configuration
S(AB) for sB = 0.25. Again, on the basis of the requirement of
real phonon frequencies, we found that the interval of stability
of the alloy S(AB) is 0.038 � sB � 0.29. Interestingly, in this
case, we do not have stability for sB = 0, i.e., when only one
particle is present in the unit cell. It is well known that a 2D
system of particles interacting through a Coulomb potential
when arranged in a square Bravais lattice is unstable [18]. Here,
the same conclusion is reached when the particles interact
through a repulsive dipole-dipole potential. Unlike the phases
AB2 and AB6 that have phonon gaps for m∗ = sB and m∗ = 1,

FIG. 8. (Color online) The sound velocity in units of ν0 =
ω0/

√
ρA of the transverse acoustical mode of the S(AB) as a function

of sB for m∗ = 1 and m∗ = sB .

TABLE II. Fitting parameters [Eq. (19)] for the sound velocity of
the phase AB2.

AB2 m∗ = sB m∗ = sB m∗ = 1 m∗ = 1

Direction �J X� �J X�

v0 1.289 1.289 0.744 0.743
v1 −17.38 −18.32 −9.166 −9.745
v2 −473.1 −314.4 −294.8 −200.0

the configuration S(AB) exhibits gaps in the phonon spectrum
only for m∗ = sB . This is an example of how the properties
of the system depend on the composition ξ . The interval of
stability of some of the colloidal alloys are reported in Table I.

The sound velocity of the transverse acoustical (TA) mode,
νT A = dωT A/dq|q→0, is shown for the stable configurations
AB2, AB6, and S(AB), in Figs. 6, 7, and 8, respectively, along
the directions (1,0) and (1,1) (in what follows, the symbol 0+
means that we are not considering sB = 0 but only sB values
very close to zero). For these phases, the sound velocity is large
in the case the particles have different masses. For the structure
AB2, in both directions, we found that the sound velocity
decreases with increasing sB . However, the sound velocity
along the direction �J decreases faster than in the direction
X�. On the other hand, for the configuration AB6 we have a
different behavior for the sound velocity. In the direction �J ,
the sound velocity decreases monotonically with increasing
sB , while along the direction X� the sound velocity decreases
up to sB = 0.00251, where the minimum sound velocities
νT A/ν0 = 1.07608 and νT A/ν0 = 0.40973 are observed for
m∗ = sB and m∗ = 1, respectively.

For the configuration S(AB), the sB dependence of the
sound velocity differs completely from the one found for the
phases AB2 and AB6 as shown in Fig. 8. In the direction �X,
the velocity increases monotonically with increasing sB , while
the opposite behavior is found along the direction M�. We
were able to fit the sound velocity of the phases AB2, AB6,
and S(AB) to the expression

νT A/ν0 = v0 + v1sB + v2s
2
B, (19)

where the coefficients vi are reported in Tables II, III, and IV,
respectively.

In Figs. 9(a), 10, and 11 the sB dependence of the optical
frequencies ωop at the � point is presented for both cases
m∗ = sB and m∗ = 1. The optical frequencies are associated
with the out-of-phase vibrations of the particles in the unit cell.
In general, the number of optical frequencies nop depends on
the number of particles per unit cell np and the dimensionality
of the system, being nop = 2np − 2 for the 2D colloidal system

TABLE III. Fitting parameters [Eq. (19)] for the sound velocity
of the phase AB6.

AB6 m∗ = sB m∗ = sB m∗ = 1 m∗ = 1

Direction �J X� �J X�

v0 1.289 1.288 0.485 0.476
v1 −176.7 −142.9 −65.16 −50.90
v2 20861.2 24930.7 7759.54 9060.95
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TABLE IV. Fitting parameters [Eq. (19)] for the sound velocity
of the phase S(AB).

S(AB) m∗ = sB m∗ = sB m∗ = 1 m∗ = 1

Direction �X M� �X M�

v0 0.001 2.015 −0.021 1.417
v1 13.64 −2.985 10.22 −1.236
v2 −20.02 −5.899 −13.25 −6.354

at hand. As a general behavior, the optical frequencies for
m∗ = sB are larger than those for m∗ = 1.

The phase AB2 has 4 optical frequencies and the phase
AB6 has 12, since these alloys have three and seven particles
per unit cell, respectively. For the colloidal alloys AB2 and
AB6, the different optical frequencies are nondegenerate. The
jumps of the optical frequencies for the phase AB2 in Fig. 9(a)
are associated with the change of the positions of the small
particles in the unit cell as a function of sB , as can be seen
in Fig. 9(b). On the other hand, a different behavior is found
for the structure S(AB). In this case, the two allowed optical
phonon frequencies are degenerate, which is a consequence
of the symmetry of the square lattice structure presented by
that phase. The vibrations of the particles in the unit cell are
equivalent in both directions.

To conclude, notice that the optical frequencies tend to
zero when sB approaches zero only in the case m∗ = 1. In this
limit (sB → 0) the interaction involving the small particles B

becomes negligible, allowing the optical modes to be excited
with a very low frequency.

IV. MELTING

Now we turn our discussion to the melting behavior of
the system as a function of the dipole-moment ratio sB . The
melting temperature will be calculated within the harmonic

FIG. 9. (Color online) (a) The optical frequencies in units of ω0

at the � point for AB2 as a function of sB for m∗ = sB (dotted line)
and m∗ = 1 (short dash dotted line) and (b) positions of the small
particles inside the unit cell of the structure AB2 as a function of sB .

FIG. 10. (Color online) The optical frequencies in units of ω0 at
the � point for AB6 as a function of sB for m∗ = sB and m∗ = 1.

approximation using a Lindemann-like criterion. The original
Lindemann criterion [26] states that the melting of a given
structural phase occurs when the mean-square displacement
exceeds a threshold value of the mean interparticle distance
r0 [26–28]:

〈u2〉
r2

0

= δ2, (20)

where the parameter δ2 is obtained numerically from, e.g.,
molecular dynamics simulation. The symbol 〈〉 stands for
a thermal average. The original Lindemann criterion is not
applicable for 2D crystals because 〈u2〉 diverges logarith-
mically with the size of the system [19,28]. Bedanov et al.
[28] showed through molecular dynamics simulations that the
relative mean-square displacement, given by

〈|�u( �R) − �u( �R + �a)|2〉, (21)

FIG. 11. The optical frequencies in units of ω0 at the � point for
S(AB) as a function of sB for m∗ = sB and m∗ = 1.
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is a well-defined quantity for a 2D infinite system, where �u( �R)
and �u( �R + �a) are the displacement vectors at site �R and at its
nearest-neighbor site �R + �a, respectively, and �a is the lattice
parameter. In Ref. [28], the modified Lindemann-like criterion
for 2D crystals was defined as

〈|�u( �R) − �u( �R + �a)|2〉
r2

0

= δ2
m, (22)

with the modified Lindemann parameter (δ2
m) typically δ2

m ≈
0.1. The melting of the B sub-lattice was studied in Ref. [16]
using Monte Carlo simulations and the radial distribution
function gBB(r) between the small particles was obtained.
For instance, the calculated melting temperature of the B

sublattice for the AB2 configuration was 4.0 ± 0.5×10−3 for
sB = 0.025.

Here we will study the melting behavior of the large A

particles. In this case, r0 in Eq. (22) is the mean interparticle
distance between large particles which is related to the density
as r0 = 1/

√
πρA. The parameter δ2

m for 2D dipole interac-
tion [28] is δ2

m = 0.12, and, therefore, we will take this value
in order to determine the melting temperature (TM ) of the A

particles. As shown recently, the B sublattice (small particles)
is already melted at TM , since the melting temperature of the
A sublattice (large particles) was estimated to be two orders
of magnitude larger than the one for the small particles [16].
In addition, the melting temperature calculated through the
harmonic approximation depends on the frequencies of the
phonon spectrum which are obtained at T = 0 by considering
both sublattices ordered [e.g., see Eq. (30)]. In the present
colloidal alloys the distribution of the small B particles around
the big A particles is symmetric. We argue here that since in the
melted state the small particles are spread uniformly around
the large particles, the effective interaction between small and
large particles is very similar to the one found in the crystal
structure at T = 0. In this case, the frequencies of the phonon
spectrum obtained at T = 0 for the ordered arrangement of the
colloidal alloy would also in some sense reflect the effective in-
teraction between both types of particles at T �= 0. Therefore,
in spite of the B sublattice be already melted at the melting
temperature of the A sublattice, we consider the phonon
frequencies obtained for the complete ordered structure at
T = 0. We stress that the melting temperature of the large A

particles obtained here is only an estimate but we expect that
the qualitative trends and the order of magnitude to be correct.

The correlation function 〈|�u( �R) − �u( �R + �a)|2〉 is obtained
within the harmonic approximation and by considering only
the nearest neighbors. In general, each lattice site in the 2D
colloidal alloys has several types of nearest neighbors, and the
number and the distance of the nearest neighbors depend on
the considered colloidal alloy. The melting behavior of the A

sublattice will be studied as a function of the dipole-moment
ratio sB for the case m∗ = 1, i.e., when both types of particles
have the same mass [17,29] and for m∗ = sB .

The correlation function between A particles is given
by [19,20]

�uAA = 1

NA

∑
α=x,y

NA∑
l=1

〈∣∣uA
α (0) − uA

α (l)
∣∣2〉

, (23)

where uA
α (l) is the αth component of the displacement vector

of the lth nearest neighbor of type A and NA is the number of
nearest neighbors of type A. For the stable configurations AB2

and AB6 the A particles are ordered in a hexagonal lattice and
therefore each of them has six nearest neighbors. On the other
hand, for the phase S(AB) the A particles form a square lattice
with each particle having four nearest neighbors.

Using the normal coordinates transformation [20,23],

uA
α (0) = 1√

NmA

∑
�q,j

eA
α (�q,j )Q(�q,j ), (24a)

uA
α (l) = 1√

NmA

∑
�q,j

eA
α (�q,j )Q(�q,j )ei �q· �RA(l), (24b)

where mA is the mass of the large particle, N the number
of unit cells of the crystal, eA

α (�q,j ) the αth component of
the eigenvector of the j th normal mode of the large particle
for the wave vector �q, Q(�q,j ) the normal coordinate of the
vibrational mode, and �RA(l) the relative vector connecting
one A particle at the origin to its lth nearest neighbor of type
A. From the fact that the thermal average of Q(�q,j )Q∗(�q ′,j ′)
is given by [20,23]

〈Q(�q,j )Q∗(�q ′,j ′)〉 = kBT

ω2(�q,j )
δ�q �q ′δjj ′ , (25)

where kB is the Boltzmann constant and T is the temperature
of the system, we obtain

〈∣∣uA
α (0) − uA

α (l)
∣∣2〉 = 4kBT

NmA

∑
�q,j

[
eA
α (�q,j )

]2

ω2(�q,j )
sin2 �q · �RA(l)

2
.

(26)
Therefore, the expression for �uAA results in

�uAA = 4kBT

NmANA

�AA, (27)

with

�AA =
∑
�q,j

[
eA
x (�q,j )

]2 + [
eA
y (�q,j )

]2

ω2(�q,j )

NA∑
l=1

sin2 �q · �RA(l)

2
.

(28)
Now the correlation function becomes

〈|�u( �R) − �u( �R + �a)|2〉 = �uAA, (29)

and substituting this into the modified Lindemann criterion,
we found

�M = 4π

NNAδ2
mρ

3/2
A a3

∑
�q,j

[
eA
x (�q,j )

]2 + [
eA
y (�q,j )

]2

ω2(�q,j )/ω2
0

×
NA∑
l=1

sin2 �q · �RA(l)

2
, (30)

where ω2
0 = μ2

Aρ
5/2
A /mA.

The melting temperature of dipolar systems is usually
studied in terms of the dimensionless coupling parameter
�M = μ2

A/kBTMa3, which involves the potential and thermal
energy. Here we will plot 1/�M as a function of the dipole-
moment ratio sB .
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FIG. 12. (Color online) Melting temperature of the A sublattice
of the phase AB2 as a function of the dipole-moment ratio. m∗ = 1
(m∗ = sB ) means particles A and B with equal (different) masses.
For m∗ = 1, the melting temperature assumes the maximum value
1/�M = 0.01507 for sB = 0.0231.

In Fig. 12 we present the melting behavior of the structure
AB2 (ξ = 2/3) as a function of the dipole-moment ratio sB

for the cases with equal (m∗ = 1) and different (m∗ = sB)
masses. As commented before, the symbol 0+ (in the x axis
of Fig. 12) means that we are not considering sB = 0 but only
sB values very close to zero. Initially, we will focus on the
case with m∗ = 1. For sB = 0, i.e., a one-component dipolar
system, we found 1/�M ≈ 0.15, which is very close to the
value 1/�M ≈ 0.11 found in Refs. [16] and [30]. Besides,
as an important finding, there is an optimum value of the
dipole-moment ratio sB for which the melting temperature of
the A sublattice reaches a maximum, i.e., for sB = 0.0231
the melting temperature has the maximum value 1/�M =
0.01507. This is interesting since it can be used in future
experimental studies of 2D binary colloidal systems of dipoles
when one wants to maximize the melting temperature. For
sB = 0.025, which is experimentally relevant [15,16], we find
that 1/�M = 1.45×10−2. It means that, for sB = 0.025, the

FIG. 13. (Color online) Melting temperature of the A sublattice
for the structure AB6 as a function of the dipole-moment ratio. m∗ = 1
(m∗ = sB ) means particles A and B with equal (different) masses. The
melting temperature for m∗ = 1 reaches its maximum value when
sB = 0.0033.

melting point of the A sublattice is one order of magnitude
larger than that of the B sublattice (1/�M = 4.0 ± 0.5×10−3)
calculated using Monte Carlo simulations [16].

In the case of particles having different masses (m∗ = sB),
we observe a very different qualitative behavior of the melting
temperature as a function of sB . The melting temperature
decreases monotonically as sB is increased. Quantitatively, the
melting temperature is more than one order of magnitude larger
than for the case with equal masses m∗ = 1. The presence of
the lighter small dipoles makes the crystalline structure more
stable against thermal fluctuations, as compared to the case
with m∗ = 1.

The melting temperature for the phase AB6 (ξ = 6/7) as
a function of sB is presented in Fig. 13 for the cases m∗ = 1
and m∗ = sB . The same general qualitative behavior found for
the phase AB2 is also observed for the phase AB6, namely
the melting temperature for m∗ = 1 exhibits a maximum but
now for a smaller sB = 0.0033, while for the case m∗ = sB we
observe that the melting temperature decreases with increasing
sB . Also, the melting temperature for m∗ = sB is about two
orders of magnitude larger than that for m∗ = 1.

Differently from the smooth behavior found for the phase
AB2, we observe that for the phase AB6 there are fluctuations
in the melting temperature curve as a function of sB (Fig. 13)
due to numerical inaccuracies. The latter is related to the larger
number of particles in the unit cell of the phase AB6 [Fig. 1(d)],
which increases the number of phonon modes considerably.
As is apparent from Fig. 10 there are many low-frequency
modes which are more difficult to calculate numerically with
high accuracy. And those frequency modes are the ones that
contribute strongly to the melting temperature.

The melting of the A sublattice for the structure S(AB)
as a function of sB , for m∗ = 1 and m∗ = sB , is presented in
Fig. 14. Unlike the configurations AB2 and AB6, the phase
S(AB) has the same qualitative behavior for m∗ = 1 and
m∗ = sB . On the other hand, quantitatively, the maximum
melting temperature for m∗ = 1 (1/�M ≈ 0.060) is one order
of magnitude smaller than that for m∗ = sB (1/�M ≈ 0.138).
This is another example of how the composition changes
drastically the properties of the system.

FIG. 14. (Color online) Melting temperature of the A sublattice
for the configuration S(AB) as a function of the dipole-moment ratio.
Here, for m∗ = 1, the maximum temperature 1/�M ≈ 0.060 takes
place for sB = 0.18, while for m∗ = sB , the maximum temperature
1/�M ≈ 0.138 occurs for sB = 0.138.
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V. CONCLUSIONS

We investigated the dynamical properties and melting
transition of a 2D binary colloidal system of dipoles
interacting through a dipole-dipole repulsive potential. Within
the harmonic approximation we calculated the phonon spectra
of the system as a function of the relative concentration of small
particles, dipole-moment ratio, and mass ratio. We determined
the interval of values of the dipole-moment ratio sB for which
the colloidal alloys with perfect hexagonal arrangement are
stable and have long-range order. For instance, we found that
the AB2 configuration has long-range order for sB � 0.0269.

For the phase AB5 we found that the T = 0 phonon
spectrum consists of imaginary frequencies, indicating that
the perfect hexagonal AB5 structure is unstable. We did not
find a long-range AB6 ordered configuration for sB = 0.037
which is consistent with the experiments reported in Ref. [15].

The gaps in the phonon spectra were analyzed by changing
the composition, mass ratio, and the dipole-moment ratio.
For example, the phonon gaps of the configurations AB2

and AB6 are considerably large when the particles have
different masses. Furthermore, unlike the colloidal alloys AB2

and AB6 that have phonon gaps when the particles have
different masses as well as equal masses, the configuration
S(AB) exhibits phonon gaps only when the particles have
different masses. This is an example of how the composition
changes the properties of the system. The optical frequencies
in the long-wavelength limit were discussed. The number of
optical frequencies is associated with the number of particles
per unit cell, i.e., the composition. The optical frequencies
of the phase S(AB) are degenerate while the ones of the

configurations AB2 and AB6 are not. The common behavior
that the optical frequencies go to zero when the dipole-moment
ratio tends to zero does not hold when particles have different
masses (m∗ = sB). We also analyzed the sound velocity of
the transverse acoustical mode. As a general behavior, the
sound velocity becomes large when the particles have different
masses. Furthermore, the speed of sound depends strongly on
the composition and the dipole-moment ratio. For instance, for
the composition ξ = 6/7 (AB6) the sound velocity along the
�X direction diminishes only until sB = 0.00251, where the
minimum speed of sound is obtained.

We estimated the melting temperature of the A sublattice
as a function of the dipole-moment ratio and composition,
within the harmonic approximation, and using the modified
Lindemann criterion. For each stable configuration, we
determined the value of the dipole-moment ratio for which the
melting temperature is a maximum. This is also an important
result that will be useful in future experiments of 2D binary
colloidal systems of dipoles.
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