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Inferring elastic properties of an fcc crystal from displacement correlations:
Subspace projection and statistical artifacts
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We compute the effective dispersion and vibrational density of states (DOS) of two-dimensional subregions of
three-dimensional face-centered-cubic crystals using both a direct projection-inversion technique and a Monte
Carlo simulation based on a common underlying Hamiltonian. We study both a (111) and (100) plane. We show
that for any given direction of wave vector, both (111) and (100) show an anomalous ω2 ∼ q regime at low q

where ω2 is the energy associated with the given mode and q is its wave number. The ω2 ∼ q scaling should be
expected to give rise to an anomalous DOS, Dω, at low ω: Dω ∼ ω3 rather than the conventional Debye result:
Dω ∼ ω2. The DOS for (100) looks to be consistent with Dω ∼ ω3, while (111) shows something closer to the
conventional Debye result at the smallest frequencies. In addition to the direct projection-inversion calculation,
we perform Monte Carlo simulations to study the effects of finite sampling statistics. We show that finite sampling
artifacts act as an effective disorder and bias Dω, giving a behavior closer to Dω ∼ ω2 than Dω ∼ ω3. These
results should have an important impact on the interpretation of recent studies of colloidal solids where the
two-point displacement correlations can be obtained directly in real-space via microscopy.
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I. INTRODUCTION

Colloidal suspensions of spherical particles exhibit similar
behavior to conventional condensed matter systems [1]. Direct
observation of colloidal particle trajectories using optical
microscopy has been employed to study condensed matter
phenomena like crystal nucleation [2], impurity frustrated
crystallization [3], glass transitions [4], melting [5], etc. When
quenched into a solid-like state, particles fluctuate about
their equilibrium positions [6–9]. At long wavelength these
fluctuations should be governed by some effective elasticity,
and one should be able to extract the corresponding moduli
from observed displacement fluctuations.

There are several ways to extract moduli from experi-
mentally observed displacement fluctuations. Zahn et al. [10]
obtained bulk elastic constants by studying strain fluctuations
in subregions of a two-dimensional (2D) hexagonal colloidal
crystal of increasing size and extrapolated to the infinite system
size limit. Von Grünberg et al. [11] performed a plane wave
decomposition of particle displacements to compute the dis-
persion and used it to extract long wavelength elastic constants.
However, these methods only work in spatially homogeneous
systems. Much like light-scattering methods [12,13], they
average out any spatial disorder. In disordered systems,
like structural glasses or geometrically ordered systems with
heterogeneous interactions [14,15], the spatial heterogeneity
and its impact on the fluctuation spectrum are of central
interest, so other methods must be employed.

To study disordered systems, a third method has been
employed by several groups [7–9,16]. This approach exploits
a connection between the linear elastic response function
and displacement covariance matrix for a system in thermal
equilibrium: Giαjβ = 〈uiαujβ〉/kbT [17] where kb is Boltz-
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mann’s constant and T is the temperature. Here uiα is the
displacement of the ith particle in the αth direction, and the
angle brackets mean thermal average. In glassy colloids it has
been used to study the density of states (DOS) [9,18], the
so-called Boson peak, an excess in the DOS when compared
to the Debye theory, [8] and the connection between structural
relaxation and low-frequency normal modes [19,20]. For
colloidal crystals, the method has been used to characterize
the spectrum of normal modes and DOS [7,21]. However, this
wealth of information comes at a price and requires good
statistical estimates for all entries of Giαjβ . This raises a
number of problems related to statistical convergence [16]
that can lead to qualitative misinterpretation of the data from
finite samples, as we will show below.

There is another serious difficulty to which this method is
susceptible when applied to a three-dimensional (3D) colloidal
system. To assemble Giαjβ , one needs many uncorrelated
snapshots of the system. In a typical microscopy experiment,
one has access to a single plane of the material and cannot
make simultaneous observations of particles above or below.
However, the observed in-plane fluctuations in the patch are
mediated by degrees of freedom off the imaging plane that are
not observable.

Thus one is faced with two problems. First, it is not
obvious what effect the embedding medium has on the Green’s
function assembled from measurements made only in a lower
dimensional patch. This difficulty arises even in the case of a
perfect, homogeneous crystal. Second, it is not clear how finite
statistics bias the spectrum, especially in the presence of the
restricted window of observation.

Recently Maggs and coworkers have made good progress
on the first question [22–25]. They have shown, most dra-
matically, that the expected energy of plane wave fluctuations
in the restricted 2D patch is linear in wave number rather
than quadratic as is the case for systems governed by a
Laplace-like operator [26]. However, their approach starts
with a long wavelength cubic elasticity tensor and does not
treat short wavelength fluctuations near the Brillouin zone
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(BZ) boundary in a way that takes into account the structure
of the underlying lattice. This makes it difficult to separate
artifacts in the DOS near van Hove peaks into those arising
from the observations being restricted to a 2D patch and those
arising from finite sampling. Furthermore, in the continuum
elasticity approach, the anisotropic component of the elastic
modulus tensor must be set by hand rather than emerging
naturally from the underlying lattice structure and particle
interactions.

In this work, for a perfectly homogeneous face-centered
cubic (FCC) crystal with harmonic, nearest-neighbor inter-
actions, we first examine the dispersion relation and normal
mode structure of the Green’s function assembled from
observing only in-plane fluctuations of a crystal patch. Then we
investigate the artifacts induced by finite sampling statistics.

In contrast to the approach of Maggs and coworkers, we
work in a fully atomistic framework. This allows us to produce
realistic results for the entire BZ and calculate the exact
dispersion relation, frequency spectrum, and normal modes
for finite 2D patches cut from (100) and (111) FCC crystal
planes. Our dispersion results agree in the long wavelength
limit with those in Refs. [22,23]. However, in the rest of
the BZ we find significant qualitative differences between
the longitudinal and transverse branches of the dispersion.
Moreover, in the low-frequency portion of the (111) patch
DOS, we see pronounced deviations from the scaling expected
from the long wavelength dispersion relation.

At the same time we perform a Monte Carlo simulation
using precisely the same Hamiltonian to make a direct,
quantitative comparison between the true projected spectrum
and those spectra inferred from finite statistical samples. We
find that finite statistics induces important artifacts in the
DOS: it smears out and shifts the van Hove singularities to
lower frequency parts of the spectrum in a manner similar to
disorder [15]. This alters the inferred low-frequency scaling
behavior in a qualitative way.

II. ELASTICITY OF A TWO-DIMENSIONAL SUBSYSTEM

We analytically compute the elastic Green’s function of a
2D patch of atoms embedded in homogeneous, FCC crystal
with cubic periodic boundaries. The domain and range of the
Green’s function of a patch, denoted by G, of M atoms is
a R2M subspace of the R3B configuration space of the FCC
crystal (having B atoms). The embedding FCC crystal is
governed by a harmonic Hamiltonian having only, pairwise
interactions, connecting nearest neighbors with unstressed
springs. We denote the nearest neighbor spacing by a and
measure all lengths as units of a. For this system the bond
stiffness tensor is Biαjβ = Kr̂ijαr̂ijβ [26]. Here K is the bond
strength; Latin indices i,j label atoms, while Greek indices
α,β label Cartesian axes. r̂ij is the unit vector pointing from
atom i to one of its nearest neighbors, atom j . The nonzero
entries of the Hessian matrix, H, are given by Hiαjβ = Biαjβ

when i �= j , and Hiαjβ = −∑
j,j �=i Biαjβ for i = j .

To obtain the Green’s function, G, of a P × P atom patch,
we start by computing the full Green’s function G = H−1, of
the embedding cubic, periodic crystal with C four-atom cubic
unit cells along each edge. The computation of G nominally
amounts to a computationally expensive, inversion of the

FIG. 1. (Color online) Left: FCC crystal with C = 3 cubic unit
cells along each edge. Center: Rhombic (111) FCC patch with P = 4
atoms along each edge. Right: Square (100) FCC patch with P = 4
atoms along each edge.

operatorH. However, due to periodicity,H is a block-circulant
matrix, and we use a Fourier space approach (detailed in the
Appendix) which permits inversion in linear computer time
and space. In practice we have used this method to invert
Hessians of roughly 8 million particle systems in a few tens of
minutes of computer time on a single workstation. Projecting
G onto the observed degrees of freedom in the patch, we
immediately obtain G.

We next discuss various properties (dispersion, mode
structure and DOS) of G for patches cut from the (111) and
(100) planes of an FCC crystal. The embedding crystal has
C cubic unit cell cells along each edge, while the patch has
P atoms along each edge of its boundary. Figure 1 has an
illustration of our patches. We take the (111) patch to be a
triangle lattice with rhombic boundaries and the (100) patch
to be a square lattice with square bounds.

A. Pseudodispersion

For each vector �q that lies in the first BZ of the patch’s recip-
rocal lattice, plane wave excitations are given by ψiαL(T )(�q) =
p̂αL(T )e

i �q· �ri ; p̂α is the component of the polarization vector
along the α axis. Here the subscripts L and T label longitudinal
and transverse polarizations, respectively, while �ri labels the
equilibrium position of atom i. Because of boundary effects,
plane waves are not, strictly speaking, eigenmodes of G even
for high-symmetry directions. Nevertheless, we compute the
longitudinal (transverse) pseudodispersion ω2(�q) as

1/ω2
L(T )(�q) =

∑
iαjβ

ψiαL(T )GiαjβψjβL(T ). (1)

In all subsequent results, we report energies in units of Ka2.
An approximation for scalar elasticity governed by the

Laplace operator in an infinite continuum [25] as well as later
work for continuum elasticity governed by a long wavelength
cubic elasticity tensor [22,23] predict the anomalous nonlinear
dispersion of ω2 ∼ q (at low q) for the patch Green’s function
G. Our approach differs from this previous work in that the
underlying lattice and interactions dictate the symmetry of
the long wavelength elastic modulus tensor and determine the
behavior of the system at the BZ boundary, in particular the
magnitude and location of the van Hove peaks, in a realistic
way for an FCC crystal. In Fig. 2 we show ω2/q, for various
patches cut from the (111) plane and for longitudinal and
transverse plane waves traveling along an edge of the BZ.
Note that a patch with P = 32 atoms along an edge cut from
a crystal of size C = 32 is roughly half the size of the largest
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FIG. 2. (Color online) Computed longitudinal and transverse dis-
persion curves scaled by wave number for plane waves traveling along
the next-nearest-neighbor direction and lying in the first BZ for (111)
various patches.

(111) plane that fits in the embedding FCC crystal. Figure 2
shows that patches of size P = 32 are already quite insensitive
to the size of the full embedding crystal once the embedding
crystal is just slightly larger than the patch itself. We can also
see that the ratio of the longitudinal to transverse branch is not
3 as it would be for a true 2D triangular lattice with central
force interactions.

Figure 3 shows the complete dispersion scaled by the
wave number for wave vectors �q that lie in the first BZ of a
(111) patch (P = 64, C = 64). We see that at low q, there is
little variation in the scaled dispersion along any particular
radial direction in the BZ. The angular dependence of the
dispersion has hexagonal symmetry, as it must. Moreover at
low wave numbers the dispersion is isotropic, particularly
in the longitudinal case. A similar calculation indicates that
the dispersion of a 2D triangular lattice has a similar angular
dependence as that of the (111) FCC patch. Note that a slight
breaking of hexagonal symmetry is apparent in Fig. 3 near the
center of the BZ. This is an artifact of cutting a rhombic (111)
patch from a cubic FCC crystal: the edges of the rhombus are
not crystallographically equivalent to its shorter diagonal.

The dispersion for square (100) patches essentially follows
the same nonlinear scaling ω2 ∼ q for low q, but with
significant differences compared to (111). Figure 4 shows the
dispersion relation for various (100) patches and for plane
waves traveling along the [010] (top) and [011] (bottom)
directions. We see that longitudinal and transverse plane waves
traveling along a diagonal of the square ([011] direction)
are nearly degenerate (as in the hard-sphere Monte Carlo
simulations of Ref. [23]), while the plane waves along the
the [010] direction are not. This suggests that the (100)
patch dispersion is strongly anisotropic. Figure 5 shows the
dispersion scaled by the wave number for wave vectors �q that
lie in the first BZ of a (100) patch (P = 64, C = 64). The
scaled dispersion shows strong anisotropy that is particularly
pronounced in the transverse branch. For the transverse case,
ω2/q also shows radial variations at low q along some, but not
all, directions indicating that the low-q scaling is not as robust
in every direction, with the [010] direction giving particularly
poor scaling at small q.

(a)( )

0.0 0.1 0.2 

(b)( )

0.0 0.06 0.12 

FIG. 3. (Color online) Computed dispersion scaled by wave
number, ω2/Ka2q, for a (111) patch (P = 64, C = 64) for waves
in the first BZ. (a) Longitudinal; (b) transverse.

B. Density of states

The Debye prediction for the low-frequency scaling of
Dω = dN/dω, the number of modes per unit ω, is Dω ∼ ωd−1

in d dimensions. However, this scaling assumes that ω2 ∼ q2

at low frequency. On one hand, it has been pointed out that
the anomalous low-frequency dispersion of G, ω2 ∼ q for low
q, will change the expected scaling to Dω ∼ ω3 [25]. On the
other hand, experimental data [7] and some hard-sphere Monte
Carlo simulation results [23] for (111) seem to suggest that
Dω ∼ ω2 at finite but low ω, in accord with the standard Debye
prediction for a 3D material. We now compute the DOS, of
finite rhombic (111) and square (100) patches cut from the
full FCC crystal, paying special attention to the low-frequency
scaling behavior.

We first compute the set of eigenvalues of G, λp where
p indexes the mode. The pth frequency is then given by
ωp = 1/

√
mλp where m is particle mass. We report frequency

in units of ω0 = √
K/m. We first consider the integrated

DOS: N (ω) = ∫ ω

0 Dω dω. Figure 6 shows N (ω) for (111) and
(100) patches with P = 32 atoms along each edge embedded
in a FCC crystal with C = 32 cubic unit cells along each
edge. In addition, we have overplotted the conventional Debye
scaling ω ∼ N1/3 and the expected modified Debye scaling:
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FIG. 4. (Color online) Computed longitudinal and transverse dis-
persion curves scaled by wave number for plane waves lying in the
first BZ of various (100) patches for plane waves traveling in the (a)
nearest-neighbor ([010]) direction and (b) the next-nearest-neighbor
([011]) direction.

ω ∼ N1/4, for an intermediate. For both the patches, we
see that the conventional Debye scaling does worse than
the new modified-Debye prediction. However, N (ω) of the
(100) patch shows almost perfect agreement with the expected
non-Debye scaling from N = 10 to about N = 200, whereas
the (111) patch deviates by as much as 20% from the expected
non-Debye scaling even in this low-ω regime. We verify that
our results are qualitatively unchanged if patch size P is
kept constant while the embedding FCC crystal’s size C is
increased. That is, the size of the actual system has minimal
impact on the results, while the size of the observation window
must induce some finite size effects. We suspect that increasing
the patch size would extend the modified-Debye scaling regime
to lower frequencies, but that one would always observe
departures by at least 20% for ω > 0.6ω0.

We next make a histogram with the computed frequencies
to directly estimate Dω for various FCC patches and check
scaling behavior at low ω. Figure 7 shows the DOS for (100)
(top) and (111) (bottom) patches scaled by ω3 and ω2. In each
case Dω is normalized by the total number of normal modes

0.0 0.075 0.15 

0.0 0.09 0.18 

FIG. 5. (Color online) Computed dispersion scaled by wave
number: ω2/Ka2q, for a (100) patch (P = 64, C = 64) for (a)
longitudinal and (b) transverse waves in the first BZ.

so that the area under the graph is unity. Our histogramming
algorithm uses bins of variable width in ω space so that the
number of points lying in each bin is the same. For consistency

1 10 100 1000
N

0.5
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ω
/ω
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ω  ~ N
1/4

ω
Debye

  ~ N
1/3

FIG. 6. (Color online) Integrated DOS N (ω) = ∫ ω
Dω dω. Fre-

quencies, ω, as a function of index, N , for (100) and (111) FCC
patches (P = 32, C = 32).
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FIG. 7. (Color online) Computed DOS, Dω, normalized by the
total number of normal modes, N , for various FCC crystal patches.
(a) A patch from a (100) crystal plane. (b) A patch from a (111)
crystal plane. Upper panels: Dω/N scaled by the non-Debye scaling
ω3. Lower panels: Dω/N scaled by the Debye scaling ω2.

we use 80 points per bin in all our histogram plots. We
have checked that the location of the van Hove peaks and
low-frequency scaling behavior of Dω is independent of these
choices. We see from the plots of Fig. 7 that for C > P the
embedding crystal is large enough such that C does not directly
impact the results. The (100) patch DOS, when scaled by the
expected non-Debye behavior, ω3, shows a plateau for low
ω, while it lacks a plateau when scaled by the conventional
Debye scaling, ω2; in accord with the integrated DOS
in Fig. 6.

In contrast to the (100) patch, the (111) behavior (Fig. 7
bottom) is less clear. For the largest patches studied, P =
64, there is a clear bump in the plateau in Dω/ω3 at the
lowest frequencies. This bump gives the conventionally scaled
version, Dω/ω2, something close to an apparent plateau at
low frequency, something that was clearly not observed in the
(100) patch. We expect this to be a simple finite-size artifact
but cannot study patches larger than roughly P = 64 since our
method requires us to explicitly construct and diagonalize the
dense, nontranslationally invariant, projected Green’s function
(a P × P matrix) which would contain P 4 elements. An
experimenter, using the statistical approach described later,

looking at a patch of this size would be hard pressed to decide
whether the low-frequency regime scaled like the expected ω3

or the conventional ω2.
In parting, we note that a similar plateau in Dω/ω2 for a

(111) patch was observed in Ref. [23]. However, the DOS
in that case was computed from a displacement correlation
analysis in a hard sphere simulation. As we will show below,
statistical artifacts themselves can act to give an even more
robust plateau in Dω/ω2 at intermediate frequencies, so it
becomes difficult to say whether in the case of Ref. [23]
the apparent plateau was the result of projection artifacts or
statistical artifacts.

C. Mode structure

We next focus our attention on the plane wave decompo-
sition of normal modes of the patch Green’s function, G, and
their relationship to the dynamic structure factor (DSF) [26],
the average square amplitude of plane waves in thermal
equilibrium. We start by computing the full set of normal
modes φ̂p, and eigenvalues λp of G using the MATLAB
eig() function. p indexes the modes. We then perform a
spatial Fourier transform of each normal mode and split
into longitudinal and transverse components, respectively, as
follows:

E
p

L(�q) =
∣∣∣∣
∑

�r
[q̂ · φ̂p(�r)]ei �q·�r

∣∣∣∣
2

,

(2)

E
p

T (�q) =
∣∣∣∣
∑

�r
[q̂ × φ̂p(�r)]ei �q·�r

∣∣∣∣
2

.

Here �r labels a lattice site; E
p

L(�q) and E
p

T (�q) are square am-
plitudes of the longitudinal and transverse Fourier transform
components, respectively, for a reciprocal lattice vector (of the
patch) �q.

Next we compute the longitudinal (transverse) DSF, SL(T ),
which is written in terms of normal modes as [27,28]

SL(T )(�q,ω) = kbT q2

mω2

∑
p

E
p

L(T )(�q)�

(
0.1 −

∣∣∣∣ω − ωp

ω

∣∣∣∣
)

.

(3)

Here m is particle mass and the temperature is such that
kbT /Ka2 = 1. The sum runs over modes indexed by p with
corresponding energy eigenfrequency ωp = 1/

√
mλp. �(x) is

the Heaviside step function, which is equal to 1 when x > 0
and 0 otherwise. S(�q,ω), encodes the participation of various
plane waves in a normal mode of eigenfrequency ω [21].

Figures 8 and 9 show S(�q,ω) plotted in the first BZ for
(111) and (100) FCC patches for a set of three values of ω

that are typical low, midrange, and high eigenfrequencies of
G. We chose these frequencies so that the “high” frequency
is roughly near the second van Hove peak in the DOS, while
the “mid-” frequency is near the first van Hove peak, and the
“low” frequency is lower in the DOS. In both plots the upper
row shows the longitudinal component of the DSF while the
bottom row shows the transverse component.

The (111) patch DSF plots of Fig. 8 show that low-energy
normal modes (left column) have dominant participation from
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0.0 5.3E-3 0.01 0.0 8.7E-3 0.017 0.0 0.023 0.046 

0.0 0.018 0.036 0.0 0.056 0.11 0.0 0.034 0.067 

FIG. 8. (Color online) S(�q,ω) for a (111) FCC patch (P = 32, C = 32) for various ω. Upper row: Longitudinal. Lower row: Transverse.
Left: ω/ω0 = 1.21. Center: ω/ω0 = 1.65. Right: ω/ω0 = 2.08.

0.0 0.006 0.012 0.0 0.043 0.086 0.0 0.036 0.072 

0.0 2.7E-3 5.4E-3 0.0 0.021 0.042 0.0 0.022 0.044 

FIG. 9. (Color online) S(�q,ω) for a (100) FCC patch (P = 32, C = 32) for various ω. Upper row: Longitudinal. Lower row: Transverse.
Left: ω/ω0 = 1.21. Center: ω/ω0 = 1.65. Right: ω/ω0 = 2.08.
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FIG. 10. (Color online) Isotropically averaged DSF S(q,ω), for a
(111) FCC patch (P = 32, C = 32). The color bar is log scale. Left:
Longitudinal. Right: Transverse.

plane waves of a single wave number. The longitudinal
plane waves participate at roughly half the wave number as
transverse plane waves in modes of a given frequency ω and
the DSF is isotropic as we expect from the low-k dispersion of
a (111) patch. For modes of intermediate frequency (middle
column) which correspond to the first van Hove peak in the
DOS (see bottom plot of Fig. 7), the dominant transverse
plane waves are near the BZ boundary. The DSF for higher
frequency modes (right column) has peaks at multiple wave
numbers; however, participating plane waves are still localized
in the BZ. The dominant longitudinal plane waves are near
the BZ boundary, as one would expect since ω is near
the second van Hove peak. In addition, while the DSF has
hexagonal symmetry, the longitudinal component is fairly
isotropic except for the highest frequency normal modes. This
is consistent with the pseudodispersion of G of (111) patches
seen in Fig. 3.

In contrast, the DSF for the (100) patch (Fig. 9) shows
participation from plane waves of different wave number in a
given narrow frequency range. Roughly speaking, at a given
ω, the DSF is peaked at the equi-ω contours of the dispersion
plot. Much like the dispersion of (100) patches, the DSF is
highly anisotropic. At frequencies below the first van Hove
singularity in the DOS (top plot of Fig. 7) the participating
plane waves in the DSF are of relatively low wave number
(left plot), whereas even for modes with frequency just beyond
the first van Hove singularity we see dominant participating
transverse and longitudinal plane waves near the BZ boundary
(middle and right column).

We also compute an isotropic average of S(�q,ω) in wave
vector space:

SL(T )(q,ω) = 1

Nq

∑
�q

SL(T )(�q,ω)�

(
0.1 −

∣∣∣∣q − |�q|
q

∣∣∣∣
)

, (4)

Nq =
∑

�q
�

(
0.1 −

∣∣∣∣q − |�q|
q

∣∣∣∣
)

. (5)

Figures 10 and 11 show S(q,ω) computed for the Green’s
function of a (111) and a (100) patch, respectively. In each plot,
the vertical axis spans the range of frequencies of G, while the
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FIG. 11. (Color online) Isotropically averaged DSF S(q,ω) for a
(100) FCC patch (P = 32, C = 32). The color bar is log scale. Left:
Longitudinal. Right: Transverse.

horizontal axis spans the range of wave numbers in the first
BZ of the patch.

In Fig. 10 we see that for fixed, lower values of ω,
S(q,ω) has a peak at a single value of q. Low-energy modes
of G for (111) patches have dominant participation by a
plane waves of a single q. In contrast, high-energy modes
have multiple contributing plane waves. For example, modes
around ω/ω0 = 2.08, SL(�q,ω) (upper plot, right column of
Fig. 8) have peaks for at least two values of q. As we
expect from the pseudodispersion in Fig. 3, a longitudinally
polarized plane wave of wave number q participates in a
normal mode of higher ω than a transverse plane wave.
In contrast to the (111) case, the isotropically averaged
(100) DSF contains a wide range of q values at a given
ω. This can be understood from the highly anisotropic
dispersion.

III. MONTE CARLO SIMULATION

Experimental studies have access to only finite statistical
samples and will be subject to artifacts arising from incomplete
statistical information. To study these artifacts, we perform
Monte Carlo (MC) simulations using precisely the same
Hamiltonian as our analytical calculations. In particular we
focus on the convergence of DOS.

Using the Metropolis algorithm, we perform MC sim-
ulations to sample configurations from a Gibbs-Boltzmann
distribution. Our system is a FCC crystal with cubic periodic
boundary conditions, having C = 32 cubic unit cells along
each edge (4 × 323 particles). The crystal Hamiltonian is
constrained to be harmonic by specifying a Hessian Hiαjβ

(i,j label atoms while α,β label Cartesian axes) that includes
only nearest-neighbor interactions. The energy is quadratic
in particle displacements {xiα} and is given by E({xiα}) =
1
2

∑
iαjβ xiαHiαjβxjβ . We work in the same units as before:

energy is measured in units of Ka2. The temperature is set so
that kbT /Ka2 = 1. We use MC steps whose size is sampled
randomly from a uniform distribution of width 0.95a, where
a is the nearest spacing. This gives us an acceptance ratio of
approximately 81%.

We assemble displacement covariance matrices to obtain
the Green’s function, Giαjβ = 〈xiαxjβ〉/kbT , for (111) and
(100) patches having P = 32 atoms along each edge. Here
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FIG. 12. (Color online) Evolution of the frequency spectrum of the Green’s function of a (111) FCC patch (P = 32, C = 32) inferred from
Monte Carlo simulations. τ is the number of MC sweeps per patch degree of freedom. Left: Short sampling times. Right: Long sampling times.

uiα is the displacement of particle i along axis α from its
equilibrium position and the angle brackets denote averaging
over MC sweeps (in one sweep we attempt to move each degree
of freedom according to the Metropolis algorithm). We report
results as a function of sampling time τ , which we define as
the number of (postequilibration) MC sweeps per degree of
freedom in the patch (there are 2P 2 degrees of freedom in a
P × P patch) [16]. Note that τ counts successive MC sweeps
and does not address the issue of statistical independence
between sampled configurations.

We estimate the “decorrelation time” in our MC setup
by fitting the energy and single-particle displacement au-
tocorrelation functions to an exponential function to obtain
the characteristic decay time [29]. The decorrelation time is
insensitive to size of the FCC crystal C. We find that the
decorrelation time estimated from energy and displacement
autocorrelation is roughly 8 and 24 MC sweeps, respectively.
These decorrelation times give some idea about the number of
uncorrelated samples.

In Fig. 12 we present the inferred frequency spectrum
of G of our (111) patch for various τ together with the
analytical result. We note that if τ < 1 (the number of samples
is less than the number of degrees of freedom) we will
necessarily pick up trivial modes (as we see in the spectrum
corresponding to τ = 0.977). Different parts of the frequency
spectrum converge at quite different rates: the higher end of
the frequency spectrum takes particularly long to converge.
In fact, the change in the inferred spectrum with increasing
τ is so slow that if we consider only data in the left plot of
Fig. 12 we might be tempted to conclude that the spectrum
is converged at about τ = 17.58 since the relative change per
unit τ in the spectrum is quite small. Indeed, small relative
changes in the inferred spectrum are essentially the only tool
an experimenter has to declare convergence since an analytical
result is not available [7,16,18]. The right panel of Fig. 12
shows the inferred spectrum and the analytical result in the
limit of very large τ . The data make it clear that convergence
to the true spectrum is quite slow.

Figure 13 shows Dω of for various τ . Again, we have scaled
Dω by the non-Debye prediction ω3, as well as the Debye law

ω2. The low-frequency behavior of the (100) DOS (left) is not
severely impacted by the poor statistics, and even for relatively
small data sets, the Dω/ω3 data show a much clearer plateau
than Dω/ω2. One would have little case to doubt the predicted
non-Debye behavior. Surprisingly, the (111) patch (right plot)
shows an apparent ω2 scaling regime at intermediate ω that
tends to disappear only at very large τ . As we have seen in
the previous section, even the true underlying spectrum, at
least for these patch sizes, shows very little evidence for any
ω3 scaling regime. So it appears that the artifacts from the
finite statistics act in the same way as the artifacts in the true
underlying spectrum to push the result further away from the
ω3 scaling toward an apparent ω2 scaling.

To make one final point, we plot the unscaled version
of the (111) DOS in Fig. 14 [30]. In the main plot, we
normalize frequencies by the maximum observed frequency,
ωm, in the data set as one might do with experimental data,
while the inset normalizes the frequencies by the underlying
frequency scale in our known Hamiltonian, ω0. We see that the
inferred Dω, as a whole, shifts to lower frequencies relative
to the entire spectrum for shorter MC sampling times. This
is essentially due to the fact that ωm shifts downward with
increasing observation time. Interestingly, at least with these
normalization conventions on the energy scale, the effect
of spurious inferred correlations arising from insufficient
sampling act in a way very much like true underlying disorder.
For infinitely good statistics, or no underlying disorder, one has
sharp van Hove peaks in the DOS. As the statistical sample
is degraded, or one introduces disorder into the underlying
model, the van Hove peaks broaden and shift to lower
frequencies [15]. In effect, one may observe an excess of
low-frequency modes, or Boson peak, in the inferred spectrum
because of insufficient statistics rather than any true underlying
disorder.

IV. DISCUSSION AND SUMMARY

The ultimate use of the analysis in this paper is to inform
experimenters studying glassy or crystalline colloidal sus-
pensions using particle trajectory data obtained from optical
microscopy techniques. As we have shown, there are two issues
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FIG. 13. (Color online) Scaled DOS, Dω, of a FCC crystal patch (P = 32, C = 32) normalized by the number of normal modes N = 2P 2,
for different MC sampling times τ . Left: Patch from (100) FCC plane. Right: Patch from (111) FCC plane. Upper panel: Dω/N scaled by the
non-Debye scaling ω3. Lower panel: Dω/N scaled by the Debye scaling ω2.

that must be carefully addressed in analysis of such data: the
effects of observing a restricted 2D portion of the system
and imperfect statistical information about the displacement
correlations. We first described an analytical approach to
understanding projection artifacts for systems governed by
a harmonic Hamiltonian and then analyzed MC simulations
based on the exact same Hamiltonian to study the statistical
artifacts. The main utility of the approach we described here,
and the advantage over previous work, is that both kinds
of artifacts, projection and statistical, are addressed within
a single framework.

As a side benefit, the symmetry properties of the projected
Green’s function arise as a natural consequence of the
symmetries of the embedding FCC lattice and the use of
central forces. We did not need to adjust any free parameters
describing the symmetry in the patch, e.g., as in Ref. [23]. A
fully atomistic model also gives a realistic description of modes
all the way up to the BZ boundary, whereas other approaches
rely on ad hoc discretization of an elastic continuum.
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FIG. 14. (Color online) DOS, Dω, of (111) FCC crystal patches
(P = 32, C = 32) normalized by N = 2P 2 for different MC sam-
pling times τ . Inset: Dω/N as a function of frequency ω. Main plot:
Dω/N and ω, nondimensionalized by the maximum frequency ωm.

We have shown that for any direction in the BZ, the Green’s
function of a 2D patch embedded in an FCC crystal has an
anomalous nonlinear dispersion relation ω2 ∼ q, inline with
earlier, long-wavelength limit, analytical prediction [22,23].
Despite the same long wavelength scaling, the dispersion
relation is very anisotropic for (100) patches, whereas it is
fairly isotropic in the (111) case, at least at long wavelengths.
Moreover we find that anisotropy is much more pronounced
for the transverse dispersion of (100) FCC patches. Notably
for (100) patches we find that along certain directions in the
BZ, the longitudinal and transverse branches of the dispersion
are nearly degenerate all the way to the BZ boundary.

The nonlinear, long wavelength, dispersion relation leads
one to expect a non-Debye scaling, Dω ∼ ω3 in the DOS of
the FCC patches at low frequencies. Our calculations show
the (100) DOS has clear Dω ∼ ω3 scaling at low frequencies;
however, the picture is somewhat ambiguous for (111) patches
and does not show a clear Dω ∼ ω3 regime. This is similar
to the observations from molecular dynamics simulations of
FCC hard sphere systems in Ref. [23]. From the calculated
DOS, which we show in Fig. 7, we see that the deviation
from ω3 scaling at low ω can arise even with perfect statistical
information. However, we do expect that this deviation itself is
a finite (patch) size effect and that a Dω ∼ ω3 scaling regime
would emerge for large enough patches.

Next we studied the character of normal modes in the
patches. The DSF gave the contribution of plane waves to
normal modes of a given frequency. In both the (111) and (100)
cases, the DSF at a given frequency was essentially determined
by equi-ω contours of the dispersion. The strong anisotropy
of the (100) dispersion made for broad contributions to the
isotropically averaged DSF at a given ω due to the shape of
the dispersion contour.

The issue of statistical convergence was more subtle. We
showed that the DOS converges surprisingly slowly with
increasingly good statistical estimates of the displacement
covariance. In general, we found that poor statistics smears
out the van Hove singularities in the DOS and shifts the
peak toward lower frequencies, much in the same way as
true disorder. For the (111) patches, these sampling artifacts
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can give an apparent low-frequency form for the DOS that
appears to agree quite well with the conventional Debye result.
However, the DOS becomes closer to the expected non-Debye
form with better statistics.

In the future, we would like to extend our study to
harmonic FCC crystals with springs drawn from a distribution
(as in Refs. [14,15]). It will be important to understand,
quantitatively, the competing effects of incomplete statistical
information and actual underlying disorder on the inferred
spectrum. Beyond this, more realistic models for interacting
colloidal particles, such as hard sphere systems, bring anhar-
monicity and non-Gaussian behavior. Understanding all these
effects in quantitative ways is necessary before precise con-
nections can be made, in experiments or simulations, between
the underlying interactions and the observed displacement
correlations in small low-dimensional observation windows.
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APPENDIX: FOURIER SPACE CALCULATION
OF GREEN’S FUNCTION

The Green’s function of a crystal G = H−1, where H is its
Hessian matrix. For a crystal that has a unit cell with a basis and
a pair interatomic potential, we denote the components of the
Hessian matrix by Hiαμjβν ; here i,j label unit cells, μ,ν label
atoms in the basis, and α,β label Cartesian axes. We consider
periodic FCC crystals in a cubic cell with C, four-atom
cubic unit cells along each edge. This gives us B = C3

unit cells and B = 4N atoms in the crystal. Translational
invariance in the crystal implies that the Hessian is a function
of only the separation �Rij = �Ri − �Rj between unit cells,
where �Ri denotes the position of the ith. unit cell, thus giving
Hiαμjβν = Hαμβν( �Rij ) The set of allowed �Rij is precisely the
set of N position vectors, �R, of the unit cells; suppressing

indices labeling pairs of unit cells, we write the components of
the Hessian as Hαμβν( �R). This allows us to represent H, which
is a 3M × 3M matrix, in terms of B, 12 × 12 matrices H( �R),
whose components are Hαμβν( �R). Note that having a four-atom
unit cell implies that H( �R) = HT (− �R), due to translational
invariance of the lattice.

Following Ashcroft and Mermin [26], we take a 3D
Fourier transform of the Hessian matrix H( �R) to compute
the dynamical matrices according to

D̃(�k) = 1√
N

∑
�R

ei�k· �R H( �R).

Here �k is a vector in the cubic reciprocal lattice, and the
sum runs over the set of N unit cell position vectors �R. The
tilde denotes Fourier transformed operators. The dynamical
matrices D̃(�k) are 12 × 12 complex, Hermitian matrices. Due
to the identity H( �R) = HT (− �R), we also have D̃(−�k) =
D̃T (�k).

Next, we numerically invert the D̃(�k) to get the Fourier
space Green’s function G̃(�k):

G̃(�k) = D̃−1(�k).

Since there are three trivial translational modes of the crystal,
G̃(�0) is computed by taking a Moore-Penrose pseudoinverse
via a singular value decomposition. Finally an inverse Fourier
transform of the G̃(�k) gives us the complete real space Green’s
function G( �R):

G( �R) = 1√
N

∑
�k

e−i�k· �R G̃(�k).

In our implementation, we perform the forward Fourier
transform as an explicit sum over �R as very few of the H( �R)
are nonzero due to short range interactions; e.g., in the case of
only nearest-neighbor interactions there are at most 33 = 27
nonzero H( �R). However, the inverse Fourier transform is
performed via a fast Fourier transform routine.
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