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Phase transitions and self-organization of Janus disks in two dimensions studied
by Monte Carlo simulations
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Department for the Modelling of Physico-Chemical Processes, M. Curie-Skłodowska University, 20-031 Lublin, Poland

(Received 23 April 2014; revised manuscript received 11 September 2014; published 15 December 2014)

The phase behavior of Janus disks on a square lattice is studied using the Monte Carlo method. A particle
is composed of two different parts, A and B. The interactions between neighboring particles depend on their
orientations. To control the strength of the interactions, we use energy parameters characterizing AA, BB, and
AB contacts. The phase diagrams are estimated. We found two phase transitions, namely first-order transitions
between colloidal-rich and colloidal-poor phases, and continuous order-disorder transitions to different ordered
phases. A variety of ordered structures occurs depending on the relation between the energy parameters and on
the fluid density. The influence of energy parameters on the phase diagram topology and critical parameters is
shown. The competition between phase transitions and self-organization is discussed.
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I. INTRODUCTION

The application of particles with controlled anisotropy to
the fabrication of new materials with desirable functionality
is central in today’s research. The molecular engineering is
based on their intrinsic property to self-assemble under certain
thermodynamic conditions. Understanding the principles of
self-organization and phase behavior is necessary to control the
formation of assembled structures. This problem has attracted
increasing attention due to promising applications of the
new materials in nanotechnology, biotechnology, electronics,
photonics, drug delivery, and others [1,2].

A great variety of particles exhibit a tendency to self-
organize. A prominent example is a broad class of Janus-like
particles that are composed of at least two chemically or
physically distinctive parts. Such particles can be divided
into several classes according to their architecture and di-
mensionality. Numerous works have been devoted to study
spherical Janus particles that interact via different anisotropic
potentials. The first example is provided by “the classical”
Janus particle, i.e., a sphere with one-half of the surface being
hydrophilic whereas the other remained hydrophobic [3]. They
can provide the most elementary model of surfactants [4].
Another interesting class of particles are so-called patchy
particles that involve localized surface areas exerting attractive
forces [2]. Recently, Janus-like particles of different shapes
have been investigated [5,6]. Kraft et al. [7] have proposed a
new “patchy model,” in which Janus dimers consisted of one
rough and one smooth sphere. The binary-mixture model of
Janus fluids with up-down constrained orientations has also
been considered [8,9]. This model refers to the fluid in an
external static electrical field.

Over the past few years, the collective behavior of Janus
particles has been intensively investigated. A goal of numerous
works was to find the interconnection between individual
particle properties and the resulting self-assembled structures.
For this purpose, Monte Carlo [6–16] and molecular-dynamic
methods [17,18] have often been used. Computer simula-
tions have been supplemented by various theoretical ap-
proaches. Among these are simple analytical [8,9], Ginzburg-
Landau [19,20], density functional [21–23], integral equation
[8,9,24,25], and thermodynamic perturbation theories [25,26].

The directional dependence of interactions between Janus
particles leads to rich phase behavior and self-assembly into
various aggregates and mesoscale structures [2,3,6–26]. Erd-
mann et al. [10] investigated the phase behavior of Janus beads.
In this model, different orientations of particles are preferred
depending on the assumed parameters of the anisotropic poten-
tial. As a consequence, various ordered phases were observed.
Sciortino et al. [12,13] studied the one-patchy particles in
the framework of the Kern-Frenkel model [11]. They found
various aggregation structures, such as micelles, vesicles, and
bilayers. Their studies have shown the existence of the first-
order condensation transition. They observed the coexistence
of a dilute phase of micelles and a denser phase of larger
clusters. The demixing region is progressively suppressed
by the insurgence of micelles. The authors discussed the
competition between the self-assembly and phase separation.
In the framework of the model of binary-mixture Janus
fluids with up-down constrained orientations, a gas-liquid
transition under global equimolar conditions and the demixing
transitions have been analyzed for selected systems [8,9]. It
has been shown that the imposed constraints in the attractive
patch orientations inhibit the formation of the inert clusters,
which in the original Janus fluid [12,13] were responsible for
a reentrant gas branch. Moreover, anisotropies in the geometry
of particles, as well as in the properties of interactions, give
rise to a rich phase behavior of colloidal systems [6]. Phase
separation and self-assembly of colloidal dimers with tunable
attractive strengths have been discussed by Munao et al. [6].
In the limit of Janus dumbbells, the formation of lamellar
structures, preempting the gas-liquid phase separation, has
been observed. In addition to the condensation transition, the
crystallization of the Janus particles was investigated using a
wide range techniques. It has been shown that the simple Janus
beads formed stable crystal structures with complicated bond
topologies [14].

The behavior of nanoparticles at interfaces has been studied
from a fundamental point of view and exploited in applications
[27,28]. Intensive work has been done to understand the effects
of Janus particles at liquid-liquid interfaces [29–31] and their
behavior near solid surfaces [21–23]. Janus particles can form
two-dimensional films at interfaces. Such monolayers can be
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obtained, for example, from amphiphilic disklike molecules
adsorbed onto a solid surface, with particle-substrate inter-
actions rendering the disk coplanar to the surface [32–34].
Because of possible applications, the self-assembly of Janus
particles in two-dimensional systems is an important topic in
colloid science.

It is well known that complex molecules adsorbed on solid
surfaces can form regular patterns and exhibit a rich phase
behavior. Therefore, numerous papers have been devoted
to study phase transitions in adsorbed layers formed on
surface lattices [35]. In particular, extensive Monte Carlo
simulations have been carried out for monolayers consisting
of heterogeneous dimers, i.e., linear molecules built out of
two chemically distinct segments [36–40]. Two simple models
have been considered. In the first, all dimers were adsorbed
parallel to the surface [36–38], whereas in the second they
assumed perpendicular orientation [39,40]. The results reveal a
great variety of vapor-liquid coexistence behaviors depending
on the relative strengths of interactions between molecule
segments. In the case of heterogeneous dimers, the phase
diagrams included many challenging features, such as triple
points, tricritical points, or end-critical points. Apart from
the vapor-liquid transition, liquid-liquid coexistence has been
found [36–38]. The occurrence of spontaneous, orientational
ordering in the liquid was demonstrated. The evolution of
phase diagrams with a change of the model parameters has
been discussed. Recent studies [18] have shown that also Janus
disks in two-dimensional systems self-organized in a number
of mesophases of various symmetries with a variety of novel
patterns.

In this paper, we present computer simulation for Janus
disks adsorbed on a square lattice. In contrast to numerous
works [10–16,21–26], we have introduced the simple lattice
model. Monte Carlo simulations in lattice systems are consid-
erably less time-consuming than those for continuous models.
In this way, one can effectively scan the space of the model
parameters.

We propose here a simple model for the anisotropic
interactions between Janus disks. The potential is a linear
combination of three parameters characterizing the strengths of
interactions between the same and unlike parts of the disks. The
interaction between particles depends on their orientations.
Depending on the relations between the energy parameters,
our model reduces to the two-dimensional lattice version of the
Kern-Frenkel model [11] or models for amphiphilic particles
[17]. We consider different sets of the energy parameters.
This enables us to simulate various kinds of systems. In
contrast to heterogeneous dimers, the Janus disks occupied
only one lattice site. The model involves the anisotropy in
the interactions but not in the particle shape. Therefore, the
phase behavior of Janus disks and heterogeneous dimers is
considerably different.

The aim of our computer simulations is to show the effects
of differences in strengths of interactions between particular
parts of Janus disks on the nature of self-organization and
phase transitions. We want to study general trends of phase
behavior of the model. First of all, we discuss the ground-state
properties and analyze ordered structures generated by the
model. Next, we want to explain how the choice of energy
parameters affects the topology of phase diagrams and critical

parameters of condensation for selected systems. We show
that our model captures important features of self-assembly
and phase separation in the system.

From a theoretical point of view, it is also interesting
to investigate the behavior of Janus objects in the systems
with lower dimensionality and the symmetry imposed by the
substrate. The results can be utilized for the production of
patterned surface structures.

II. MODEL

We consider Janus disks on a simple square lattice. The fluid
molecules are circular plates composed of two different halves,
A and B. They are located parallel to the lattice plane. Each
lattice site may be occupied or remain empty. For simplicity,
we assume that a particle may take only four orientations,
as presented in Fig. 1(a). In the case of orientations labeled
as 1 and 2 (3 and 4), the diameter that divides two different
parts of a particle is parallel (perpendicular) to the x axis.
The particle can be treated as a unit vector perpendicular to
the dividing diameter and oriented from B to A. The possible
orientations correspond to the following vectors: v(1) = (0,1),
v(2) = (0, − 1), v(3) = (1,0), and v(4) = (−1,0).

FIG. 1. (Color online) Orientations of the model Janus disks (a),
and representative examples of pairs xk1 (b) and yk1 (c). For pairs
xk1 (yk1), the lines connecting the centers of the particles are aligned
along the x (y) axis. The indexes indicate the orientations of particles
located on sites with the successive x (y) coordinates.
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We introduced the generalized gas-lattice model. To each
site we assigned a set of occupation variables (c1i ,c2i ,c3i ,c4i)
that are equal to unity (zero) when the site is occupied
by a particle with the kth orientation (when it is empty or
occupied by a particle with orientation different from the kth
orientation),

cki =
{

1 for the kth orientation,

0 otherwise.
(1)

We can also use the total occupation variable ci defined as
the sum of occupation variables cki ,

ci =
4∑

k=1

cki =
{

1 for an occupied site,

0 for an empty site.
(2)

Then we assume that a pair of particles interacts one with
another whenever they occupy the first-nearest neighboring
sites. The interaction energy between particles i and j depends
on their orientations vi ,vj and on the particle separation
vector rij (|rij | = 1), u = u(vi ,vj ,rij ). To characterize a
configuration of a pair, one can use the following scalar
products: vij = vi · vj , wij = rij · vj , and wji = rji · vj [11].
In the case of perpendicular vectors, the scalar product vij = 0.
For two identical vectors (parallel), vij = 1 while the value
vij = −1 corresponds to an antiparallel configuration. We can
distinguish 32 types of pairs of interacting particles. Examples
of these pairs are shown in Figs. 1(b) and 1(c). For a pair labeled
xk1 (yk1), the particle separation vector is aligned parallel to
the x axis (y axis). The indexes indicate the orientations of
particles located on sites with successive x (y) coordinates.

We define three energy parameters: uAA,uBB , and uAB ,
which characterize interactions between identical and unlike
parts of particles in parallel or antiparallel pair configurations.
The parameter uAA (uBB) is defined as the interaction energy
for a pair in which A (B) parts face each other [e.g., the
configuration y12 in Fig. 1(c)]. The parameter corresponds to
the head-to-tail configuration [e.g., the pair y11 in Fig. 1(c)].

We assume that the pair interaction energy, ul , is the
arithmetic average of two energy parameters corresponding
to patches being in contact,

ul = 1
2 (uα + uβ), (3)

where α,β = AA,BB,AB. It is easy to show that the definition
(3) generates only six possible values of the pair energy ul .
These values are collected in Table I.

To give a link between the heuristic definition (3) and
vectors vi , vj , and rij characterizing a given pair, we define two
variables: w = wij + wji and p = wijwji . We have shown
that the energy ul is univocally determined by the variables
vij , w, and p. This relation is presented in Table I. The pairs
corresponding to the energies are shown in the last column.

Notice that in this model different pairs can correspond
to the same value ul . The pair energy states are degenerated.
For example, either the pair x12 or the pair x33 contributes
the value uAB to the total potential energy of the system.
Moreover, the energies u1 and u2 (u3 and u4) correspond to
antiparallel (parallel) configurations, while the energies u5 and
u6 correspond to perpendicular configurations.

TABLE I. Pair energies with corresponding values of parameters
vij , w, p and pair configurations.

Energy vij w p Pairs

u1 = uAA −1 2 1 x34, y12

u2 = uBB −1 −2 1 x43, y21

u3 = uAB 1 0 −1 x33, x44, y11, y22,
−1 0 0 x12, x21, y34, y43

u4 = 0.5(uAA + uBB ) 1 0 0 x11, x22, y33, y44

u5 = 0.5(uAA + uAB ) 0 1 0 x14, x31, x32, x24,
y32, y42, y13, y14

u6 = 0.5(uBB + uAB ) 0 −1 0 x13, x41, x42, x23,
y31, y41, y23, y24

In the grand canonical ensemble, the Hamiltonian of N

particles at temperature T can be written as [35]

H =
6∑

l=1

ulnl − Nμ, (4)

where nl is a number of pairs that contribute the ul to the
total potential energy of the system. The fluid density can be
expressed as

ρ = 1

L2
N = 1

L2

∑
i

ci , (5)

where L is a number of lattice sites. The summation in Eq. (5)
is over all lattice sites. In a similar way, we calculate the density
of molecules in the kth orientation,

ρk = 1

L2
Nk = 1

L2

∑
i

cki, (6)

where Nk is a number of molecules with the kth orientation.
To investigate phase transitions and ordering in the system,

we introduce several order parameters. For a gas-liquid
transition, we used the usual parameter defined as

m = ρ − 〈ρ〉, (7)

where 〈ρ〉 is the ensemble average.
The model predicts the existence of four ordered structures

for a fully covered lattice: the superantiferromagnetic (SAF1,
SAF2) and antiferromagnetic (AF1, AF2) phases [41]. All
these structures are presented in Fig. 2.

We analyze the structural transitions using a standard
method proposed for lattice systems [41]. To distinguish the
ordered phases, we define the suitable order parameters in
the way described below. First, by analogy to the models of
magnets, we define the following spin variables:

S12,i =

⎧⎪⎨
⎪⎩

1 for c1i = 1,

−1 for c2i = 1,

0 otherwise

(8)

and

S34,i =
⎧⎨
⎩

1 for c3i = 1,

−1 for c4i = 1,

0 otherwise.
(9)
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FIG. 2. (Color online) Schematic representation of different pos-
sible ordered structures at a fully filled lattice and decomposition of
a square lattice into four equivalent sublattices a, b, c, and d .

Second, we decompose the entire lattice into four interpen-
etrating and equivalent sublattices, as shown in the lower part
of Fig. 2, and we introduce the average “magnetizations” of
each sublattice α [41],

m12,α = 1

L2

∑
i∈α

S12,i (10)

and

m34,α = 1

L2

∑
i∈α

S34,i , (11)

where α = a,b,c,d.
Using the above sublattice magnetizations, we define the

following order parameters:

�SAF1 = −m12,a + m12,b + m12,c − m12,d , (12)

�SAF2 = −m34,a − m34,b + m34,c + m34,d , (13)

�AF1 = m12,a + m12,b − m12,c − m12,d , (14)

�AF2 = −m34,a + m34,b + m34,c − m34,d . (15)

Finally, we introduce the order parameter suitable to detect
the presence of the SAF phase,

�SAF =
√

�2
SAF1 + �2

SAF2, (16)

and the order parameter that describes the ordering character-
istic for the AF structure,

�AF =
√

�2
AF1 + �2

AF2. (17)

Let us discuss briefly the properties of these order pa-
rameters. As usual, the order parameter �SAF (�AF) changes
from 0 to 1. It achieves the maximum value for a perfectly
ordered phase: �SAF = 1 (�AF = 1). In such a phase, the
order parameter �SAF1 (�SAF2) assumes values 1 or −1. These
values correspond to the structures aligned to the x or y

axis. Moreover, if �SAF1 = ±1 (�SAF1 = ±1), then �SAF2 = 0
(�SAF1 = 0). The same relations hold for the order parameter
�AF and its components �AF1,�AF2.

We have calculated also the fourth-order cumulants of the
order parameters [42],

U (�) = 1 − 〈�4〉
3〈�2〉2

, (18)

where � denotes any order parameter. The above-defined
quantities can be calculated during Monte Carlo simulation.

It is worthwhile to compare our model with other gas-lattice
models. The simplest gas-lattice model has been formulated
for a fluid consisting of isotropic molecules. This model
can be readily mapped into the two-state Ising model [43].
For anisotropic particles, the model becomes more complex
because of a larger number of possible configurations. This
means that more variables should be used to characterize a
state of a given lattice site. For example, a heterogeneous
dimer AB may occupy one or two lattice sites, depending on
whether it assumes an orientation parallel or perpendicular
to the surface. In the latter case, there are two configurations
when different segments (A or B) are in contact with the
surface. The monolayer film consisting of the perpendicularly
adsorbed dimers AB can be modeled by the spin −1 model
in which the spin variable can take three values ±1 and 0
[35,39,40]. This model was originally proposed by Blume,
Emery, and Griffiths [44] to describe the phase behavior
of liquid mixtures of helium isotopes. Several versions of
spin models have been used to study a variety of problems
in condensed-matter physics: orderings in magnets, alloys,
mixtures, and fluids in embedded integral degrees of freedom.
Under certain conditions, heterogeneous dimers adsorbed
parallel to the surface can be studied in the framework of the
BEG model [38]. Various more advanced lattice models have
also been considered, namely the Heisenberg, XY , and Potts
models [43]. In a general case, our approach can be treated as
a version of the Potts model.

III. MONTE CARLO METHOD

We have carried out Monte Carlo simulations in the
grand canonical ensemble using the hyperparallel tempering
technique [45–48]. A square simulation cell was used with
standard periodic boundary conditions in both directions. The
linear dimensions of the system (L) ranged between 60 and
192. A Monte Carlo step consisted of an attempt to insert
a particle into the system at a randomly chosen position
or to remove an existing particle. A number of MC steps
necessary to obtain solid results depended considerably on the
assumed values of the energy parameters. In the majority of
simulations, we used 109 MC steps (per site) for equilibration
and 1010 for production runs. However, for certain sets of
energy parameters, the simulations had to be substantially
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longer. The multiple-histogram reweighting method was used
to analyze the results [49,50].

The reordered quantities were the densities of differently
oriented particles ρk , the total density ρ, the order parameters,
and the fourth-order cumulants of the order parameters. We
have estimated the histograms of the order parameters. The
histograms of the density p(ρ) were used to determine a line
of vapor-liquid coexistence. The coexistence was located using
the equal peak-weight criterion for the density histogram [46].
The histograms of the remaining order parameters allowed us
to identify the ordered structures existing in the considered
systems.

For certain systems, the simulations in the grand canonical
ensemble became prohibitively long and the interpretation
of the results was difficult. Therefore, for a few systems we
additionally carried out simulations in the canonical ensemble.
We used the block distribution function analysis [51,52]. The
simulation cell was divided into smaller subsystems (blocks).
We estimated the distribution functions P (ρ∗) that characterize
the normalized probability that the system has density ρ∗
within a given block.

Finite-size scaling theory was used to study the nature of
phase transitions and to estimate critical parameters [53]. In
this way we analyzed how the order parameters and their
fourth-order cumulants change with varying temperature and
the chemical potential for different sizes of the simulation cell.
We recall here only the main features of these quantities; for
further details, we refer the reader to the literature [35–42,53].
The curves �L versus T (�L versus μ) plotted for different
linear dimensions of the system have an intersection point
as a first-order phase transition occurs. On the contrary, for
a continuous phase transition, the curves do not cross one
another. The cumulants UL(�) versus T [UL(�) versus μ]
adopt a nontrivial fixed point UL(Tt ) = U ∗ [UL(μt ) = U ∗].
In the case of a first-order transition for a sufficiently large
system, a minimum appears on a curve UL(�) versus T

[UL(�) versus μ]. However, for the second-order transition,
the curves are always monotonic. The intersection points of
the curves UL(�) versus T [UL(�) versus μ] give an accurate
estimate of the critical temperature and the critical potential
[42]. In this paper, we assume that |uBB | is the unit of energy,
the reduced temperature is defined as T ∗ = kBT /|uBB |, and
the reduced chemical potentials are given by μ∗ = μ/kB .

IV. RESULTS AND DISCUSSION

We begin with a discussion of the preferred configurations
generated by our model. A comparison of possible pair
energies collected in Table I leads to the conclusion that the
energies u4, u5, and u6 are never lower than one of the energies
u1 = uAA, u2 = uBB , or u3 = uAB . This means that within the
considered model, the particles prefer to couple in pairs that
contribute the energies uAA, uBB , or uAB to the potential energy
of the system (three upper rows in Table II). Obviously, if uBB

(uAA) is the lowest pair energy, the B (A) patches face each
other. In this case, the antiparallel orientation is favored. In
contrast, when uAB is the lowest pair energy, the head-to-tail
configurations are the most profitable. These pairs corresponds
roughly to the preferred configurations (ss, nn, sn) considered
in the model of Erdman et al. [10]. Moreover, our model does

TABLE II. The listing of investigated systems and corresponding
values of parameters.

Code uAA uBB uAB ε

M1 −1 −1 0 −2
M2 −1 −1 +1 −4
M3 −1 −1 +2 −6
M4 0 −1 −2 +3
M5 0 −1 −1 +1
M6 +2 −1 0 +1

not predict the occurrence of the polar phase with all particles
aligned along one of the axes (the pairs x11, x22, y33, y44 are
energetically penalized). In contrast to the model of Janus
fluids with up-down constrained orientations [8,9], there are
no restrictions for the possible pair configurations.

We next consider the ordered structures formed by our
Janus disks in two dimensions. The ordering in a given
system depends on the relations between the energy parameters
and space limitations in a dense fluid. In our model, the
ground-state properties can be described using energies uAA

and uAB for the fixed energy uBB = −1. We define the
parameter ε = uAA + uBB − 2uAB that dictates the type of
ordered phase. If ε < 0, two SAF (quasilamellar) structures
are observed. The SAF1 structure consists of alternating strips
of particles in the orientations 1 and 2. These strips are oriented
parallel to the x axis. However, the structure SAF2 corresponds
to strips of particles in the states 3 and 4, aligned to the y axis.
For ε > 0, the antiferromagnetic phases are formed. The AF1
(AF2) structure consists of particles in the orientations 1 and
2 (3 and 4), as shown in Fig 2. The regions of stability of the
ordered phases are sketched in the ground-state phase diagram
for the fully filled lattice (Fig. 3).

The structural transitions in our system resemble to some
degree a demixing in a binary mixture. Both transitions are
caused by the difference in strengths of interactions between

FIG. 3. Ground-state diagram for the system with uBB = −1 at a
fully filled lattice. Vertical dashed line corresponds to the same AA

and BB interactions (uAA = −1). The solid line (ε = 0) delimits the
regions of the stability of the SAF and AF phases. Symbols show the
points at which the calculations have been carried out.
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similar and dissimilar moieties. One can treat the fluid of Janus
disks as an equimolar mixture of halves A and B. However, in
the considered particles these parts are permanently bonded.
Thus, a change of the parameter ε can only cause changes
in the orientations of particles. As a consequence, ordered
structures with different numbers of energetically profitable
and unprofitable contacts are formed.

If all interactions in the system are nonrepulsive, the model
predicts that all possible ordered structures correspond to a
fully covered lattice. On the other hand, when interactions
are repulsive, ordered phases can be formed also for lower
densities. We return to this problem later.

We want to scan systematically the space of model
parameters. However, our goal is to show general trends in
the phase behavior of the model rather than to consider details
of phase diagrams of the investigated systems. We carried out
a simulation for selected values of the energy parameters (see
Table II). We chose the sets of parameters corresponding to
those used in the previous studies of heterogeneous dimers
[36–38], amphiphilic Janus particles [17], and symmetrical
binary mixtures [54]. We show the analogies between the phase
behaviors of these systems.

We consider two sets of the investigated systems. In the first
group, AA and BB interactions are the same, uAA = uBB =
−1 (systems M1–M3). For the second set of systems, these
interactions are different and uAA = 0, uBB = −1 (systems
M4–M6). The points corresponding to the studied systems
are located at the vertical dashed line and at the uAB axis in
Fig. 3, respectively. Additionally, we considered the system
with uAA = +2, uBB = −1, and uAB = 0 (M7).

Now we discuss the behavior of the systems with the
same AA and BB interactions, uAA = uBB = −1 (the dashed
vertical line in the ground-state diagram drawn in Fig. 3).
We performed simulations at points marked as void circles.
This class of Janus particles corresponds to the heterogeneous
dimers studied in our previous paper [36]. Note that for system
M1, uAB = 0, while for systems M2 and M3, AB interactions
are repulsive. We have found that each system (M1–M3)
underwent a first-order “condensation” from a colloidal-poor
(gas) to a colloidal-rich (liquid) phase and a continuous
transition from an isotropic fluid to the ordered fluid of the
SAF type.

To shed more light on the nature of the observed transitions,
we analyzed the histograms of the density and the histograms
of the order parameters. The results are qualitatively the same
for all investigated systems (M1–M3). At low temperatures,
the density histograms are double-peaked distributions charac-
teristic of first-order transitions [47]. We observe a coexistence
between a colloidal-poor and a colloidal-rich phase that
disappears above a critical temperature. For high temperatures,
we obtained the Gaussian histograms of the density.

We also studied the transition from a disordered to
an ordered phase. Figure 4 gives typical examples of the
histograms of the order parameter �SAF1 (or �SAF2). These
results were obtained for the system M1. The histograms were
estimated at the fixed temperatures T ∗ = 0.5, i.e., above the
temperature range at which the first-order transition occurs,
and different values of the chemical potential. For μ = −1.2,
the order parameter distribution �SAF1 (the distribution �SAF2

is the same) exhibits three maxima due to the SAF phase,

-1 -0.5 0 0.5 1
ψSAF1

0

2

4

6

8

10

p(
ψ
SA
F1
)

−ψ0SAF1 +ψ0SAF1

FIG. 4. (Color online) Distributions of the component �SAF1 (the
distributions of the component �SAF2 are the same) of the order
parameter �SAF for the system M1 obtained at T ∗ = 0.5 and μ∗ =
−1.200 (green line), μ∗ = −1.225 (red line), and μ = −1.250 (black
line). The size of the simulation cell L = 84.

two at ±�0
SAF1 and one at �SAF1 = 0. The values ±�0

SAF1 are
indicated in Fig. 4. Notice that the maximum at �SAF1 = 0
does not prove the presence of any disordered phase, but it is a
consequence of the existence of differently oriented domains
of the SAF phase, namely the structures SAF1 and SAF2. The
order parameters �SAF1 and �SAF2 correspond to the domains
oriented along two orthogonal directions, so it is not possible
that both of them assume zero values. If one of these order
parameters is close to zero, the other has a value close to
±�0

SAF1. As the chemical potential decreases, the maxima at
±�0

SAF1 are located closer to zero and become lower. Above
the λ line (μ = −1.250) there is a single-peak distribution
corresponding to a disordered phase.

Next, we analyzed the changes of the order parameter �SAF

and of its fourth cumulant, UL(�SAF), with temperature and
the chemical potential. We concluded that the phase transition
between a disordered fluid and the SAF phase is continuous.

The results obtained for systems M1–M3 are summarized
in Fig. 5, which presents the phase diagrams in T -ρ (a) and
T -μ (b) coordinates. Let us discuss some details of the phase
diagram for the system M1 (nonrepulsive interactions). At very
low temperatures, there is a coexistence between a disordered
gas and the ordered, SAF-type liquid. In other words, there is a
first-order transition between a disordered colloidal-poor and
an ordered colloidal-rich SAF phase. For higher temperatures,
there exists a line of critical points separating a disordered
fluid and the ordered SAF fluid (λ line). This line corresponds
to a continuous, structural transition. We have not found
a coexistence between ordered and disordered liquid. The
λ line can cross the gas-liquid coexistence envelope at the
critical point of condensation (a tricritical point) or below
the critical point at a critical end point. Above the critical
temperature of “condensation,” only the supercritical fluid
exists, similarly to the phase diagram of a simple fluid.
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FIG. 5. (Color online) The density-temperature (a) and the chemical potential-temperature (b) projections of phase diagrams obtained for
the following systems: M1 (black line), M2 (red line), and M3 (green line). Solid lines represent the first-order coexistence curves. The symbols
are located on the λ lines corresponding to the second-order transitions to the SAF phase.

The phase diagrams obtained for the systems M3 and M3
have analogous topologies—with the vapor-liquid coexistence
lines and λ lines corresponding to the second-order transition
between disordered and ordered fluids. Unfortunately, we did
not answer the question of whether the λ lines cross the
coexistence envelope at the tricritical points or at the critical
end points. We cannot also preclude that a change of uAB

changes the topology of the phase diagram from a diagram
with a tricritical point to one with an end critical point. In the
considered systems, the λ lines cross the coexistence envelopes
very closely to the critical points. In such a situation, very
strong fluctuations of the order parameters are observed. It is
well known that a precise determination of the critical end
point located near the condensation critical point is a difficult
task [55–57]. The standard finite-size scaling techniques can
be effectively used only for very large simulation cells.
This makes simulations very time-consuming even for the
two-dimensional (2D) lattice model. We want to show only
the fundamental features of phase diagrams of different model
systems. Therefore, we did not concentrate on this problem.
Nevertheless, one sees how the phase diagram changes with
increasing energy uAB . In the considered case of nonattractive
AB interactions, an increase of uAB causes a rise of the critical
temperature and the critical potential. Stronger repulsion
between particles causes an increase in critical temperature.
The reason for this striking behavior is the ordering of the col-
loidal-rich phase. At temperatures slightly lower than the
critical temperature of “condensation,” there is a coexistence
between a disordered fluid and a highly ordered phase of the
SAF type. The critical temperature depends on the ratio of
energy and entropy differences between a fully disordered state
and the ground state (T = 0) [58]. There are no AB contacts
in a perfectly ordered SAF phase (�SAF = 1). Therefore, at the
ground state, the energy and entropy are independent of uAB .
In a disordered fluid, however, the mean energy increases with
uAB . As a result, the critical temperature also increases.

In Table III, we give the locations of the second-order
transitions and the fixed point values of the fourth-order
cumulants U ∗(�) at the transition points, estimated for

selected thermodynamic conditions. The results obtained for
the systems M1–M3 demonstrate that the structural transition
to the SAF phase is nonuniversal, as expected.

It is instructive to compare the phase diagrams obtained
for the systems M1–M3 with the phase diagrams estimated
for similar, physical systems. As has been mentioned, the
SAF-type phases were observed either in magnets or in
heterogeneous dimers. The order parameter �SAF has been
used to describe ordering in these systems. In the case of
heterogeneous dimers, the ordered SAF fluid (lamellar) was
found [36]. The alternating strips of A and B segments
are formed by dimers lying parallel to the x or y axes.
The AB dimers seem to be very similar to Janus disks.
However, the anisotropy of the shape can strongly affect the
self-organization processes. Moreover, in the lattice model
a dimer occupies two lattice sites. As a consequence, there
is no statistical equivalence between particles and vacancies.
The occupation of a given site ensures that one of its nearest
neighbors is also occupied. The configurational entropies of
the same number of heterogeneous dimers and Janus disks
are considerably different. Phase equilibrium is established on
the basis of compensation between the internal energy and
entropy. Therefore, the phase diagrams of Janus disks and the

TABLE III. The location of (T ∗,μ∗) the second-order phase
transitions in the investigated systems. Columns 4 and 5 give the
fixed-point values of the fourth cumulants of the suitable order
parameters.

Code T ∗ μ∗ U ∗(�SAF) U ∗(�AF)

M1 0.500 −1.2267 0.625
M2 0.750 −0.6224 0.606
M3 0.900 −0.3066 0.600

1.000 0.0390 0.6001
M4 0.829 −2.5000 0.638

0.839 −2.0000 0.638
M5 0.282 −1.5000 0.637
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FIG. 6. (Color online) The density-temperature (a) and the chemical potential-temperature (b) projections of phase diagrams obtained for
the systems M4 (black lines) and M5 (red lines). Solid lines represent the first-order coexistence curves. The symbols are located on the λ lines
corresponding to the second-order transitions to the AF phase.

heterogeneous dimers interacting in a similar way can exhibit
a different topology, such as, for example, the phase diagram
for the system M1 and for dimers (see Fig. 1 in Ref. [36]).

However, the phase diagrams presented in Fig. 5 have
the same topology as the phase diagram estimated for the
symmetrical binary mixtures of Lennard-Jones fluids, in
which there is a vapor-liquid coexistence line and the λ line
corresponding to a continuous transition between the mixed
and demixed fluid (see Fig. 4 in Ref. [54]).

Now we turn to the model with different AA and BB

interactions, which is likely better suited to describe proper
Janus particles than that considered above. We discuss here
the results obtained for systems M4–M6 (points on the uAB

axis, marked as filled circles in Fig. 3). In this case, uBB = −1,
uAA = 0, whereas AB interactions are nonrepulsive. We again
investigate how an increase in the pair energy uAB affects
the phase behavior of the system. As predicted, we found the
AF-type structures in the systems M4 (uAB = −2) and M5
(uAB = −1), while for the system M6 (uAB = 0) the SAF
ordering was found. We have shown that the systems M4 and
M5 underwent first-order “condensation” and a continuous
phase transition between a disordered fluid and the AF phase.

The resultant phase diagrams for the systems M4 and M5
are shown in Fig. 6. One sees that the systems M4 and M5
underwent first-order “condensation” and a continuous phase
transition between a disordered fluid and the AF phase. As
in the previous case, at very low temperatures there is a
coexistence between a disordered gas and the ordered liquid.
However, the structure of this ordered liquid is different. The
λ lines attain the coexistence curves at the critical end points.
This means that at temperatures slightly below the critical
temperature, the coexistence between two disordered phases
of distinct densities is observed. We have here an “usual
condensation.”

Using the standard finite-size scaling methods described
in the preceding section, we estimated the following crit-
ical parameters: T ∗

c = 0.8464, μ∗
c = −2.892 24, and ρc =

0.517 95 for system M4, and T ∗
c = 0.424, μ∗

c = −1.584 28,
and ρc = 0.491 60 for system M5. The fixed-point value of the

FIG. 7. (Color online) Fragments of snapshots of configurations
recorded for M6 at T ∗ = 0.1 and ρ = 0.4 (a) and ρ = 0.7 (b); L= 192.
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fourth-order cumulant of the order parameter m is equal to
U ∗

m ≈ 0.615. This confirms that the condensation transition
belongs to the universality class of the 2D Ising model. As one
can expect, with weakening AB attraction the critical temper-
ature of “condensation” decreases since the total strength of
attraction decreases. At the same time, the critical chemical
potential increases while the critical density shows only a
slight decrease. Moreover, the λ line attains the coexistence
curve at a considerably lower temperature. It is interesting that
the structural transition to the AF phase is nonuniversal (see
Table III).

In our earlier works [37,38], we studied heterogeneous
dimers with different AA and BB interactions. These dimers
formed an ordered phase similar to the AF structure shown
in Fig. 2. The order-disorder transition was continuous. We
found that depending on the strength of the AA interactions,
the λ line crossed the coexistence envelope at the tricritical
point or at the critical end point [38].

A markedly different situation was encountered in the case
of uAB = 0 (M6). Because ε = −1, the SAF-type structures
should be formed. Notice that now only pairs of particles

connected via B patches or their parts contribute to the
potential energy of the system (u2 = uBB and u4 = u6 =
uBB/2 in Table I).

The model system M6 corresponds, to some extent, to the
Janus particles studied by Sciortino et al. [12]. Within their
model, each particle consists of one attractive patch (say B)
and the other part, which only induces steric repulsion. In
lattice models, the particles located on neighboring sites cannot
overlap, so the steric repulsion is an immanent feature of the
model. There are no attractive AA and AB interactions, either
in our M6 model or in the model of Sciortino and co-workers
[12]. However, one should remember that the symmetry of the
lattice and the restrictions of the particle orientations change
the behavior of our system.

At high temperatures, the fluid is completely disordered.
Upon decreasing temperature, these interactions become more
and more important. As a consequence, particles start to
connect into clusters. In the system M6, we observe a strong
tendency of the particles to aggregate in the “SAF-type”
bilayers that expose to the outside only neutral parts A. Such
“double chains” are formed even at low fluid densities. Similar
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FIG. 8. (Color online) The results for the system M6. Changes of the order parameter �SAF with the chemical potential (a,c) and the
corresponding changes of the fourth-order cumulant UL(�SAF)(b,d) obtained at T ∗ = 0.25 (a,b) and T ∗ = 0.2 (c,d). The calculations have been
carried out for the different sizes of the simulation cell, L = 60 (black lines), 72 (red lines), 84 (green lines), 94 (blue lines), 120 (yellow lines),
140 (maroon lines), 144 (brown lines), and 168 (magenta lines).
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aggregates were formed in the Janus particles interacting
via the Kern-Frenkel potential [12]. Examples of snapshots
are presented in Fig. 7(a). However, there is no energetic
profit connected with the sticking of the aggregates. The
self-organization prevents the demixing of the system into
colloidal-poor (gas) and colloidal-rich (liquid) phases. We see
the competition between self-assembly and “condensation.”
Nevertheless, at low temperatures [Fig. 7(b)], a kind of
“droplet” (thick ordered layers) is visible.

We now turn to the question of whether there is a first-order
gas-liquid transition in the system in hand. The results of grand
canonical simulation were rather striking. Even at very low
temperature, the density probability distribution had a single
peak. This suggests the existence of only one phase. However,
an analysis of the order parameter �SAF and its fourth cumulant
led to the opposite conclusion. Figure 8 presents the plots of
the changes of the order parameter �SAF as well as of the four-
order cumulant UL(�SAF) with the chemical potential at two
temperatures, T ∗ = 0.25 [Figs. 8(a) and 8(b)] and T ∗ = 0.2
[Figs. 8(c) and 8(d)]. Indeed, inspecting the data in Fig. 8, one
notes that the curves in parts (a) and (b) are typical for second-
order transitions. However, at lower temperature, T = 0.2,
the behavior of either the order parameter or of its cumulant
is characteristic of the first-order transition. In particular, the
order parameters calculated for different sizes of the simulation
cell exhibit a crossing point. Moreover, for sufficiently large
systems, the corresponding cumulants show the presence of
minims. These observations confirm the appearance of a first-
order transition between a disordered and an ordered SAF
phase in the system M6. Unfortunately, we could not determine
the densities of the coexisting phases.

To confirm the fluid-fluid coexistence, we have carried out
simulations in a canonical ensemble. An important result is
evident from Fig. 9. At T ∗ = 0.1, ρ = 0.6 after an extremely
long equilibration, we have found almost a two-peaked
distribution of probability. Taking into account all the results,
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FIG. 9. The block density probability distribution for the system
M6 at temperature T ∗ = 0.1 and ρ = 0.6 density. The system size
L = 192 and the block size Lb = 48.

we suppose that there is a first-order transition between an
isotropic colloidal-poor fluid and the ordered colloidal-rich
SAF phase. We have not found the reentrant transition in this
system [12].

Finally, we want to present the selected results for the
system M7, uAA = +2, uAB = 0, which can mimic a two-
dimensional fluid of simple amphiphile particles. The patches
A are hydrophilic, whereas the patches B can be considered
as hydrophobic. The energetic preference (or penalty) of
configurations with facing B parts (or A parts) corresponds
to amphiphiles in aqueous solutions. The water molecules
accumulate near the hydrophilic side A. The resulting steric
exclusion leads to an effective repulsion between hydrophilic
patches A of amphiphilic particles. The model M7 is qualita-
tively similar to that proposed by Rosenthal and Knapp [21].

The behavior of the system M7 is in contrast to what was
found in the remaining cases. We have seen no evidence of a
vapor-liquid transition in the fluid. At the same time, we have
observed various self-organization processes.

In this case, AA interactions were strongly repulsive. There-
fore, for low surface coverage, the formation of aggregates that
expose to the outside the parts A is energetically preferred. At
very low temperatures, one can expect that the dimers with
two B patches facing each other appear in the system (pairs
x34,y12). Another favorite cluster consists of four particles with
B parts oriented to the aggregate center. Examples of such
clusters are presented in Figs. 10(a) and 10(b). The systems

FIG. 10. (Color online) Schematic representation of possible or-
dered structured at low and medium densities in the monolayer:
(a) dimers, (b) “micelles,” (c) zigzag structures at ρ = 2/3, and (d)
S-structure (ρ = 4/5).
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FIG. 11. (Color online) Fragments of snapshots of configurations recorded for M7 at T ∗ = 0.025 and ρ = 0.573 (a) and for T ∗ = 0.1,
ρ = 0.763 (b).

containing the dimers or the “micelles” have the same energy
per lattice site, namely E = −0.25. One can easily show
that the dimers linked in the zigzag pattern [see Fig. 10(c)]
correspond to the lowest energy E = −0.33. Notice that the
energetic differences between these structures are rather small.

At the ground, the AF phase is stable for a fully covered
lattice. However, dominating repulsive interactions cause the
emergence of various ordered structures at medium densities of
the monolayer. These structure have lower energy per particle
than the AF phase. We found stable structures at ρ = 2/3 and
4/5. It is interesting that there are well-pronounced patterns
built out of occupied and empty sites. The orientations of the
particles in such structures can be different. A great number of
configurations correspond to the same energy of the system.
Moreover, the differences between energies calculated from
different configurations are not significant.

At ρ = 2/3, the zigzag structures appear in the monolayer.
There are sloping steplike strips of occupied sites. The lattice
sites between these strips remain empty. Examples of zigzag
structures with favorite orientations of particles are shown in
Fig. 10(c).

Figure 10(d) illustrates an example of an ordered structure
that can be formed at ρ = 4/5. Also in this case, the pattern
of occupied and empty sites is well visible. One sees here

the zigzag structure built of “micelles” composed of four
occupied sites (S structure). In such an ordered phase, particles
can be differently oriented. The lowest energy level is highly
degenerated.

At temperatures T ∗ > 0, the equilibrium configuration is
the result of the energetic and entropic balance in the system.
We have inspected the snapshots for selected thermodynamic
conditions. The evolution of the system structure with in-
creasing density is shown in Fig. 11. As expected, we found
domains of differently oriented zigzag structures at ρ = 0.573
[Fig. 11(a)]. For the denser monolayer (ρ = 0.763), however,
we see patches of various S structures [Fig. 11(b)]. The
considered system can self-organize into various structures
depending on the density and temperature.

V. CONCLUSIONS

This paper presents the results of Monte Carlo simulation
of Janus disks on a square lattice. The Janus particles,
consisting of two halves, A and B, interacted via a short-ranged
directional potential. We have formulated a simple model for
directional interactions between the particles. Four possible
orientations of a particle on a given lattice site were considered.
The interactions between neighboring particles depended on
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their orientations. To control the strength of the interactions,
we have used only three energy parameters—uAA, uBB , and
uAB—that characterized AA, BB, and AB contacts. The two
first parameters correspond to particles that point with their A

(B) patches toward each other, while uAB is the pair energy
of the head-to-tail configuration. The energy of any possible
configuration was assumed to be an arithmetic average of two
energy parameters. Based on that model, we were able to study
the phase behavior of the system for different sets of energy
parameters.

First, we discuss the ordered structures that can appear in
the model. In the limiting case of a fully filled lattice (ρ =
1), we have found two ordered structures, SAF and AF. The
occurrence of these phases depends on the relations between
the energy parameters. We have analyzed the ground-state
phase diagram in the coordinates uAA − uBB . In this diagram,
the line ε = uAA + uBB − 2uAB = 0 delimits the regions of
stability of both phases (see Fig. 3). For lower fluid densities
(ρ < 1), SAF and AF structures with vacancies are formed.
The model predicts other ordered structures when at least one
of the energy parameters is positive (repulsive interactions)
at ρ = 1/2 (all repulsive interactions [59]), ρ = 2/3 (zigzag
phase), and ρ = 4/5 (S phase).

The second question concerned the nature of phase tran-
sitions in selected model systems. We considered two types
of model systems. For the first group, interactions between
the same parts of particles were assumed to be identical (M1–
M3). The other group mimics the “proper” Janus particles
with different AA and BB interactions (M4–M6). We have
considered the influence of the parameter on the phase
behavior of the model systems.

In systems M1–M5, we found two phase transitions: a
first-order “condensation” from a colloidal-poor (gas) to a
colloidal-rich (liquid) phase, and a continuous transition from
a disordered fluid to the ordered fluid. As expected, we found
the SAF phase for the systems M1–M3 and the AF structure
for the systems M4 and M5. Using finite-size scaling theory,
we estimated the location of the order-disorder transition for
the selected thermodynamic conditions (λ line). We found that
for the systems M4 and M5, the λ lines cross the coexistence
envelope at the critical end points.

We also discussed the evolution of the phase diagram
topology due to changes of the parameters. In the first group of
model systems, the repulsive AB interactions were considered.
In this case, an increase of uAB causes a rise of the critical
temperature and the critical potential. Different effects are
observed for the second group of investigated systems. When
the AB interactions were assumed to be attractive, an increase

of uAB led to a decrease of the critical temperature while the
critical chemical potential increased.

We suppose that for fixed values of the energy parameters
uAA and uBB , a change of uAB can change the topology of
the phase diagram from a diagram with a tricritical point
to one with an end critical point. However, the solution of
this problem was beyond of the scope of this work. We have
shown that structural transitions to either SAF or AF phase are
nonuniversal.

A very interesting behavior is observed for the system M6
(uAA = 0, uBB = 0). These particles exhibit a strong tendency
to aggregate in the “SAF-type” bilayers, which expose to the
outside only neutral parts A. This prevents any attraction
between distinct clusters, so the formation of droplets is
difficult. One can say that the self-organization competes with
the demixing of the system into a colloidal-poor (gas) and
colloidal-rich (liquid) phases. However, we have shown that
the system M6 underwent first-order “condensation” at very
low temperatures.

Other significant results were obtained for the system
M7 (uAA = +2, uAB = 0). In that case, we did not find
first-order “condensation.” However, we observed various
self-organization processes. Strong repulsive AA interactions
together with the BB-attractive interactions cause the emer-
gence of various ordered structures at medium densities of
the monolayer. These structures can be considered as patterns
built out of occupied and empty lattice sites. In a given
structure, orientations of particular particles can be different.
Numerous configurations correspond to the same energy of the
system. The entropy additionally stabilizes the structure. We
found two types of ordered phases, namely zigzag structures
(ρ = 2/3) and S structures (ρ = 4/5). Self-organization into
highly ordered large clusters prevent “condensation.” This
effect was also reported by Sciortino et al. [12].

In summary, we introduced a simple model capable of
predicting the collective behavior of various Janus disks in
monolayers. This model generates different types of self-
assembly and phase transitions. The main advantage of the
model is that it can be easily adapted to study different sys-
tems. Moreover, its application reduces the computation time
considerably. The results provide guidance for further study of
concrete systems in the framework of more realistic models.
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