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Gaussian memory in kinematic matrix theory for self-propellers
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We extend the kinematic matrix (“kinematrix”) formalism [Phys. Rev. E 89, 062304 (2014).], which via simple
matrix algebra accesses ensemble properties of self-propellers influenced by uncorrelated noise, to treat Gaussian
correlated noises. This extension brings into reach many real-world biological and biomimetic self-propellers for
which inertia is significant. Applying the formalism, we analyze in detail ensemble behaviors of a 2D self-propeller
with velocity fluctuations and orientation evolution driven by an Ornstein-Uhlenbeck process. On the basis of
exact results, a variety of dynamical regimes determined by the inertial, speed-fluctuation, orientational diffusion,
and emergent disorientation time scales are delineated and discussed.
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I. INTRODUCTION

Self-propellers with active stochastic dynamics are motile
non-equilibrium systems [1–4] ranging from bacteria [5–9],
cells [10–20], and nanomotors [21–25] at the microscale to
insects [26–28], fishes [29–32], and other animals [33–37],
as well as humans [38] and traffic [39] at the macroscale.
The variety of stochastic fluctuations and their coupling
with self-propellers’ deterministic motion leads to distinct
dynamical and spreading features (see Fig. 1). Phenomeno-
logical modeling of self-propellers’ ensemble behavior within
the differential-equation based Langevin or Fokker-Planck
formalisms grows mathematically cumbersome as the number
of distinct elementary contributions to the dynamics grows.
To overcome this difficulty, we recently described a kinematic
matrix theory for self-propellers with uncorrelated (i.e., white-
noise) stochastic dynamics [40]. Here we advance this theory
to include correlated Gaussian fluctuations—colored noise.
We demonstrate the formalism’s utility by analyzing a rectilin-
ear self-propeller with velocity fluctuations and orientational
inertia and discuss the interplay of finite correlation times of
the involved noises, leading to an emergent disorientation time
scale and a variety of dynamical regimes.

The dynamics of a self-propeller can decompose into
elementary processes such as deterministic translation and
rotation as well as stochastic orientational diffusion, flips,
and tumbles. In the white-noise limit of the kinematic matrix
theory, the kinematic properties of these elementary processes
are coded into a matrix, called the kinematrix, from which
many ensemble properties of the self-propeller can be obtained
by simple matrix algebra. This approach reveals universalities
in self-propeller behavior that were previously hidden behind
the complexity of differential-equation-based approaches [40].
The approximation of a negligible stochastic correlation time
has been used extensively to model self-propellers [1,40–48].
However, many physical systems suffer environmental noise
in the form of forces that act directly on generalized momenta.
Such noise is filtered through the inertia of the system
and thus becomes colored [49–52]. Invoking the Central
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Limit Theorem, we can reasonably expect a large fraction
of such noises to be approximately Gaussian. Persistence
of behaviors in living organisms can also play the role of
inertia in a mathematical description, even though it is not
genuine mechanical inertia. The term “inertia” should thus be
understood in this broad sense. Systems with negligible inertia
are special cases included in the formalism, which sheds light
on how significant the effects of even a little inertia might be.

In this paper, first in Sec. II we advance the kinematrix
approach to include Gaussian noise with finite correlation time,
yielding Eqs. (3)–(9). This extended kinematrix formalism
again circumvents the need for probability distributions; it
also makes the calculations significantly easier by extracting
the necessary information solely from the autocorrelation of
the correlated noise. Section III then provides an application
of the theory, to rectilinear self-propellers with fluctuating
engines to study the effects of orientational Gaussian memory
(modeled by an Ornstein-Uhlenbeck process) in producing a
variety of ensemble regimes.

flip

flip

nanorotor with flipping

magnetotactic bacteriumEscherichia coli

swimmer with speed fluctuation

FIG. 1. (Color online) The coupling of deterministic and stochas-
tic elements can give rise to many kinds of distinctive motion
and spreading patterns, such as a rectilinear swimmer with speed
fluctuation [13,53] and persistent turning [31,32], a nanorotor with
flipping [42], E. coli circle swimming [7,54] or magnetotactic bacteria
with occasional velocity reversal [55–58].
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II. THEORY

The kinematrix formalism is based on an examination of
elementary dynamical processes in a self-propeller’s body
frame. The tail-to-head vector χ of the swimmer which has
a fixed orientation χ̂ in the body frame of the self-propeller
evolves with time in the laboratory frame such that, for a
given realization of noise, we have at time t the updated
value χ̂(t) = U (0,t)χ̂(0). The propagator U (0,t) represents
the net rotation of the body frame from time 0 to time t ; its
ensemble average gives the velocity pair correlator of Eq. (6)
and the ensemble-average spatial displacement quantities of
Eqs. (7)–(9).

To obtain 〈U (0,t)〉 we work on a discrete timeline T =
{0,dt,2 dt,3 dt, . . .} with infinitesimal time steps dt � t . We
write Un for U (0,n dt) and Rn for the net rotation between
n dt and (n + 1) dt in the laboratory frame; in the body frame,
the same rotation is expressed as R̃n = U−1

n RnUn. Rewriting
the recursive expression Un = Rn−1Un−1 in terms of the body
frame thus yields

〈Un〉 = 〈R̃0R̃1 · · · R̃n−1〉, (1)

where the brackets average over all possible realization of
noises. If the body-frame rotations R̃n are independent (the
white-noise limit) then the average of their product in Eq. (1)
is equal to the product of their averages. Then the expan-
sion 〈R̃i〉 = I − K dt + O(dt2) yields 〈U (0,t)〉 = exp(−Kt)
where the kinematrix K captures the kinematic properties of
the elementary motile processes [40].

However, for correlated noise the R̃n’s are not independent.
Assuming physically distinct and independent correlated and
uncorrelated noises, we write the rotation Rn = R̃corr

n R̃uncr
n

as the product of correlated R̃corr
n and uncorrelated R̃uncr

n

rotations (these being for an infinitesimal interval, the ordering
of the rotations makes a negligible difference). Thus, 〈Un+1〉 =
〈UnR̃corr

n 〉〈R̃uncr
n 〉. The incremental correlated rotation can be

written in the form R̃corr
n = exp(ξn dt · J ), where the Jα

are the generators of rotations in SO(3) (Greek subscripts
or superscripts denote Cartesian components x, y, and z).
{ξn} is assumed to comprise a stationary centered Gaussian
process with a continuous covariance: 〈ξn〉 = 0 and 〈ξα

n ξ
β
m〉 is a

continuous function of (n − m)dt . Expanding the exponential
exp(ξn dt · J ) and expanding uncorrelated rotations to O(dt)
as 〈R̃uncr

n 〉 � I − Kuncr dt (Kuncr is the kinematrix of the
uncorrelated elementary processes), we obtain

〈Un+1〉 = 〈Un〉 − 〈Un〉Kuncrdt + 〈Un(ξn · J )〉dt + O(dt2).

(2)

Large rotations are possible, but exceedingly rare. Their con-
tribution to the expectation is negligible and we can work up
to linear terms in dt . Now, for a centered Gaussian-distributed
vector x of any dimension, the integration-by-parts identity
〈f (x)xα〉 = ∑

β〈∂f/∂xβ〉〈xβxα〉 holds [59]. Applying this
identity and noting that Un depends only on ξ j for j < n

yields

〈Unξn〉 · J =
∑
j<n

[ ∑
α,β

〈
ξα
n ξ

β

j

〉〈R̃0 · · · [JβR̃j ] · · · R̃n〉Jα

]
dt.

Substituting into Eq. (2) and reinterpreting the difference
(〈Un+1〉 − 〈Un〉)/dt as a derivative leads to

d

dt
〈U (0,t)〉 =

∑
α,β

∫ t

0
〈U (0,t ′)Jβ U (t ′,t)Jα〉〈ξα(t)ξβ(t ′)〉dt ′

− 〈U (0,t)〉Kuncr. (3)

The change of 〈U (0,t)〉 with time is due to the noise at
time t . Noise uncorrelated with what has gone before tends
to degrade memory of the past in a simple indiscriminate
manner. But noise which is correlated with the past, as ξ is,
has a more complicated effect. Since a Gaussian distribution
is determined by its mean and covariance, the appearance of a
simple covariance function in the governing equation (3) is a
natural consequence.

Elegant as Eq. (3) is, it becomes difficult to work with in
three or more dimensions since the matrices do not necessarily
commute. Thus it does not give an autonomous evolution
equation for 〈U (0,t)〉, as can be obtained in two dimensions.
Some appropriate closure or approximation scheme is needed.
However, the two-dimensional case is already very rich and
many experimental studies involve self-propellers with an
essentially two-dimensional motion due to a confining planar
substrate. We therefore confine ourselves to the planar motion
in the remainder of this paper. All rotations are about the z axis
and the only matrices involved are

Jz =
⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦ , P⊥

z =
⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦ , (4)

where Jz is the generator of infinitesimal rotation about the
z-axis and P⊥

z projects into the xy-plane. Since 〈U (0,t)〉
is written in terms of P⊥

z and Jz, and [P⊥
z ,Jz] = P⊥

z Jz −
JzP⊥

z = 0, the commutation [U (t,t ′),Jz] = 0 holds, and
Eq. (3) yields an exact solution in terms of the autocorrelation
of the Gaussian noise:

〈U (0,t)〉 = exp[−Kuncrt − Fξ (t)P⊥
z ] (5a)

Fξ (t) = 1

2

∫ t

0

∫ t

0
〈ξ (t ′)ξ (t ′′)〉dt ′′dt ′. (5b)

By capturing the essential physics in the noise autocor-
relation integral Fξ (t), the kinematrix treatment avoids the
complication of dealing explicitly with probability distribu-
tions by extracting the necessary information solely from the
noise autocorrelation function.

A swimmer’s tail-to-head direction χ̂ coincides with its
instantaneous direction of deterministic velocity v̂ in a recti-
linear motion. While such a swimmer usually moves forward
along tail-to-head axis (v̂ = χ̂), it can also occasionally swim
backward along the same axis (v̂ = −χ̂ ). We reference the
instantaneous velocity to the tail-to-head direction by writing
v ≡ vv̂ := vsχ̂ . It is important to distinguish between v and
vs since the former is the speed (magnitude of the velocity)
while the latter is a one dimensional velocity along the χ̂ axis
such that for forward motion vs = v and for backward motion
vs = −v. As such, hereafter we refer to vs as “signed-speed”.

Now, choosing the laboratory frame such that ŷ ≡ χ̂ (0),
the velocity pair correlator 〈v(0) · v(t)〉, the ensemble aver-
age of displacement 〈�r(t)〉, the mean square displacement
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〈|�r(t)|2〉, and effective diffusivity Deff of the self-propeller
can be obtained from

〈v(0) · v(t)〉 = 〈vs(0)vs(t)〉 〈U (0,t)〉22, (6)

〈�r(t)〉 = v̄s

[∫ t

0
〈U (0,t ′)〉dt ′

]
· χ̂ (0), (7)

〈|�r(t)|2〉 = 2
∫ t

0
(t − t ′) 〈vs(0)vs(t)〉〈U (0,t ′)〉22dt ′, (8)

and

Deff = 1

2

∫ ∞

0
〈vs(0)vs(t)〉〈U (0,t ′)〉22dt ′, (9)

where the subscript “22” denotes a matrix element. If there is
no backwards motion (for example, the commonly-studied
case of constant speed), then the propagator can monitor
the time evolution of the dynamical velocity vector rather
than the structural tail-to-head vector. For such systems we
make the modifications vs 
→ v and χ̂ 
→ v̂ in Eqs. (6)–(9).

The main contribution of this paper is extending the
kinematic matrix theory to include Gaussian memory, as
expressed by Eqs. (3)–(9). In the next section, as an example,
we employ the formalism to discuss the physics of a rectilinear
self-propeller with signed-speed fluctuation and Gaussian
memory.

III. LINEAR MOTION WITH FLUCTUATING SPEED AND
GAUSSIAN MEMORY

The interplay of multiple time scales of the elementary
processes of motion determines different regimes of swim-
mer ensemble behavior, quantified by asymptotic effective
diffusivity and mean-square-displacement. In this section we
study a self-propeller subjected to velocity fluctuations and
orientational inertia, such as appears in the upper left of Fig. 1.
Velocity fluctuations lead to stochastic variation of speed,
which may also have memory. The direction of motion may
be influenced by stochastic noises arising from environmental
fluctuations (e.g., Brownian kicks from fluid particles to a
micron-sized self-propeller [41–43], spatially scattered food
supply [60], or interaction with a substrate [61]) or internal
fluctuations such as stochastic internal engine torque or
decision-making processes of an organism.

Using a Fokker-Planck formalism, Peruani and Morelli [53]
studied a self-propeller with speed fluctuation and Brownian
orientational diffusion, which can account for internal engine
fluctuations of biological systems. However, the lack of
orientational inertia cannot capture the essential physics of
self-propeller dynamics in many cases. For instance, Gautrais
et al. [31] analyzed trajectories of Kuhlia mugil fish swimming
in a tank, observing constant speed motion with persistent
turns that cannot be modeled by a white noise. Rather, there
was an inertia associated with the angular velocity leading
to a decaying exponential autocorrelation. Correcting the
white noise model with a finite inertial time leads to an
Ornstein-Uhlenbeck process (OUP) for the angular velocity.
Correspondingly, Gegond and Motsch [32] used a Fokker-
Planck formalism to obtain the effective diffusivity of the

fish with constant speed and OUP orientational dynamics.
Their model [31,32] matches experimental data well, setting
a solid ground for the presence of OUP dynamics in self-
propeller dynamics. By adding a finite inertial time to a white
noise, the OUP [62] serves as the simplest colored noise
that not only shows success in self-propellers [31,32,63–68],
but also applies to other fields of physics such as quantum
processes [69–72], network dynamics [73], and genetics
[74–76].

We analyze a more general model including both velocity
fluctuations and orientational inertia, subsuming the results
of [32,53], yet with less complexity and more intuitive
connection to the self-propeller physics. The self-propeller
moves in a plane at fluctuating velocity v(t) = vsχ̂ and with
an orientation θ , defined by cos θ = x̂ · χ̂ and sin θ = ŷ · χ̂ .
The self-propeller’s orientation changes according to

dθ

dt
= ξ, (10)

in which ξ is a stationary OUP and η is Gaussian white noise
of intensity τ−2

ξ
Do:

dξ/dt = −τ−1
ξ

ξ (t) + η(t), (11a)

〈η(t)η(t ′)〉 = 2τ−2
ξ

Doδ(t − t ′), (11b)

〈ξ (t)ξ (0)〉 = τ−1
ξ

Doe
−|t |/τ

ξ . (11c)

Understanding the orientational wandering as being due to
random torques, just as ordinary diffusion is due to random
forces, this model takes into account the self-propeller’s
rotational inertia. The variance of the angular velocity, which
may be a more convenient quantity for applications than
Do, is simply Do/τξ

. In the limit τ
ξ
→ 0, ξ acts as a

white noise, recovering the simpler model of orientational
Brownian motion diffusing at Do with no inertia [53]. The
autocorrelation integral [Eq. (5b)] for the OUP angular velocity
ξ is monotonically increasing:

FOUP
ξ (t) = Dot + Dot

[
e
−t/τ

ξ − 1

t/τ
ξ

]
. (12)

The first term is the white-noise contribution and the second
term is the modification due to inertia. Equations (5b), (10),
and (12) yield the mean square angular displacement

〈|�θ (t)|2〉 = 2FOUP
ξ (t) ≈

{
2Dot t 
 τ

ξ

(t/τ
ξ
)Dot t � τ

ξ
.

(13)

Here, τ
ξ

is the crossover time from ballistic to diffusive angular
dynamics. However, we shall see below that the physical
regime of the ensemble behavior is governed not only by τ

ξ
,

but also the disorientation time τθ over which the orientation
changes significantly: 〈|�θ (τθ)|2〉 ∼ 1. As illustrated in Fig. 2,
τθ can be distinct from both the orientational diffusion time
D−1

o and the inertial time τ
ξ
. If the inertial timescale is very

short (τ
ξ
� D−1

o ), then the self-propeller “forgets” its prior
orientation through pure diffusion and τθ ∼ D−1

o . If the inertial
time is large (D−1

o � τ
ξ
), then 〈|�θ |2〉 becomes order one

already in the ballistic regime and τθ ∼ (D−1
o τ

ξ
)1/2. Altogether,

Doτθ ∼ max(1,
√

Doτξ
). For example, the fish of [31] have

Doτξ
∼ 1/2.
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FIG. 2. (Color online) The disorientation time for a self-propeller
to forget its initial orientation depends on the ratio of inertial τ

ξ

and orientational diffusion D−1
o time scales. If the τ

ξ
� Do we are

close to the white noise limit and the self-propeller disorients over
an orientational diffusion time scale τθ ∼ D−1

o . On the other hand,
when the inertial time is much larger than the orientational time
scale, the disorientation time is the geometric average of inertial and
orientational diffusion time scales, τθ ∼ (τ

ξ
D−1

o )1/2.

Getting back to velocity fluctuations, a signed-speed auto-
correlation function

〈vs(t)vs(0)〉 = v̄2
s + var(vs)e

−t/τv (14)

appears naturally in many physical systems. It may arise
from a self-propeller’s interactions with the environment,
varying terrain or fuel availability, and τv reflects the inertia
associated with signed-speed relaxation. The use of signed-
speed subsumes the ordinary speed (velocity magnitude) case
where the motion is always directed along the tail-to-head
direction, but also situations where the motion can sometimes
be “backward”. That might apply to crowded environments,
such as for an individual cell in a cell monolayer [10–
15]. If the dominance of forward over backward motion is
slight, the dimensionless measure var(vs)/v̄2

s of signed-speed
fluctuations can be very large. In that case, we observe multiple
crossovers in the mean-square-displacement curves, as will
be discussed later. The form (14) may represent a biased
OUP processes with mean v̄s . Alternatively, it may arise from
internal engine fluctuations where the signed-speed jumps
between discrete values. Such a case can be modeled by a
Poisson distribution (at rate 1/τv) of “reset times” at each
of which a new signed-speed is chosen independently from
a fixed distribution with mean v̄s and variance var(vs). The
path length between signed-speed resets has a mean v̄sτv and
variance var(vs)τ 2

v . For a self-propeller, a simple origin for
such behavior might be a bistable engine, giving two possible
values for vs .

With the OUP autocorrelation integral (12) for persistent
turning and the signed-speed autocorrelation function (14) thus
motivated, we proceed to calculate the effective diffusivity Deff

of the self-propeller using Eqs. (5) and (9) as

Deff = v̄2
s

2Do
�(Doτξ ,∞) + var(vs)

2Do
�(Doτξ ,Doτv), (15)

where we have defined the dimensionless function � with the
following physical limits:

�(x,y) : ≡
∫ ∞

0
exp{−x[e−z/x − 1] − z}e−z/y dz (16a)

= ex

∞∑
k=0

(−x)k
/

[k! (1 + 1/y + k/x)] (16b)

≈

⎧⎪⎨
⎪⎩

ex(1 + 1/y)−1, x � 1(
π
2 x

)1/2
, 1 � x � y2

y, x 
 max(1,y2).

(16c)

The first term in the right-hand side of Eq. (15) describes
the effective diffusion that would arise in the absence of
signed-speed fluctuations, and the second term describes
the unique contribution of signed-speed fluctuations to the
effective diffusion. The reason for this clean separation is given
below.

Figure 3 plots Deff and � across a range of correlation
times for orientation and speed. The diagram below facilitates
an intuitive account of this behavior:

η: white
noise

inertia
τξ

ξ θ

v̄s

var(v
s ) Δrflct

ν,τv

Δrmean

Δr

The self-propeller’s signed-speed can be split into a mean
and a fluctuation:

vs(t) = v̄s +
√

var(vs) ν(t), (17)

where the noise ν obeys

〈ν(t)〉 = 0, 〈|ν(t)|2〉 = 1. (18)

The displacement can be similarly split as �r(t) =
�rmean(t) + �rflct(t). The diagram depicts the independent
random inputs η and ν. Strictly speaking, �rmean(t) and
�rflct(t) are not independent since they are driven by the
same orientation process θ (t). But, they are probabilistically
orthogonal, because the mean-speed and fluctuation-speed are:
〈ν(t)〉 = 0. As a result, �rmean(t) and �rflct(t) (and through
them the mean signed-speed and signed-speed fluctuation)
contribute to Deff in a simple additive way.

Three major features of �(Doτξ
,Doτv) in Fig. 3(a) leap to

the eye. First, �(Doτξ
,∞), the curve for infinite Doτv exhibits a

crossover from a constant 1 to ∼ √
Doτξ

at Doτξ
∼ 1. Second,

for smaller values 1 � Doτv < ∞, the curves follow that for
Doτv = ∞ up to Doτξ

∼ (Doτv)2, at which point they saturate
to a value approximately Doτv . Finally, for very small speed
correlation time Doτv � 1, �(Doτξ

,Doτv) ≈ Doτv depends
only weakly on Doτξ

. An intuitive physical interpretation of
these observations and the asymptotics in Eq. (16c) follows
from a comparison of the disorientation time τθ and speed
correlation time τv . Henceforth, we use a more precise

062304-4



GAUSSIAN MEMORY IN KINEMATIC MATRIX THEORY . . . PHYSICAL REVIEW E 90, 062304 (2014)

0.01 1 100 104 106 108 1010
1

10

100

1000

104

105

(a) (b)

(c) (d)

0.01 1 100 104 106 108

0.1

1

10

100

1000

104

100

10

1

∞

10 5 0.001 0.1 10 1000
1.0

10.0

5.0

2.0

20.0

3.0

1.5

15.0

7.0

1

10

100

D
e
ff
/D

w
h
it

e
e
ff

Doτv

Doτξ

Φ ∼ Doτθ

Φ ∼ Doτv

τθ = τv

Doτξ

Doτξ Doτv

Doτv = 0.1

Doτv = 0.1

Doτξ = 0.1

(Doτv)

(Doτv)2

Φ
(D

o
τ ξ

,D
o
τ v

)

100

0.001

1

1

var(vs)
v̄2

s

= 100

var(vs)
v̄2

s

= 100

(2
D

o
/v̄

2 s
)D

e
ff

2

FIG. 3. (Color online) Effective diffusion coefficient Deff of the linear self-propeller with orientational Gaussian noise characterized by
correlation time τ

ξ
, speed fluctuations characterized by correlation time τv and asymptotic orientational diffusion coefficient Do. (a) The

mean-speed and fluctuation speed make contributions to Deff proportional to �(Doτξ
,∞) and �(Doτξ

,Doτv), respectively. (b) � shows two
major regimes depending upon whether the speed correlation time is smaller or larger than the disorientation time τθ . In the former case, the
diffusion is essentially determined by speed fluctuations and in the latter by orientational wandering. The disorientation time τθ is proportional
to (D−1

o τ
ξ
)1/2 when Do � τ

ξ
, and saturates to ∼1 as Doτξ

→ 0. (c) Deff may contain several crossovers as a result of the relative sizes
and individual crossovers of the mean-speed and fluctuation-speed components. Note that for Doτξ


 [var(vs)/v̄2
s ](Doτv)2, the mean-speed

component always dominates. (d) Slices through Deff in the other direction, normalized to the Doτξ
= 0 value.

definition for the disorientation time:

Doτθ :≡
[

max

(
1,

π

2
Doτξ

)]1/2

, (19)

to recast Eq. (16c) into

�(Doτξ
,Doτv) ≈

{
Doτv, τv � τθ

Doτθ , τv 
 τθ .
(20)

Figure 3(b) reveals two regimes of this equation, showing
τθ ∼ D−1

o is independent of τ
ξ

for Doτξ
� 1. A straightforward

understanding of Eq. (20) is at hand. To better understand this
behavior, we rewrite

� := �rfluc
/[

2D−1
o var(vs)

]1/2
, (21a)

�(Doτξ
,Doτv) = lim

t→∞
1

t
〈|�(t)|2〉 (21b)

and analyze �(Doτξ
,Doτv) as the diffusive behavior of

�. In the limit τv � τθ where signed-speed changes very
rapidly compared to orientation, the fluctuation part re-
sembles a one-dimensional random walk along a slowly
changing direction with step-duration �t = τv and step-
length-squared 〈|�rfluc|2〉 ≈ 〈|ν(t)|2〉var(vs)τ 2

v . By Eq. (18),
� ≈ 〈|��|2〉/τv ≈ Doτv . In the opposite limit, τv 
 τθ , the

fluctuation part has speed of order
√

〈|ν(t)|2〉var(vs) which
remains nearly constant during the time τθ , and resembles
a two-dimensional random walker with step-duration τθ and
step-length-squared 〈|�rfluc|2〉 = var(vs)τ 2

θ
. This leads to a

ν-averaged diffusivity � ≈ 〈|�|2〉/τθ ≈ Doτθ . Figure 3(a) now
stands rationalized via Fig. 3(b) and Eq. (20).

Turning now to the interpretation of the more complicated
behavior of the effective diffusivity (15) depicted in Fig. 3(c),
we note that the various asymptotic regimes can be collected
into

2Deff ∼ v̄2
s τθ + var(vs) min (τv,τθ ) . (22)

The critical parameter determining the number of crossovers
is Doτv .

If the orientational diffusion time scale greatly exceeds the
speed correlation time (τv � D−1

o ), we have min (τv,τθ ) = τv;
the fluctuation-speed contribution var(vs)τv is independent of
Doτξ

and the only question is when this dominates the mean-
speed contribution. In case [var(vs)/v̄2]Doτv � 1, the answer
is never. This is exemplified by the solid green hockey-stick
shaped curve in Fig. 3(c). Otherwise, there is a crossover
from fluctuation-speed domination to mean-speed domination
at Doτξ

� [ var(vs )
v̄2

s
Doτv]2, as shown in the blue dashed curve.
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On the other hand, if the time required for changing
signed-speed is much longer than the orientational diffusion
time scale (τv 
 D−1

o ), the story starts off similarly with a
roughly constant value 2Deff ≈ [v̄2

s + var(vs)]D−1
o up to about

τ
ξ
∼ D−1

o , at which point it shifts into the arm of the hockey
stick with 2Deff ≈ [v̄2

s + var(vs)](D−1
o τ

ξ
)1/2. But, when Doτξ

exceeds (Doτv)2, the mean-speed contribution continues to
increase, while the fluctuation-speed contribution plateaus.
If var(vs)/v̄2

s 
 1, this appears as a clear plateau, as seen
in the dotted red curve of Fig. 3(c), until the mean-speed
contribution becomes dominant at τ

ξ
∼ Do[ var(vs )

v̄2
s

τv]2 and the√
Doτξ

behavior of the hockey stick returns.
Figure 3(d) gives another perspective on Deff by slicing in

the other direction and taking a ratio to the white noise limit
(Doτξ

→ 0)

Dwhite
eff = v̄2

s

2Do
+ var(vs)

2Do

1

(1 + 1/Doτv)
. (23)

In the limit Doτv → 0 of rapid speed fluctuations the effective
diffusivity depends only on average speed Deff ∼ v̄2

s τθ , and as
Doτv → ∞, Deff ∼ [v̄2

s + var(vs)]τθ . In either extreme, Deff is
simply proportional to τθ , which is D−1

o in the white noise limit.
So, for both very large and very small Doτv , Deff/D

white
eff ≈

Doτθ , independently of the signed-speed parameters v̄s and
var(vs). In between, if var(vs)/v̄2

s is large enough, there is a
region where Deff is insensitive to Doτξ

up to a large value.
This corresponds to the long dashed blue plateau shown at
Doτv = 0.1 in Fig. 3(c).

The effective diffusivity characterizes only the asymptotic
behavior of the mean-square displacement. The full time
dependence exhibits additional complexity. Using Eq. (8) we
obtain the mean square displacement

〈|�r(t)|2〉 :≡ 4tDeff + 4t
v̄2

s

2Do
�̃(Doτξ

,∞,Dot)

+ 4t
var(vs)

2Do
�̃(Doτξ

,Doτv,Dot), (24)

where

�̃(x,y,z) = ex

z

∞∑
k=0

(−x)k[e−(1+1/y+k/x)z − 1]

k!(1 + 1/y + k/x)2
(25a)

≈
{

1
2z − �(x,y), z � min(1,x,y)

0, z → ∞.
(25b)

For times much shorter than all the characteristic time scales,
t � min(D−1

o ,τ
ξ
,τv), we have ballistic motion 〈|�r(t)|2〉 ≈

[v̄2
s + var(vs)]t2, independently of orientational, inertial and

signed-speed correlation time scales. At very long times the
self-propeller behaves diffusively; 〈|�r(t → ∞)|2〉 is 4tDeff

and depends on all three time scales D−1
o , τ

ξ
and τv . Figure 4

shows the behavior of Eq. (24) in the limit of large speed fluc-
tuations for a variety of time scales. Since 〈|�rmean(t)|2〉 and
〈|�rflct(t)|2〉 each has its own ballistic-to-diffusive crossover,
in the limit of rapid, large signed-speed fluctuations, i.e.,
Doτv � 1 and var(vs)/v̄2

s 
 1, three clear crossovers are
observed. We analyze the two limiting regimes τv � τθ

and τθ � τv . The mean-speed contribution 〈|�rmean(t)|2〉 is

Do t

oτv

10−4

104

oτξ

0.1
1
10
100

t2

t

t

t2

var(vs)
v̄2

s

= 100

(2
D

o
/
v̄
2 s
)
|r

(t
)|2

0.001 1 1000 106

10 6

0.001

1

1000
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D

D

FIG. 4. (Color online) Mean-squared displacement of the linear
self-propeller with Gaussian orientational noise of correlation time
τ

ξ
, signed-speed fluctuations with correlation time τv , and asymptotic

orientational diffusion coefficient Do. If the self-propeller disorients
faster than signed-speed changes value, τθ � τv , (upper curves) we
observe a single crossover from ballistic to diffusive regimes at
τθ ; with increase in inertial time τ

ξ
the crossover happens later. In

the opposite regime τθ 
 τv (lower curves) for large signed-speed
fluctuations var(vs)/v̄2

s 
 1 the signed-speed fluctuation contribution
shows a one-dimensional ballistic to diffusive crossover about τv .
Combined with mean signed-speed part (behaving like the τθ � τv

case), this produces three crossovers.

invariably in the latter limit. Suppose first that the self-propeller
disorients much faster than its signed-speed changes, i.e.,
τθ � τv . Then, an individual self-propeller has a ballistic-to-
diffusive crossover at time τθ . Its speed is stable over much
longer times, so it behaves as though its diffusion coefficient
were fluctuating on the time scale τv . On the other hand, if
τv � τθ , the fluctuation part of the displacement [�rflct(t)]
of an individual self-propeller has a ballistic-to-diffusive
crossover at τv , but to a nearly one-dimensional diffusive
motion since much before the self-propeller disorients, the
signed-speed has changed many times. There is a second
crossover, to genuinely two-dimensional diffusion, at τθ when
the self-propeller starts to disorient. In either case, however, the
ensemble average 〈|�rflct(t)|2〉 will evidence only the primary
crossover at min(τθ ,τv). When τθ � τv (the upper set of curves
in Fig. 4), the full mean-square displacement exhibits just a
single ballistic-to-diffusive crossover at τθ . In case τv � τθ , the
speed-fluctuation contribution �rflct becomes diffusive earlier.
If 〈|�rmean(τθ)|2〉/τθ ∼ v̄2

s τθ 
 var(vs)τv ∼ 〈|�rflct(τθ)|2〉/τθ ,
the total motion can re-enter a ballistic regime when �rmean

comes to dominate somewhere between τv and τθ . Later, at τθ ,
this component, too, becomes diffusive. This is exemplified by
the lower set of curves in Fig. 4.

IV. CONCLUDING REMARKS

The extension of kinematic matrix theory to incorpo-
rate correlated Gaussian noises expands its applicability to
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real-world systems with significant inertia. The ability to work
straightforwardly from just the noise autocorrelation simplifies
calculations significantly and helps one to focus more on the
physics of the problem. Our streamlined and close-to-the-
physics treatment of the rectilinear self-propeller with velocity
fluctuations and persistent turning—a model with real-world
interest [32,53]—exemplifies this. This simplicity of kinematic
matrix theory enables the study of more complicated systems
with less mathematical sophistication, and provides a useful
tool for experimentalists to develop models for analyzing their
data.

We have treated here the case of exponentially decaying
autocorrelations in Eqs. (11c) and (14). Correlations with
asymptotic power-law decay have also been of great interest in
recent years [77–79]. The methods used in this paper could also
be applied with one or both of e

−t/τ
ξ in Eq. (11c) and e−t/τv in

Eq. (14) replaced by a power law ∼ t−α with 0 < α < 1. Power
law correlations in ξ would lead to superdiffusive evolution of

〈|θ (t)|2〉 ∼ t2−α . But neither that nor power-law correlations
in the speed would destroy asymptotic effective translational
diffusion. Indeed, the extremes of a steady angular velocity or
steady speed still result in effective diffusion. The effects are
more subtle, and begin with the loss of the clear crossovers
studied in Sec. III.

The general governing equation (3) applies also in higher di-
mensions where the simplifying feature of commutation of all
the rotations disappears, and tractable approximation schemes
remain to be found. Concrete development of the kinematrix
approach to self-propellers moving in three dimensions will
be a natural and useful direction for further study.
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