
PHYSICAL REVIEW E 90, 062303 (2014)

Multifractality in dilute magnetorheological fluids under an oscillating magnetic field
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A study of the multifractal characteristics of the structure formed by magnetic particles in a dilute magnetorheo-
logical fluid is presented. A quasi-two-dimensional magnetorheological fluid sample is simultaneously subjected
to a static magnetic field and a sinusoidal magnetic field transverse to each other. We analyzed the singularity
spectrum f (α) and the generalized dimension D(q) of the whole structure to characterize the distribution of
the aggregates under several conditions of particle concentration, magnetic field intensities, and liquid viscosity.
We also obtained the fractal dimension Dg , calculated from the radius of gyration of the chains, to describe
the internal distribution of the particles. We present a thermodynamic interpretation of the multifractal analysis,
and based on this, we discussed the characteristics of the structure formed by the particles and its relation with
previous studies of the average chain length. We have found that this method is useful to quantitatively describe
the structure of magnetorheological fluids, especially in systems with high particle concentration where the
aggregates are more complex than simple chains or columns.
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I. INTRODUCTION

Objects having irregular forms or a complex mass dis-
tribution are commonly observed in nature, in man made
materials, and in mathematical sets and functions [1]. These
objects, that sometimes appear structureless, exhibit scaling
properties having fractal or multifractal characteristics, which
provide a good mathematical description of the physical
processes in such materials. A multifractal system is an
object that needs more than a single fractal dimension to
describe its distribution, i.e., a discrete or continuous spectrum
of exponents is needed [2]. Since the last century, fractals
have been of mathematical, scientific, engineering, and purely
artistic interest, and their mathematical language has been used
as a powerful tool to characterize diverse systems in almost all
science disciplines [3,4]. In physics, fractals have been used to
study the kinetics and structure of disordered materials, such
as polymers, colloids, aerosols, and gels [5–7]. They also have
applications in numerous other areas, including transport phe-
nomena, dynamics of random materials, the growth and form
of complex patterns, hydrodynamic instabilities, etc. [8–10].
Moreover, fractal and multifractal concepts have been used to
study systems as the bifurcating structure of trees, blood ves-
sels, geochemical patterns, fractured surfaces of materials, mu-
sic analysis, and galaxy distributions, among others [11–14].
It has been shown that fractals are of great utility as they
may reflect the underlying physical process driving physical
phenomena and they may act as diagnostics of anomalous
behavior.

In this paper, we present a quantitative analysis of the
geometry of the structures formed in a magnetorheologi-
cal (MR) fluid in the presence of two different magnetic
fields. In magnetorheological fluids, which are dispersions of
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micrometric magnetic particles in nonmagnetic liquids, when
a static magnetic field is applied, aggregates are formed due
to the magnetic moment induced in the particles [15–18].
These aggregates cause noticeable changes in the physical
properties of the systems, and their characteristics depend
mainly on the magnetic field intensity and particle con-
centration [19]. The study of the formed structure enables
us to see a description of the physical properties of MR
fluids, such as yield stress, viscosity, magnetization, and
elastic modulus [20–22]. At low particle concentrations,
the formation of chains is followed by the formation of
thicker aggregates due to the coalescence of the chains. This
system can be described as an ensemble of chains having an
exponential distribution [23]. As we consider higher particle
concentrations, the aggregates become more complex forming
interconnected structures whose description in terms of chains
and columns is insufficient. Some of the fractal and multifractal
properties of this kind of structure have been previously stud-
ied [20,24–26]. However, a comprehensive study of the mul-
tifractal characteristics in a magnetic dispersion is carried out
here.

When a sinusoidal magnetic field is applied in addition
to the static field, the effective oscillating magnetic field drives
the system to different configurations [19,27]. In Ref. [19],
the average chain length for different values of frequency,
particle concentration, viscosity, and magnetic field intensities
was studied. In this paper, we use the same large collection
of digital photographs obtained in that study to analyze the
complexity of the different distributions of the aggregates
within the sample and the distribution of the particles in a
single chain or aggregate. For the former analysis, we use
multifractal measurements, whereas for the latter we calculate
the radius of gyration of the aggregates.

In Sec. II we briefly revise the scheme of the multifractal
formalism. In Sec. III the multifractal characteristics of the
distribution of the chains under several conditions in terms of
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the singularity spectrum and the generalized fractal dimension
are presented. Section IV shows the behavior of the fractal
dimension determined by the relationship between the number
of particles in single aggregates and its radius of gyration.
The fractal dimension calculated in this way describes the
distribution of the particles in the aggregate. In Sec. V we
derive some thermodynamic quantities taking advantage of
the formal relationship between the multifractal formalism
and the equilibrium statistical mechanics approach. Finally, in
Sec. VI we present the conclusions.

II. MULTIFRACTAL ANALYSIS

The fractal and multifractal characteristics of the system
were measured by using IMAGEJ and its plugin FRACLAC [28].
This program is based on the box-counting method to obtain
several quantities related to fractality. The method consists
of covering the total region of study with boxes of equal
size (l) and counting the number of boxes N that have at
least one particle. Then, the size of the boxes is reduced,
and the counting is repeated. The fractal dimension DB is
defined as the slope of a log-log graph of the number of
boxes containing pixels and the inverse of the box size,
that is, N ≈ ( 1

l
)DB . To calculate the multifractal quantities,

FRACLAC uses the multifractal formalism proposed by Chhabra
et al. [29], Chhabra and Jensen [30], and Chhabra et al. [31]
for determining the singularity spectrum f (α) directly from
experimental data. According to this method f (α) is defined
as

f (αq) =
∑

i μi ln μi

ln l
, (1)

where

μi = P
q

i (l)∑
i P

q

i (l)
, (2)

and

α =
∑

i μi ln Pi

ln l
, (3)

where α is the singularity strength which quantifies the local
degree of regularity, μi is the mean number of particles
contained in the ith box with a certain size and position, Pi

is the probability of finding the particles at the ith box, f (α)
describes how densely the singularities are distributed, and q

is the moment order of the measures of all boxes covering the
distribution. For q > 1, μi(q) accentuates the importance of
the more singular regions (denser regions) of the measure,
whereas for q < 1 it accentuates the less singular regions
(rarer regions), and for q = 1, μi(1) replicates the original
measure [30]. If the graph of f (α) is humped, the object is
considered multifractal. If the graph converges, the object is
considered mono- or nonfractal.

The generalized dimension D(q), representing a statistical
description of how mass varies with l (box size) in an image,
is defined as

D(q) = 1

(q − 1)
lim
l→0

ln
∑

i P
q

i (l)

ln(l)
. (4)

The graph of D(q) vs q is decreasing for multifractals
but nondecreasing for mono- or nonfractals. The maximum
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FIG. 1. Experimental setup. (a) A schematic side view and (b) a
schematic top view.

value of f (α) corresponds to D(0), which represents the
box-counting dimension DB .

III. EXPERIMENT

We study a MR fluid which is composed of mineral
magnetite particles about 65 μm dispersed in dexron oil. The
experimental setup is presented in Fig. 1. Briefly, a sample
of the MR fluid is poured into a cell of 14 mm width and
17 mm length. The aggregation is observed using an optical
microscope with a digital camera attached to it. We use two
pairs of Helmholtz coils to generate two different magnetic
fields: a static field and a sinusoidal field transverse to each
other, both on the horizontal plane. Thus, the effective field
oscillates on the x-y plane. We start the experiment with the
particles dispersed in the oil and settled down at the bottom of
the cell, then the fields are turned on. After 200 s the fields are
turned off, and the final stage is recorded. We took a series of
digital photographs at different stages under several conditions
of particle concentration, liquid viscosity, and magnetic fields.
From the photographs the multifractal analysis is performed.

We consider first the multifractal spectra for a series of
samples where particle concentration is varied. The cases
with and without perturbation are compared. In order to
illustrate the kind of structures studied here, in Fig. 2 we
show the distribution of the aggregates in a MR fluid sample
for three different values of the particle area fraction φ2D
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FIG. 2. MR structure formed in the presence of a static (92 G)
magnetic field (first column) and in the presence of a static (80 G)
and an oscillating (12 G) magnetic field (second column) at different
area fractions: in (a) and (b) φ2D = 0.076, in (c) and (d) φ2D = 0.128,
and in (e) and (f) φ2D = 0.244. The frequency of the oscillating field
is 2 Hz, and the viscosity of the liquid is 76 cP.

for the case when only the static field is present (a), (c),
and (e) and when both fields are present (b), (d), and (f).
The singularity spectrum and the generalized dimensions for
different particle concentrations when only the static field is
applied are shown in Fig. 3. It can be seen that the singularity
spectrum converges rapidly for lower values of α than for larger
ones; this means that the denser regions have a lower degree of
heterogeneity of the chain distribution, whereas the rarer ones
are more heterogeneous [32]. The singularity spectra and the
generalized dimensions for several particle concentrations are
shown in Fig. 4 for the case when both fields are turned on.
From Fig. 4(a), we can observe that the singularity spectrum
is shifted to the right with increasing particle concentration.
For φ2D = 0.015 and 0.024, the lower particle concentration
samples, the spectra of fractal dimensions are wider, which
implies a more complex distribution. From Fig. 4(b) it can be
seen that all curves decrease as q increases, demonstrating the
multifractal characteristic of the patterns. Comparing Figs. 3
and 4 it can be seen that a system subjected only to a static
magnetic field exhibits less complexity in its structure than the
systems subjected to both fields.

Figure 5 shows the box-counting fractal dimension (the
higher value of the singularity spectrum) DB as a function
of φ2D . It is observed that for all particle concentrations,
DB is higher when only the static magnetic field is applied
than when both fields are applied. It is also observed that
the change is slower when both fields are present. This is
due to the fact that when only the static field is present, the

(a)

(b)
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FIG. 3. (Color online) (a) Singularity spectrum f (α) and
(b) generalized dimensions D(q) of the MR fluid structure formed in
the presence of a static magnetic field Hc = 80 G at different particle
concentrations φ2D .

chains fill the space more homogeneously than when both
fields are present. From the graph we can observe that both
curves show a tendency to grow as particle concentration
increases. At low particle concentrations we can observe the
formation of chains of different sizes dispersed across the
sample. As particle concentration increases, the number of
chains increases, forming interconnected structures which tend
to fill the space in both directions. In this case, the system
appears less complex due to the fact that the chains have a
narrower distribution.

We also analyze the effect of the frequency of the sinusoidal
field using a static field Hc = 80 G and a sinusoidal field
Hp = 12 G. In Fig. 6 we depict (a) the graph of the singularity
spectrum f (α) and (b) the generalized dimensions D(q) for
several frequencies for a system where φ2D = 0.05. As can
be observed here, each curve decreases as a function of
increasing q, demonstrating the multifractal characteristic of
the patterns. The fractal dimension DB is shown in Fig. 7 for
all the frequencies studied here. It can be seen here that for
low frequencies the distributions presents a minimum around
2 Hz. Although the differences between the values of DB are
small, they actually correspond to appreciable differences in
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FIG. 4. (Color online) (a) Singularity spectrum f (α) and
(b) generalized dimensions D(q) of the MR fluid structure formed in
the presence of both a static (80 G) and an oscillating magnetic field
(12 G) at a frequency of 2 Hz at different particle concentrations φ2D .
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FIG. 5. (Color online) Box-counting fractal dimension of the MR
fluid structure formed in the presence of a static magnetic field of 92 G
(circles) and a static and oscillating magnetic field (squares) of 80 and
12 G, respectively, at different particle concentrations.
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FIG. 6. (Color online) (a) Singularity spectrum f (α) and
(b) generalized dimensions D(q) of the MR fluid structure for
different values of the frequency of the perturbation field. The
magnitudes of the fields are as follows: Hc = 80 and Hp = 12 G,
and φ2D = 0.05.

FIG. 7. Box-counting fractal dimension (DB ) of the MR fluid
cluster at different frequencies of the oscillating field. The static field
is fixed at 80 G, the oscillating field is fixed at 12 G, and φ2D = 0.05.
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FIG. 8. MR fluid structure for different values of the frequency
of the perturbation field: (a) 0, (b) 1, (c) 2, and (d) 10 Hz. The applied
fields are as follows: Hc = 80 and Hp = 12 G. The viscosity of the
liquid is 76 cP and φ2D = 0.05.

the structure of the system. This is illustrated in Fig. 8 where
the final configuration of the MR fluid at different frequencies
is shown. As one can see here, the structure formed at 2 Hz,
corresponding to a lower DB , Fig. 8(c), is less spread than those
formed at other frequencies. This is in accord with previous
reports that the changes in the average chain length present
a critical behavior around a frequency of 2 Hz [19,33]. For
frequencies below 2 Hz, the average chain length L̄ increases
with frequency, whereas for frequencies greater than 2 Hz
it decreases with increasing frequency. This behavior is also
reflected in the specific viscosity of the fluid: For frequencies
under 2 Hz, the viscosity increases with frequency, whereas for
frequencies over 2 Hz the viscosity decreases with increasing
frequency [19,33]. Comparing those results with the behavior
of the fractal dimension, we observed that the critical behavior
is related to the condition where the structure has smaller
fractal dimension.

The singularity spectrum is also obtained in the case when
both the static and the oscillating fields are varied keeping
Hp = 0.15Hc. In Fig. 9(a) we show the maximum value of
the spectrum DB as a function of the static magnetic field. As
we can see, there are little differences as the magnetic field
increases. The behavior of the system as a function of the
viscosity of the oil where the particles are dispersed is shown
in Fig. 9(b). Here, one can observe that at low viscosities the
fractal dimension changes. However, for higher viscosities,
DB remains almost the same. This behavior arises since, at
higher viscosities, the aggregation process is very slow due to
higher drag forces overdamping the motion. At low viscosities
the aggregation is faster, and the distribution of the chains is
more complex.

The width of the f (α) spectrum � = αmax − αmin can be
used to indicate the complexity of a structure: Monofractal
structures give narrow spectra, whereas multifractal distri-
butions give broader spectra [34,35]. The degree of mul-
tifractality of the structures in MR fluids for different (a)
particle concentrations and different (b) frequencies is shown
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FIG. 9. (Color online) Box-counting fractal dimension of the
pattern formed (a) at different magnitudes of the magnetic fields.
The magnitude of the oscillating field is Hp = 0.15Hc and (b) at
different values of the viscosity.

in Table I. Here, we have the width of the singularity
spectrum for the positive values of the q’s exponents as these
are characteristic of the densely populated measures. From
Table I(a) we can see that � is greater for low concentrations
than for high concentrations and that it is greater when the
system is subjected to both magnetic fields than when there

TABLE I. Width of f (α) for MR fluids: (a) at different particle
concentrations φ2D in the presence of a static magnetic field Hc and
with both fields (Hp at a frequency of 2 Hz) and (b) at different
frequencies of Hp at φ2D = 0.05.

(a) (b)
φ2D �(Hc) �(Hc + Hp) Hz �

0.015 0.22 0.33 0.0 0.21
0.024 0.19 0.22 0.3 0.18
0.045 0.12 0.17 0.5 0.16
0.076 0.12 0.14 1.0 0.11
0.092 0.11 0.13 1.4 0.16
0.128 0.09 0.14 8.0 0.17
0.244 0.13 0.11 25 0.14
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is only the static field applied. This indicates that the particle
concentration and the nature of the effective magnetic field are
directly related to the width of the curve which increases when
concentration decreases. From Table I(b) we can see that the
value of � does not vary too much for the different frequencies
of the perturbation field.

IV. RADIUS OF GYRATION AND
ITS FRACTAL DIMENSION

The multifractal analysis presented in the previous section
provides a measure of the complexity of the distribution
of chains in a sample of MR fluid. Another important
measurement is related to how the particles are distributed
in a single chain or aggregate. One way to characterize such
distribution is by measuring the radius of gyration Rg of each
chain in a sample for different conditions. In a chain containing
N particles, the radius of gyration is given by [2,36]

R2
g ≡ 1

N

N∑

i=1

( �Ri − �Rc.m.)
2. (5)

Here �Ri is the position of each particle, and �Rc.m. is the position
of the center of mass of the aggregate. The radius of gyration
gives us information about the way the particles are distributed
in a chain of a certain size. The radius of gyration as a function
of the number of particles follows a power law given by [36,37]

Rg(N ) ∼ N1/Dg , (6)

where Dg is the fractal dimension. In practice, a simple way
to calculate the radius of gyration is performed by taking the
positions of the pixels within the chain, instead of resolving
single particles in a chain.

Figures 10 and 11 show Rg vs N for two different samples,
one with φ2D = 0.015 and the other with φ2D = 0.244,
respectively. The fractal dimension for the lower concentration
is Dg = 1.16 and for the higher concentration is Dg = 1.78.
Thus, the fractal dimension approaches 1 for low particle
concentration samples since the aggregates formed are chains.
For higher particle concentrations, Dg approaches 2 due to the

FIG. 10. (Color online) Radius of gyration Rg vs number of
particles N in a MR fluid with φ2D = 0.015.

FIG. 11. (Color online) Radius of gyration (Rg) vs number of
particles (N ) in a MR fluid with φ2D = 0.244.

fact that the typical structures formed here are aggregates of
chains which cover an area instead of defining a line.

Figure 12 shows different aggregates formed in the MR fluid
samples and their fractal dimension Dg calculated through
Eq. (6). The fractal dimension approaches 1 for samples
containing short and large chains. For samples containing
small clusters Dg increases (1.34), and for samples containing
big clusters it approaches 2.

Figure 13 shows the fractal dimension, calculated from
Eq. (6) for all cases studied above. In the case of the variation
in particle concentration (a), we observe a wider range of
values of the fractal dimension. This behavior derives from
the fact that aggregates go from chainlike to more complex
structures formed by the aggregation of chains, forming more
extended clusters which tend to fill the space, leading to values
of the fractal dimension closer to 2. In the same Fig. 13(a),
we compare the case when only the static magnetic field is
turned on with the case when both fields are turned on. At low

(a) (b) (c) (d)

D =1.05g D =1.04g D =1.34g D =1.87g

FIG. 12. (a) Short chain, (b) large chain, (c) small cluster, and
(d) big cluster formed in the MR fluid samples at different conditions.
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FIG. 13. (Color online) Fractal dimension estimated from the
radius of gyration and the size of the clusters for different values
of (a) particle concentration, (b) frequency, (c) magnitude of the
magnetic fields, and (d) viscosity.

particle concentration the values of the fractal dimension are
small since chains are the more populated kinds of structures.

In the case of the variation in frequency we found that at
lower frequencies the fractal dimension decreases as frequency
increases, Fig. 13(b). This is in accord with observations
indicating that oscillation favors aggregation, thus the system
goes from a state of numerous short chains to a state of less
but larger chains. At high frequencies the differences when
frequency changes are not noticeable because the oscillating
field loses its effectiveness to rearrange the chains, i.e., these
do not respond anymore. The general behavior of the fractal
dimension as a function of the magnetic field shows a certain
tendency to decrease as the magnetic field increases, Fig. 13(c).
It is likely that this behavior is due to the formation of larger
chains that arise by increasing the magnetic field when the
samples are in the lower concentration regime. The general
behavior when the viscosity is varied is shown in Fig. 13(d).
For high viscosity the aggregation is more difficult, and the
more numerous kinds of structures are short chains. Only at
low viscosities is there the possibility to obtain aggregation of
chains.

V. THERMODYNAMIC INTERPRETATION
OF THE MULTIFRACTAL MEASURES

There is a formal connection of the multifractal formalism
with that of equilibrium statistical mechanics. Therefore,
we can evaluate thermodynamic quantities via this formal-
ism [29,31,38]. If a sample, i.e., a photograph from a
experiment, is covered with boxes of size l having a probability
Pi(l), the partition function for equal box sizes is given by

Z(q) =
∑

i P
q

i (l)

lτ
. (7)

We can equate this partition function to unity without losing
generality [31,32], i.e.,

Z(q) =
∑

i

P
q

i (l) ∼ lτ . (8)

On the other hand, the canonical partition function of a
mechanical system is the sum of the Boltzmann factors e−βEi ,
where β is the inverse temperature. Thus, defining in our
system Ei = − ln(Pi), we can write

Z(β) ≡
∑

i

e−βEi =
∑

i

e[q ln(Pi )]. (9)

Thus we can identify q as the Boltzmann temperature
β = 1/kT and Ei as the energy of the ith box. An alternative
formulation for the partition function is in terms of an
exponential of n times the free energy,

Z(β) ≡ e[−nF (β)] = e[−τ ln(l)], (10)

where β is absorbed in the free energy [39]. Here, we
can identify the mass exponent function τ (q) with the free
energy. Moreover, f (α) is related to τ (q) = (q − 1)D(q) by
a Legendre transformation when f (α) and D(q) are smooth
functions of α and q, respectively. Then, we can identify the
curve of f (α) as an entropy vs internal energy α of a statistical
mechanical system [30].

In the method of Chhabra et al., a direct computation
of f (α) is possible if the weighting term used to compute
the Hausdorff dimension and the singularity strength is μi

[Eq. (2)], which plays the role of the Boltzmann factor in
thermodynamics, i.e.,

μi(q,l) = [Pi(l)]q∑
i[Pi]q

= e−βEi (l)

∑
j e−βEj (l) . (11)

In this sense, the singularity spectra, obtained for the
different conditions studied here, can be interpreted as the
entropy of the system as a function of the internal energy
[Figs. 3(a), 4(a), and 5(a)]. The left side of the curve indicates
that the entropy increases when the internal energy increases.
This means that at f (α) = DB the system reaches its more
stable configuration where the energy is distributed uniformly
within the sample. Furthermore, the behavior of the singular
spectra in Fig. 4(a) shows that, for low particle concentrations,
a local minimum of energy is reached slower than for high
concentrations and it is reached at smaller values of the
internal energy and entropy. At high particle concentrations
the entropy is higher, indicating that this could be a more
stable state. However, when only the static field is applied
[Fig. 3(b)], the changes in entropy of the system are similar
for the different concentrations studied here. If we increase
particle concentration in a system with only the static field
applied, Fig. 3(a), we could reproduce the same behavior of
Fig. 4(a). On the other hand, for the frequencies studied here,
the most probable configuration of the aggregates experiences
small changes (Fig. 6).

The mass exponent function τ (q) is a straight line for
mono- or nonfractal objects. Thus, a deviation from linearity
reveals some degree of multifractality and nonlinearity of a
pattern. Figure 14 shows τ (q) vs q for five different particle
concentrations when only the static field is on (a) and when
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FIG. 14. (Color online) Free energy τ (q) vs inverse of tem-
perature for different particle concentrations of the MR fluid:
(a) in the presence of a static magnetic field Hc = 80 G and (b) in
presence of static (Hc = 80 G) and oscillating (Hp = 12 G) magnetic
fields.

both fields are turned on (b). From the graph we can observe
that there is not a single slope characterizing the distribution.
If we interpret this curve as the free energy, we can say that
the available energy to carry out the thermodynamic work
in these systems increases with particle concentration and as
temperature decreases (temperature decreases as q increases
since q = β). Comparing Figs. 14(a) and 14(b) we can observe
that the configuration of the system, subjected only to the static
field, forms similar structures, whereas the system with both
fields exhibits more evident differences. In Fig. 15 we depicted
the slope α of τ (q) for positive values of q, which is interpreted
as the internal energy. From the figure it can be seen that the
internal energy in the MR fluid systems increases with particle
concentration and it presents lower values for the case when
only the static field is applied.

VI. COMMENTS AND REMARKS

We have studied the multifractal characteristics of the
aggregates formed by the magnetic particles in magnetorhe-
ological fluids under an effective oscillating magnetic field.

FIG. 15. (Color online) Lipschitz-Hölder exponent (internal
energy) vs particle concentration of the MR fluid.

We vary different parameters, such as frequency, particle
concentration, magnitude of the magnetic fields, and viscosity.
The singularity spectrum and generalized dimensions make
evident the multifractal behavior in MR fluids subjected to
two different magnetic fields.

It was observed that, when only the static field is applied,
the chains are distributed homogeneously along the whole
sample and it occurred for the different concentrations studied
here. However, when both fields are applied, the configuration
changes drastically, and the particle distribution becomes
inhomogeneous. All these features can actually be appreciated
by visual inspection of the system’s pictures. However, for
a quantitative characterization of the different properties we
need to resort to a theoretical analysis. As we show here,
the multifractal analysis provides a theoretical tool which
allows us the characterization of the system’s structure as a
whole. This analysis is complementary to previous papers
where the main objective was the description of single chains.
The multifractal method describes the system at length instead
of describing it as a distribution of individual chains or
columns. Combining the multifractal analysis for the whole
structure and the analysis through the radius of gyration for
the distribution of particles within each structure, we obtain a
complete description of the complex structures formed by the
particles.

From the formal relation with statistical mechanics, we
observed that the distribution always evolves toward configu-
rations of minimum energy and maximum entropy.

ACKNOWLEDGMENTS

Partial financial support from CONACyT, (Mexico)
through Grants No. 80629 and No. 182132 and the post-
doctoral fellowship to R. E. Moctezuma by Red Temática de
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