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Manipulating chiral microswimmers in a channel
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We numerically simulate the diffusion of overdampd pointlike Janus particles along narrow two-dimensional
periodically corrugated channels with reflecting walls. The self-propulsion velocity of the particle is assumed
to rotate subject to an intrinsic bias modeled by a torque. Breaking the mirror symmetry of the channel with
respect to its axis suffices to generate a directed particle flow with orientation and magnitude which depend
on the channel geometry and the particle swimming properties. This means that chiral microswimmers drift
autonomously along a narrow channel under more general asymmetry conditions than previously reported, a
property of potential impact on their fabrication and technological applications.

DOI: 10.1103/PhysRevE.90.062301 PACS number(s): 82.70.Dd, 36.40.Wa, 87.15.hj

I. INTRODUCTION

Active Brownian particles, also known as microswimmers,
are self-propelled micro- and nanoobjects capable of directed
random motion. Actually, self-propulsion [1] is the ability of
most living organisms to move in the absence of external drives
by means of an internal “engine” of their own. Recently, a new
type of artificial microswimmer has been fabricated [2], where
self-propulsion is powered by local gradients the particles
themselves generate, when coupled to an external energy
source (self-phoretic effects) [3]. Typically, such particles
consist of two distinct “faces,” only one of which is chemically
or physically active and for this reason are dubbed Janus
particles (JPs) [4]. Such swimmers thus harvest energy from
their environment through an external “engine,” which may
involve concentration gradients (by catalyzing a chemical
reaction on their active surface [5,6]) as well as thermal
gradients (e.g., by inhomogeneous light absorption [7,8] or
magnetic excitation [9]).

The self-propulsion mechanism acts on the microswimmer
by means of an effective force and, possibly, a torque [10].
In the absence of a torque, the line of motion is directed
parallel to the self-phoretic force and the JP propels itself
along a straight line, until it changes direction, due to gradient
fluctuations [3] or random collisions against other particles
or geometric boundaries [11]. This is the highly stylized case
mostly studied in the recent literature, where, for simplicity,
the JPs are assumed to be rotationally symmetric around their
line of motion (symmetric JPs). In the presence of an additional
torque, the self-phoretic force and the line of motion are
no longer aligned and the microswimmer tends to execute
circular orbits [10,12] (chiral microswimmer). Active chiral
motion has long been known in biology [10,13,14] and more
recently observed in asymmetrically propelled artificial micro-
and nanorods: A torque can be intrinsic to the propulsion
mechanism, due to the presence of geometrical asymmetries in
the particle fabrication, engineered or accidental (asymmetric
JPs) [15–17], or externally applied, for instance, by laser

irradiation [7] or hydrodynamic fields [18]. In the finite
damping regime, the Lorentz force exerted by a magnetic
field on a charged active Brownian particle also amounts to
an external torque [19,20].

Controlling transport of artificial microswimmers and
JPs, in particular, through confined geometries is of utmost
importance for the application of microswimmer technology to
science and engineering [21,22]. The rectification of nonchiral
JPs through periodic arrays [8] and channels [23] surely is a
suggestive option. Such devices do operate autonomously, that
is, in the absence of external drives or gradients, but at the
price of a strict fabrication requirement: Their geometry must
be asymmetric under mirror reflection in the direction of the
output current [22].

In this paper we show by a combination of numerical
simulations and analytical arguments, that chiral JPs are sus-
ceptible to being autonomously rectified in narrow corrugated
channels under more general symmetry breaking conditions
than suggested by the one-dimensional reduction formalisms
[22,24]. As shown in Sec. III a sufficient condition is that the
cylindrical (in three dimensions, 3D) or mirror symmetry of
the channel with respect to its axis (in two dimensions, 2D)
be broken. This is the net effect of opposed boundary flows,
which set on as the particle orients its self-propulsion velocity
tangentially to the channel walls. This phenomenon allows
one, in principle, to design a distinct class of active particle
rectifiers, where, in contrast with the better known ratchet tech-
nology [22], spatial asymmetry in the direction of propagation
would be unnecessary. The mechanism investigated here not
only enhances transport of JPs in general, but also allows
an accurate control of their flows; how the JP rectification
power depends on the self-propulsion parameters and channel
geometry is discussed in Sec. IV. In Sec. V we briefly discuss
similarities and differences with the transport properties of
a nonchiral JP of unit charge moving along a 2D channel,
subject to the external torque exerted by a constant orthogonal
magnetic field. In the concluding Sec. VI we suggest simple
sorting techniques for chiral JPs based on their swimming
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properties, a key property for the fabrication and application
of chiral artificial microswimmers at large.

II. MODEL

In order to avoid unessential complications, we restrict
this paper to the case of 2D channels and pointlike artificial
microswimmers. The extension of our key conclusions to 3D
channels and finite-size particles is also possible [14]. A chiral
JP gets a continuous push from the suspension fluid, which
in the overdamped regime (for pointlike swimmers hydro-
dynamic effects [25,26] and particle-particle collisions are
negligible [27]) amounts to a rotating self-propulsion velocity
v0 with constant modulus v0 and angular velocity �. Addi-
tionally, the self-propulsion direction varies randomly with
time constant τθ , under the combined action of thermal noise
and fluctuations intrinsic to the self-propulsion mechanism.
Accordingly, the microswimmer mean free self-propulsion
path approximates a circular arc of radius R� = v0/|�| and
length lθ = v0τθ [12].

The bulk dynamics of such a chiral JP obeys the Langevin
equations [12]

ẋ = v0 cos θ + ξx(t),

ẏ = v0 sin θ + ξy(t), (1)

θ̇ = � + ξθ (t),

where the particle center of mass is confined into the plane
(x,y), subject to equilibrium thermal fluctuations modeled by
the Gaussian noises ξi(t) with 〈ξi(t)〉 = 0 and 〈ξi(t)ξj (0)〉 =
2D0δij δ(t) for i = x,y. The channel is directed along
the x axis, the self-propulsion velocity is oriented at an
angle θ with respect to it, and the sign of � coincides with
the positive (levogyre) and negative (dextrogyre) chirality
of the swimmer. As explained in Sec. I, we refer to � as
a torque. The fluctuations of the propulsion direction are
modeled by the Gaussian noise ξθ (t) with 〈ξθ (t)〉 = 0 and
〈ξθ (t)ξθ (0)〉 = 2Dθδ(t), where Dθ = 2/τθ . In the bulk, self-
propulsion contributes an additional amount Ds = v2

0τθ/4 to
the thermal diffusivity, D0 [23,28]. The self-propulsion param-
eters, v0 and �, model some self-phoretic mechanism acting
on the particle, and not an external field of force; for this reason
v0 and � were taken as independently tunable. Analogously,
we treated all noise sources in Eq. (1) also as independent, al-
though thermal and orientational fluctuations may be, to some
degree, statistically correlated (see, e.g., [14]). More impor-
tantly, the parameters used in our simulations are experimen-
tally accessible, as apparent on expressing times in seconds
and lengths in microns (see Refs. [8,14] for a comparison).

We numerically simulated the set of Langevin equations (1)
for a levogyre microswimmer, � > 0, confined to a periodic
2D channel,

w+(x) = 1

2

[
� + ε(yL − �) sin2

(
π

xL

(x + x0)

)]
,

w−(x) = −1

2

[
� + (yL − �) sin2

(
π

xL

x

)]
, (2)

where xL is the compartment length, � the pore size, and yL the
channel width. Two additional tunable geometrical parameters
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FIG. 1. (Color online) Chiral Janus particle in a narrow channel:
(a) particle with velocity v0 and torque �, Eq. (1), and examples of
periodically corrugated channels with different symmetry properties:
(b) upside-down asymmetric and right-left symmetric; (c) right-left
asymmetric and upside-down symmetric, and (d) centrosymmetric.
Channel walls: (b) and (d) as in Eqs. (2) with ε and x0 given in the
legends; (c) the triangular wall profile of Ref. [23]. In (b) the open
boundary trajectories and a closed circular trajectory of radius R�

are drawn for explanatory purposes (see Fig. 2 for actual simulation
data).

have been introduced in w+(x), namely, x0 and ε with ε � 0,
respectively, to shift the position and tune the amplitude of the
upper wall with respect to the lower one (Fig. 1). Simulating a
constrained JP requires defining its collisional dynamics at the
boundaries. For the translational velocity ṙ we assumed elastic
reflection [24]. Regarding the coordinate θ , we assumed that
it does not change upon collision (sliding boundary conditions
(b.c.) [23]). As a consequence the active particle slides along
the walls until either the orientational fluctuations, ξθ (t), or the
torque, �, redirect it toward the interior of the compartment.

In Figs. 3–5 we computed the directed flow, v̄ =
limt→∞〈x(t) − x(0)〉/t , for different particle swimming prop-
erties and channel geometries. Equations (1) have been numer-
ically integrated by using a standard Milstein algorithm [23]
with short time step, 10−5–10−7, to ensure numerical stability.
At start, t = 0, the particle was assumed to be uniformly
distributed with random orientation in a channel compartment
located between x = 0 and x = xL. The running time was
set to 104 × τθ , or 104 × �−1, or 104, whichever is greater,
so as to neglect transient effects due to transients. The data
points reported in the figures shown here have been obtained
by ensemble averaging over a minimum of 104 trajectories.

III. CHIRAL RECTIFICATION

When confined to a channel compartment of size smaller
than its self-propulsion length, lθ , a chiral microswimmer
tends to align its velocity parallel to the walls [8,15], thus
generating two boundary flows oriented to opposite directions.
This situation occurs at low noise (both thermal and orienta-
tional) when, upon increasing the torque, the particle tends
to accumulate against the walls [23,29–31] with tangential
velocities approaching ±v0. Optimal anomalous rectification
[30] is thus established under the regime of strong chirality,

062301-2



MANIPULATING CHIRAL MICROSWIMMERS IN A CHANNEL PHYSICAL REVIEW E 90, 062301 (2014)

|�|τθ � 1 or lθ � R�, and high Péclet numbers, Pe � 1,
with Pe ≡ v2

0 |�|/D0. Releasing either of these conditions
suppresses the channel rectification power. For instance, on
lowering the torque, the chiral radius R� eventually grows
much larger than the compartment dimensions, R� � xL,yL;
as a consequence, for lθ � R�, the swimmer spends more time
drifting between the upper and lower walls than sliding along
them, thus weakening the boundary flows. Vice versa, when
either the self-propulsion length or the chiral radius are smaller
than the compartment dimension, lθ � xL,yL or R� � xL,yL,
particle diffusion occurs mostly away from the boundaries.
This implies that for high noise levels or exceedingly large
torques the boundary rectification effects grow negligible.

These different chiral regimes are well illustrated in Fig. 2,
where we plotted the stationary probability density, P (x,y), of
a JP diffusing in the sinusoidal channel of Fig. 1(b), namely,
within the boundaries of Eq. (2) with ε = 0.25 and � = 0.12.
For � = 10, top panel, the particle tends to sojourn at the center
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Ω  =  2 -11
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FIG. 2. (Color online) Logarithmic contour plots of the station-
ary particle density, P (x,y), in a compartment of Eq. (2) with
xL = yL = 1, x0 = 0, � = 0.12, and ε = 0.25, for different values of
�. Other simulation parameters are τθ = 10, v0 = 1, and D0 = 0.01.
For � = 2, central panel, the boundary flows are the strongest, as
P (x,y) gets uniformly depleted at the center of the compartment.
This condition corresponds to a maximum in the rectification power
of Fig. 4.

of the compartment, where it gets trapped. Accordingly, the
boundary flows through the pores are broken. Vice versa, for
� = 0.1, bottom panel, the particle trajectory tends to bounce
between the upper and lower boundaries, so that the particle
density piles up against the midsections of the compartment
walls, mostly away from the pores. Both regimes of high and
low chiral frequency in Fig. 2 clearly hint at a suppression
of autonomous rectification, as explicitly demonstrated by the
simulation data of Fig. 4. Finally, for � = 2, the boundary
flows are the strongest along both walls and, most importantly,
across the pores. By the same token, the probability density
at the center of the compartment gets uniformly depleted,
which corresponds to the situation sketched in Fig. 1(b), where
the chiral radius R� is of the order of half the compartment
length and the particle can thus trace a closed orbit inside the
compartment.

For � > 0 the JP is levogyre, which means that the upper
and lower boundary flows are oriented, respectively, to the left
and right. It then becomes apparent that the net flow along
the channel axis, v̄, takes the sign of the flow along the less
corrugated boundary, that is, w+(x) for ε < 1 and w−(x) for
ε > 1 [see compartments of Figs. 1(b) and 1(d) and data of
Fig. 3], and vanishes for ε = 1. As long as rectification occurs
at the boundary layers (with the channel compartments only
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FIG. 3. (Color online) Rectification of a levogyre JP in the
channel of Eq. (2): (a) v̄/v0 vs ε for � = 0.12, D0 = 0.01, and
different �; (b) η = |v̄|/v0 vs � for � = 1 and different ε, with ε < 1,
and D0 (see legends). Note that here v̄ = −|v̄| and for a right-left
symmetric channel, v̄(−�) = −v̄(�). Other simulation parameters
are Dθ = 0.3, v0 = 1, x0 = 0, and xL = yL = 1.
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FIG. 4. (Color online) Optimization of the rectification of a
levogyre JP with v0 = 1 in the channel of Eq. (2) with ε = 0.25,
x0 = 0, and xL = yL = 1: η vs �τX for � = 0.12, τθ = 10, and
different D0 (see legend). Here τX is the compartment crossing time,
τX = xL/v0, and the vertical arrow points to �MτX .

sparsely traversed by the particle), the argument above sets a
simple upper bound to the channel rectification power, η =
|v̄|/v0, that is,

η � xL

2

∣∣∣∣ 1

s+
− 1

s−

∣∣∣∣ , (3)

where s± are the lengths of the upper and lower compartment
boundaries. This upper bound is actually approached under
optimal rectification conditions, for instance, in Fig. 4, and
modified to account for a different geometry, in Fig. 6 (see
Sec. VI).

Symmetry requirements

In our interpretation the rectification process is governed by
the boundary flows [20] and, therefore, by the spatial symmetry
of the channel walls, rather than the pore geometry [14].
This picture is consistent with rigorous symmetry arguments.
First of all we notice that the 2D channel compartments in
Fig. 1 can be asymmetric under inversion of either the y

axis (y → −y, upside-down asymmetric), panel (b), of the
x axis (x → −x, right-left asymmetric), panel (c), or both,
panel (d). The compartment (d), while both upside-down and
right-left asymmetric, is invariant under any pair of x and y axis
inversions, namely, it is centrosymmetric. With reference to the
right-left symmetric compartment (b), we notice that Eqs. (1)
are invariant under the transformations x → −x and θ → π −
θ or, equivalently, � → −�, which leaves the channel also
invariant. As a consequence v̄(−�) = −v̄(�). Similarly, in the
case of the upside-down symmetric compartment (c), one con-
cludes that v̄(�) = v̄(−�). Moreover, for a centrosymmetric
compartment both parity relations hold simultaneously; hence,
v̄(�) = 0. This is the case of the channel of Eq. (2) for ε = 1
and any x0, for which we verified that v̄ is identically zero. In
view of the different chiral parity of v̄(�) for compartments (b)
and (c), it becomes apparent that a finite torque is a necessary
condition for JP rectification in a right-left symmetric channel.
Finally, by shifting the channel walls w±(x) in Eq. (2) by
a length x0, one can easily prove the additional symmetry
relations v̄(x0,�) = −v̄(−x0, − �) for right-left symmetric
compartments, and v̄(x0,�) = v̄(−x0, − �) for upside-down

symmetric compartments. This symmetry relation is discussed
in Sec. V for nonchiral JPs, � = 0, diffusing in the channel of
Eq. (2).

IV. RECTIFICATION POWER

The boundary flow mechanism explains well the depen-
dence of v̄ on the compartment parameters � and ε displayed
in Fig. 3. In particular, we observe that (i) v̄ �

>
0 for ε �

>
1 and

any choice of � and � (with � > 0) [Fig. 3(a)]; (ii) increasing
the pore size, �, also enlarges the compartment volume, thus
diminishing the statistical weight of the boundary layers; ac-
cordingly, v̄ gets suppressed [Fig. 3(b)]; (iii) more remarkably,
in the noiseless limit v̄ is discontinuous at � = 0, with v̄ 	= 0
for � → 0 and v̄ = 0 at � = 0 [Fig. 3(b)]. This result stresses
the prominent role of the boundary flows, whose width, for an
overdamped pointlike JP, is vanishingly small; and (iv) for fi-
nite thermal noise levels η peaks at an optimal pore width [23].

Thermal noise affects the resonant behavior of |v̄| as a
function of � reported in Fig. 4. The rectification power goes
through a maximum for a certain value of the torque, without
crossing the upper bound set in Eq. (3). On decreasing D0, the
peak shifts to the left until it settles around a limiting value,
�M , where it is the most pronounced. The peak frequency �M

can be estimated by noticing that on increasing � the chiral
radius R� = v0/|�| decreases until the microswimmer can
perform a closed orbit (actually a logarithmic spiral with ex-
ponentially small steps [12]) inside the compartment, without
being captured by the boundary layers [see Figs. 1(b) and 2]. In
the noiseless limit this is expected to happen for �M 
 2v0/xL,
in good agreement with our data for low D0. Accordingly,
by closing its orbit inside a compartment, the swimmer gets
trapped there, which explains the sudden drop of η for � �
�M . The peak in the curves v̄ versus ε for ε > 1 and constant
� reported in Fig. 3(a) can be interpreted in the same way.

As argued above and shown in Fig. 2, increasing � with
�τθ � 1 and � < �M helps the self-propulsion velocity align
itself parallel to the channel walls (v̄ increases), while for � >

�M the JP performs an effective Brownian motion by diffusing
away from the walls (v̄ decreases). On the other hand, thermal
noise disrupts the boundary flows by kicking the particle inside
the compartment. It also deform its closed orbits by making
them spiral faster and their centers diffuse. As a consequence,
on increasing D0 the � peak tends to shift to higher � (i.e.,
smaller R�) and diminish in height, as shown in Fig. 4.

V. RECTIFICATION BY AN EXTERNAL TORQUE

For the sake of a comparison, we now briefly analyze an
instance where the torque acting on the microswimmer is
externally applied. Let us consider a nonchiral JP of unit charge
diffusing in the plane (x,y), subject to a magnetic field B.
The Langevin equations (1) can be easily modified to account
for the magnetic (Lorentz) force (Bẏ, − Bẋ). The new set of
Langevin equations reads

ẍ = −γ ẋ + Bẏ + F0 cos θ +
√

γ kT ξx(t),

ÿ = −γ ẏ − Bẋ + F0 sin θ +
√

γ kT ξy(t),

θ̇ = ξθ (t), (4)
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where F0 denotes the modulus of the effective self-propulsion
force and the noises ξx(t), ξy(t), and ξθ (t) are defined as in
Eq. (1). Note that here the self-propulsion speed is v0 = F0/γ ,
whereas the intrinsic torque was set to zero, � = 0. The
magnetic force tends to bend the particle trajectory very much
like � did in the model of Sec. II. In this spirit and following
the notation of Ref. [20], we refer to B as an external torque.

The external torque of Eq. (4) has opposite chiral effects
than the intrinsic torque of Eq. (1). Indeed, for B > 0 (B < 0)
the magnetic force applies a clockwise (counterclockwise)
rotation on the active Brownian trajectories, thus affecting
the particle dynamics, especially in the vicinity of the
channel walls [19]. This causes a spatial symmetry-breaking
mechanism capable of rectifying a confined time-correlated
Brownian motion [20]. However, one notes immediately that
in the regime of large damping (overdamped limit) effects due
to the external torque are strongly suppressed; hence, the need
of explicitly incorporating inertia in the particle dynamics of
Eq. (4). This is a first important difference with respect to the
diffusion properties of chiral JPs investigated sofar.

The numerical results reported in Fig. 5 have been obtained
by varying the geometry of the 2D channel of Eq. (2). The
outcome of our simulations can be summarized as follows:

(i) Like for chiral JPs, rectification of a magnetic mi-
croswimmer also occurs in right-left symmetric channels
with broken upside-down symmetry. Moreover, we checked
numerically that, as anticipated above, the rectification power
drops to zero on increasing either γ [Fig. 5(c)] or Dθ ; the
decay laws are respectively 1/γ 3 for γ → ∞ and τ 2

θ for
τθ → ∞ (not shown). This is a consequence of the fact
that self-diffusion scales like Ds = τθF

2
0 /4γ 2; in the limit

γ → ∞, or τθ → 0, Ds is suppressed with respect to D0 =
kT /γ , Ds/D0 ∝ τθ/γ � 1, so that diffusion is dominated by
equilibrium thermal noise, which cannot be rectified.

(ii) Rectification is governed by compartment convexity. In
the panels (a) (inset) and (b) of Fig. 5 we report simulation
results for a half sinusoidal channel, where the upper wall was
taken straight and the lower one sinusoidally corrugated, i.e.,
ε = 0. No matter how large the width, yL, the net current,
v̄, is negative. On exchanging w+(x) with w−(x), i.e., under
y → −y reflection, the rectification current reverses sign. A
qualitative explanation of this behavior is simple. For B > 0
the JP behaves like a dextrogyre swimmer; under the action
of the external magnetic force, the particle tends to slide to
the left against the upper wall and to the right against the
lower wall. Our numerical observations support the argument
of Sec. III that straight walls have a stronger rectification power
than corrugated walls [see Eq. (3)]. The two current reversals
shown by the curves v̄(ε) in Fig. 5(a) are thus the result of
the competing rectification powers of the upper (to the left,
negative) and the lower wall (to the right, positive). For ε = 1
the channel compartment is centrosymmetric and, therefore,
v̄ is identically zero. For ε < 1 w+(x) is less convex than
w−(x), so that v̄ < 0; for ε > 1 the opposite is true and v̄ turns
positive. However, on further increasing ε, the corrugation of
w+(x) grows in amplitude to the point that the diffusing JP
gets trapped against the wall; rectification to the right is thus
suppressed and v̄ reverses sign one last time. This is also why
the modulus of v̄ in the inset attains a maximum at a certain
value of yL, apparently proportional to �. This is another
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FIG. 5. (Color online) (a) Rectification of a Janus particle in a
x → −x mirror symmetric channel in the presence of torque: v̄/v0 vs
ε for Dθ = 0.3, γ = 0.2, F0 = 0.5, kT = 0.05, and different values
of B. The channel boundaries are described by Eq. (2) with xL =
yL = 1, � = 0.1, and x0 = 0. Inset: ¯v̄/v0 vs yL for B = 1, ε = 0
(half a sinusoidal channel) and different �. The remaining parameters
are as in the main panel; (b) v̄ vs B for Dθ = 0.03 and different
values of γ , F0, and kT (see legend). Units are as in Eq. (4) and
the channel boundaries as in Eq. (2) with ε = 0 (half a sinusoidal
channel), xL = yL = 1, and � = 0.12; (c) rectification of an inertial
Janus particle in an asymmetric channel at zero torque, B = 0: v̄/v0

vs x0 for different γ . w±(x) are given by Eq. (2) for xL = yL = 1,
ε = 0.25, and � = 0.12; other simulation parameters are F0 = 0.5,
kT = 0.05, and Dθ = 0.3.

important difference with respect to the intrinsic torque model
of Sec. II. In both cases positive torques, � > 0 and B >

0, yield negative rectification currents, v̄(ε) < 0, for ε < 1;
however, in Fig. 3(a) the JP is levogyre, whereas in Fig. 5(a) it
is dextrogyre. Clearly, intrinsic torques and external torques,
combined with inertia, produce opposite boundary flows.
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(iii) The dependence on the torque is resonantlike. The
curves of v̄ versus B displayed in Fig. 5(b) should be compared
with the curves of Fig. 4. For B → 0 the instantaneous
curvature radius of the stochastic trajectories grows so large in
comparison with the compartment size, that its impact on the
particle dynamics becomes negligible. Vice versa, for B → ∞
the curvature radius is so much smaller than the pore size,
that the diffusive dynamics of the JP is dominated by thermal
noise. However, in contrast to Fig. 4, here rectification is
the strongest for �M 
 2

√
kT /�. This is consistent with the

optimal transport condition that the radius of curvature, R� =√
kT /�, associated with the thermal velocity, vth = √

kT , is
of the order of the pore half-width, �/2. This condition holds
at relatively low damping, as long as γ � �M [32].

(iv) Collisions on the upper and lower channel walls are
correlated. In the presence of inertia this property holds even
for nonchiral Brownian particles [32]. In panel (c) of Fig. 5
we report simulation data for the Brownian dynamics of
Eqs. (4) and (2) with B = 0 (no torque), ε = 1/4 (different
wall corrugations amplitudes), and varying x0 (i.e., shifting
the channel walls relative to one another). As discussed in
Sec. III, the net current vanishes identically at x

(n)
0 /xL = n/2,

with n integer, where the channel unit cell is centrosymmetric;
in the neighborhood of these zeros, v̄ is an odd function
of x0. The additional current inversions occurring between
two consecutive x

(n)
0 are not symmetry determined, but rather

depend on the dynamical parameters γ and Dθ . Increasing
γ shortens both the thermal length, lth = vth/γ , and the
self-propulsion length of the diffusing particle, lθ = τθF0/γ .
Note that the ratio lth = lθ is independent of γ . As lth grows
smaller than the width of the compartment pores, lth � �,
inertia can no longer be invoked to explain rectification; any
residual net current must be attributed to the overdamped
self-propulsion mechanism introduced in Ref. [23]. Of course
this is possible only when lθ is still comparable with the
compartment size, i.e., lθ � � � lth. For the simulation
parameters of Fig. 5(c), such condition occurs for 2 � γ � 20:
Nevertheless, no appreciable rectification current was detected
for γ > 1. This is an instance of accidental suppression of the
rectification mechanism, due to the fact that the channel cross
section σ (x) = w+(x) − w−(x) is sinusoidally modulated and,
therefore, itself right-left symmetric [22,24].

VI. CONCLUSIONS AND OUTLOOKS

Diffusion of chiral microswimmers can be rectified even in
highly symmetric geometries as an effect of opposite oriented
boundary flows. This mechanism can be extended to 3D
channels [14]. The “minimum spatial asymmetry” required
to generate an autonomous current is that the channel walls
have different corrugation.

As a natural extension of our boundary flow approach, we
notice that rectification of chiral microswimmers also occurs
in different geometries, such as the annulus of radii R1 and R2,
with �R = R1 − R2 > 0, illustrated in Fig. 6. A levogyre JP
trapped in such a ring tends to drift counterclockwise with an-
gular velocity, ω̄θ = 〈θ̇〉 > 0. The optimal rectification torque
in a thin ring with �R � R1 is determined by the condition
R� = R1, i.e., |�| = ω1 with ω1 = v0/R1. In this limit the par-
ticle density across the annulus is uniform, no boundary flows
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FIG. 6. (Color online) Rectification of a levogyre JP in an annu-
lus of outer radius R1 = 10 and width �R = R1 − R2 (see sketch)
as a function of �: net angular velocity, ω̄θ vs R1/R�, for τθ = 20,
D0 = 0.01, v0 = 1, and different �R. Here, R� = v0/� and ω1 =
v0/R1 = 0.1, i.e., R1/R� = �/ω1.

were observed. On the contrary, as the inner radius shrinks so
that �R → R1, the maximum rectification occurs for R� 

2�R. This is the optimal rectification condition illustrated in
the central panel of Fig. 2 and discussed in Sec. IV for a
directed sinusoidal channel: Opposite boundary flows emerge
tangential to the outer (counterclockwise) and inner walls
(clockwise), with the former much stronger than the latter.
(Notice that in the situation simulated here, the swimmer self-
propulsion length lθ is of the order of R1.) A simple qualitative
argument, introduced in Ref. [33] for the case of charged Brow-
nian particles diffusing in circular confining geometries sub-
jected to a constant magnetic field, also provides an estimate
for the upper and lower bounds of the maxima of the curves
ω̄θ /ω1 plotted in Fig. 6, respectively, 1/2 for R2 → 0 and 1/4
for R2 → R1, in close agreement with our numerical findings.
The reader is referred to that earlier work for more details.

The results discussed in this paper suggest the conceptual
design of devices for manipulating chiral JPs. For instance,
if a mixture of levogyre (L) and dextrogyre (D) JPs is forced
through two openings of appropriate geometry, the annulus
investigated in Fig. 6 may be used to separate the two mixture
fractions according to their chirality. Moreover, a sieve formed
by N cascaded such units, as sketched in Fig. 7, would be
selective toward the sign and magnitude of � and, more
importantly, its efficiency enhanced by increasing N .

This and other applications of chiral rectification surely
are within the capabilities of the current technology. Special-
ized microfluidic circuits can be designed, for instance, to
guide chiral microswimmers to a designated target. Taking
advantage of the fact that the proposed mechanism is quite
sensitive to the degree of chirality of the diffusing particles
(engineered or accidental, alike), this effect can be utilized
to fabricate monodisperse chiral microswimmers (presently
a challenging technological task). By the same token, mi-
croswimmers capable of inverting chirality upon binding
to a load, can operate as chiral shuttles along a suitably
corrugated channel even in the absence of gradients of any
kind.
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FIG. 7. (Color online) Sketch of a chiral sieve consisting of
cascaded rings: As a mixture of levogyre (L) and dextrogyre JPs
(D) is pumped from left to right, the levogyre JPs are selectively
removed at the links.

The simple model analyzed here was aimed at stressing
the role of chirality on active transport in narrow channels.
However, to ensure a detailed comparison with the data from
ongoing experiments, one should address other important

effects: (i) Hydrodynamic effects: In this work we ignored
the role of the suspension fluid flowing around the moving
microswimmer. An accurate account of microfluidic effects is
likely to selectively impact the particle boundary flows along
a corrugated channel wall as well as the translocation of finite
size JPs through a narrow pore. (ii) Wall interactions: The
sliding b.c. implemented in our simulation code are known to
reproduce rather closely certain experimental conditions [8],
but surely are not granted for all setups under investigation
[12,34]. Particle translocation through narrow constrictions
may be extremely sensitive to the particle-wall interactions
and thus affect active transport in corrugated channels. These
issues are the focus of ongoing research.
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