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Simulation of cohesive fine powders under a plane shear
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Three-dimensional molecular-dynamics simulations of cohesive dissipative powders under a plane shear are
performed. We find the various phases depending on the dimensionless shear rate and the dissipation rate as well
as the density. We also find that the shape of clusters depends on the initial condition of velocities of particles
when the dissipation is large. Our simple stochastic model reproduces the non-Gaussian velocity distribution
function appearing in the coexistence phase of a gas and a plate.
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I. INTRODUCTION

Fine powders, such as aerosols, volcanic ashes, flour, and
toner particles are commonly observed in daily life. The
attractive interaction between fine powders plays a major role
[1-13], while there are various studies discussing the effects
of cohesive forces between macroscopic powders [13-33].
For example, the Johnson-Kendall-Roberts theory describes
the microscopic surface energy for the contact of cohesive
grains [13,14]. The others study the attractive force caused by
the liquid bridge for wet granular particles [27-33]. It should
be noted that the cohesive force cannot be ignored for small fine
powders. Indeed, the intermolecular attractive force always
exists. Moreover, the inelasticity plays an important role when
powders collide, because there are some excitations of internal
vibrations, radiation of sounds, and deformations [34—43].

Let us consider cohesive powders under a plane shear. So
far there exist many studies for one or two effects of the
shear, an attractive force, and an inelastic collision [44-62],
but we only know one example for the study of the jamming
transition to include all three effects [63]. On the other hand,
when the Lennard-Jones (LJ) molecules are quenched below
the coexistence curve of gas-liquid phases [44-49], a phase
ordering process proceeds after nucleation takes place [S0-52].
It is well known that clusters always appear in freely cooling
processes of granular gases [53—55]. Such clustering processes
may be understood by a set of hydrodynamic equations
of granular gases [56,57]. When we apply a shear to the
granular gas, there exist various types of clusters such as
the two-dimensional (2D) plug, 2D wave, or 3D wave for
three-dimensional systems [58—62].

In this paper we try to characterize nonequilibrium pattern
formation of cohesive fine powders under the plane shear by the
three-dimensional molecular-dynamics (MD) simulations of
the dissipative LJ molecules under the Lees-Edwards boundary
condition [64]. In our previous paper [65] we mainly focused
on the effect of dissipation on the pattern formation in Sllod
dynamics [66,67]. In this study, we systematically study it by
scanning a large area of parameter space to draw the phase
diagrams with respect to the density, the dimensionless shear
rate, and the dissipation rate without the influence of Sllod
dynamics.

The organization of this paper is as follows. In the next
section we introduce our model and setup for this study.
Section III, the main part of this paper, is devoted to exhibiting
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the results of our simulation. In Sec. III A we show the
phase diagrams for several densities, each of which has
various distinct steady phases. We find that the system has
a quasi-particle-hole symmetry. We also find that the steady
states depend on the initial condition of velocities of particles
when the dissipation is large. In Sec. III B we analyze the
velocity distribution function and try to reproduce it by solving
the Kramers equation with Coulombic friction under the
shear. In Secs. IV and V we discuss and summarize our
results, respectively. In Appendix A we study the pattern
formation of the dissipative LJ system under the physical
boundary condition. In Appendix B we illustrate the existence
of Coulombic friction near the interface of the plate-gases
coexistence phase. In Appendix C we demonstrate that the
viscous heating term near the interface is always positive. In
Appendix D we present a perturbative solution of the Kramers
equation. In Appendix E we show the detailed calculations for
each moment. In Appendix F we show the detailed calculations
of the velocity distribution function.

II. MOLECULAR-DYNAMICS SIMULATION

In this section we explain our model and setup of the MD
simulation for cohesive fine powders under a plane shear. We
introduce our model of cohesive fine powders in Sec. IT A and
explain our numerical setup in Sec. II B.

A. Model

We assume that the interaction between two cohesive fine
powders can be described by the LJ potential and an inelastic
force caused by collisions with finite relative speeds. The
explicit expression of the LJ potential is given by

U o 12 p 6
U-(rij) =4O —rip)| | — ) —(— , D
rij r,-j

with a step function ®(r) =1 and O for r > 0 and r < 0,
respectively, where ¢, o, and r;; are the well depth, the diameter
of the repulsive core, and the distance between the particles i
and j, respectively. Here we have introduced the cutoff length
ro = 3.00 to save the computational cost, i.e., UY@r) =0
for r > r.. To model the inelastic interaction, we introduce
a viscous force between two colliding particles as

FY™(ri;,v;) = —0O(0 — rij)(vij - Fij)Fyj, (2)
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FIG. 1. Relationship between the dimensionless dissipation rate
¢* and the coefficient of restitution e when the precollisional relative
velocities are given by 4./¢/mm (solid line) and 4./3¢ /2w m (dashed
line).

where ¢, #;; = r;j/rij, and v;; = v; — v; are the dissipation
rate, a unit vector parallel to r;; = r; — r;, and the relative
velocity between the particles, respectively. Here r, and v,
(¢ =1i,j) are, respectively, the position and velocity of the
particle. It should be noted that the range of inelastic interaction
is only limited within the distance o. From Egs. (1) and (2)
the force acting on the ith particle is given by

Fi==) ViUY0)+ Y Frivp). 0
J# J#

Our LJ model has the advantage of knowing the detailed
properties in equilibrium [44-49]. The normal restitution
coefficient e, defined as the ratio of postcollisional speed to
pre-collisional speed, depends on both the dissipation rate
¢ and incident speed. For instance, the particles are nearly
elastic, i.e., the restitution coefficient e = 0.994 for the case
of ¢ =/¢/mo? and the incident speed /¢/m, where m
is the mass of each colliding particle. Figure 1 plots the
restitution coefficient against the dimensionless dissipation
rate ¢* = ¢/mo?/e, where the incident speeds are given
by 4/e/mm and 4./3¢/2mwm, respectively. We restrict the
dissipation rate to small values in the range 0 < ¢* < 3.2.
Note that small and not too large inelasticity is necessary
to reproduce a steady coexistence phase between a dense
and a dilute region, which will be analyzed in detail in
this paper. Indeed, the system cannot reach a steady state
without inelasticity, while all particles are absorbed in a
big cluster when inelasticity is large. In this paper we use
three dimensionless parameters to characterize a system: the
dimensionless density n* = no? = No? /L3, the shear rate
y* = yp/mo?/e, and the dissipation rate * = ¢ /mo?/e.
It should be noted that the well depth ¢ is absorbed in the
dimensionless shear rate and the dissipation rate. Thus, we
may regard the control of two independent parameters as the
change of the well depth.

B. Setup

Figure 2 is a snapshot of our MD simulations for a uniformly
sheared state, where we randomly distribute N = 10* particles
in a cubic periodic box and control the number density n
by adjusting the linear system size L. We first equilibrate
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FIG. 2. (Color online) Snapshot of our simulation in a uniformly
sheared state. We apply a plane shear in the xy plane, that is, we
choose the y axis as the shear direction and the z axis as the velocity
gradient direction.

the system by performing the MD simulations with the
Weeks-Chandler-Andersen potential [68,69] during a time
interval 100 /mao2/e. We set the instance of the end of the
initial equilibration process as the origin of the time for
later discussion. Then we replace the interaction between the
particles by the truncated LJ potential (1) with the dissipation
force (2) under the Lees-Edwards boundary condition. As
shown in Appendix A, the results under the Lees-Edwards
boundary condition are almost equivalent to those under the
flat boundary. The time evolution of position r; = (x;,y;,z;) is
given by Newton’s equation of motion md’r; /dt*> = F;.

III. RESULTS

In this section we present the results of our MD simulations.
In Sec. IIT A we draw phase diagrams of the spatial structures
of cohesive fine powders. In Sec. III B we present the results
of velocity distribution functions and reproduce it by solving
a phenomenological model.

A. Phase diagram

Figure 3 displays typical patterns formed by the particles in
their steady states, which are characterized by the dimension-
less parameters n*, y*, and ¢* as listed in Table 1. Figure 4
shows phase diagrams in the steady states for (a) n* = 0.0904,
(b) n* = 0.156, (c) n* = 0.305, and (d) n* = 0.723. Three of
these phases, those in Figs. 3(a), 3(d), and 3(g), are similar
to those observed in a quasi-two-dimensional case with Sllod
dynamics [70]. If the shear is dominant, the system remains
in a uniformly sheared phase [Fig. 3(a)]. However, if the
viscous heating by the shear is comparable to the energy
dissipation, we find that a spherical droplet, a dense cylinder,
and a dense plate coexist for extremely dilute (n* = 0.0904),
dilute (n* = 0.156), and moderately dense (n* = 0.305) gases,
respectively [Figs. 3(b)-3(d)]. These three coexistence phases
are realized by the competition between the equilibrium phase
transition and the dynamic instability caused by inelastic
collisions. Furthermore, if the energy dissipation is dominant,
there are no gas particles in steady states [Figs. 3(e)-3(g)].
For an extremely-high-density case (n* = 0.723), we observe
an inverse cylinder, where the vacancy forms a hole passing
through the dense region along the y axis [Fig. 3(h)], and an
inverse droplet, where the shape of the vacancy is spherical
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FIG. 3. Steady patterns made of the particles under the plane
shear: (a) the uniformly sheared phase, (b) coexistence of a spherical
droplet and gas, (c) coexistence of a dense cylinder and gas, (d)
coexistence of a dense plate and gases, (e) an isolated spherical
droplet, (f) an isolated dense cylinder, (g) an isolated dense plate,
(h) an inverse cylinder, and (i) an inverse droplet, where the
corresponding dimensionless parameters n*, y*, and ¢* for (a)—(i)
are listed in Table I. We note that gas particles in (b)—(d) are drawn
smaller than the real size for visibility.

TABLE I. Dimensionless parameters used in Fig. 3.

Phase n* Py c*
(a) 0.305 107! 1072
(b) 0.0904 10793 10%3
(©) 0.156 10703 10°
(d) 0.305 10702 10°2
(e) 0.0904 1072 107!
® 0.156 107! 10707
(2) 0.305 107! 107!
(h) 0.723 1072 107!
@) 0.723 1072 1072
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FIG. 4. (Color online) Phase diagrams for various densities,
where the dimensionless densities are given by (a) n* = 0.0463, (b)
n* = 0.156, (c) n* = 0.305, and (d) n* = 0.305 for 1079 < y* <
107%! and (e) n* = 0.723. The spatial patterns corresponding to Figs.
3(a)-3(i) are represented by red closed circles [Fig. 3(a)], blue open
circle [Fig. 3(b)], blue closed up triangles [Fig. 3(c)], blue open
squares [Fig. 3(d)], black open diamond [Fig. 3(e)], black open up
triangle [Fig. 3(f)], black closed squares [Fig. 3(g)], black closed
down triangle [Fig. 3(h)], and black open down triangles Fig. 3(i),
respectively. The steady states represented by the crosses show
various patterns depending on the initial velocities of particles.

[Fig. 3(i)]. In our simulation, the role of particles in a dilute
system corresponds to that of vacancies in a dense system.
Thus, the system has a quasi-particle-hole symmetry.

Moreover, the shape of clusters depends on the initial
condition of the velocities of particles, even though a set of
parameters such as the density, the shear rate, the dissipation
rate, and the variance of the initial velocity distribution
function is identical when the dissipation is strong. We observe
a dense plate parallel to the xy plane [Fig. 5(a)], a dense plate
parallel to the yz plane [Fig. 5(b)], and a dense cylinder parallel
to the y axis [Fig. 5(c)] under the identical set of parameters.
This initial velocity dependence appears in the region far
from the coexistence phases, where the system evolves from
aggregates of many clusters (see Fig. 6).

B. Velocity distribution function

We also measure the velocity distribution function (VDF)
P(u;) (i = x,y,z), where u; is the velocity fluctuation around
the mean velocity field v; averaged over time and different
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FIG. 5. Typical examples of the initial configuration dependence
when we start from identical parameters (n* = 0.305, y* = 1073,
and ¢* = 1072): (a) a dense-plate cluster parallel to the xy plane, (b)
a dense-plate cluster parallel to the yz plane, and (c) a dense-cylinder
cluster parallel to the x axis.

samples in the steady state. For simplicity, we focus only
on the following three phases: the uniformly sheared phase
[Fig. 3(a)], the dense-plate coexistence phase [Fig. 3(d)], and
the dense-plate cluster phase [Fig. 3(g)]. In this paper we use
the width Az = o for bins in the z direction, while the bin
sizes in both the x and y directions are L to evaluate the
VDF from our MD simulations as in Fig. 7. It is remarkable
that the VDF is almost an isotropic Gaussian function for the
phases corresponding to Figs. 3(a) and 3(g) as well as deep

FIG. 6. Time evolution of configurations for n* = 0.0904, y* =
107", and ¢* = 10°3 at (a) t* = 0, (b) t* = 50, (c) t* = 100, and (d)
t* = 550.
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FIG. 7. (Color online) Snapshot of our simulation for the plate-
gas coexistence phase. Solid lines refer to the edges of a bin. The
binwise velocity distribution function is calculated in each bin, whose
width is Az = o. In addition, we introduce a new coordinate (y’,z’)
and 6, which is the angle between the y’ and y directions (in the
counterclockwise direction) for later analysis.

inside both the dense and the gas regions in the coexistence
phase in Fig. 3(d) [see Figs. 8(a)-8(d)]. This is because we are
interested in weak shear and weak dissipation cases without
the influence of gravity. On the other hand, the VDF is nearly
equal to an anisotropic exponential function [71,72] in the
vicinity of the interface between the dense and the gas regions
in the coexistence phase corresponding to Fig. 3(d) as in
Figs. 8(e)—8(g). We now explain the non-Gaussian feature near
the interface by a simple stochastic model of a tracer particle
subjected to Coulombic friction (the justification to use such a
model is explained in Appendix B). Let us consider a situation
in which a gas particle hits and slides on the wall formed
by the particles in the dense region (see Fig. 9). Because
the velocity gradient in the gas region is almost constant as
shown in Fig. 10, we may assume that a tracer particle in the
gas near the interface is affected by a plane shear. Moreover,
the tracer particle on a dense region may be influenced by
Coulombic friction (see Appendix B). When we assume that
the collisional force among gas particles can be written as the
Gaussian random noise &, the equations of motion of a tracer
particle at the position r may be given by

r_P )
_— = = e’
dt m vzey
dp P .
L R —ype , 5
yr u o1l D8y +§ ©)

where p is a peculiar momentum, which is defined by
Eq. (4). Here we have introduced the friction constant p
and the effective force F{y, which is a function of the activation
energy AE from the most stable trapped configuration of the
solid crystal (see Fig. 9). Here & is assumed to satisfy

() =0, (Ea(DEp(tN) = 2Dbapd(t — 1)), (6)

where (---) is the average over the distribution of the
random variable & and D is the diffusion coefficient in the
momentum space, which satisfies the fluctuation-dissipation
relation D = wFy/mT /(d + 1) in the d-dimensional system
with a temperature 7. A set of Langevin equations (4) and (5)
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FIG. 8. (Color online) Velocity distribution functions for various
phases: (a) the phase in Fig. 3(a), (b) the phase in Fig. 3(g), (c) in
the dense region of the phase in Fig. 3(d), (d) in the dilute region of
the phase in Fig. 3(d), (e) in the x direction at the interface of the
phase in Fig. 3(d), (f) in the y direction at the interface of the phase
in Fig. 3(d), and (g) in the z direction at the interface of the phase in
Fig. 3(d).

X

FIG. 9. Schematic picture of the configuration of a gas particle
(gray) and particles in the dense region (white). We assume that the
wall particles compose a face-centered-cubic lattice. We calculate
the interaction energy between the gas particle and the wall particles
whose distance is less than the cutoff length.
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FIG. 10. (Color online) Density and velocity profiles (in the y
direction) in the plate-gas coexistence phase (n* = 0.305, y* =
107°2, and ¢* = 10°2), where U3(2) = by(2)/m/oe.

can be converted into the Kramers equation [73-77]

| s

_9 (P 'A)
a1 or (mJ”’Zey

Ip |p| ap
where f = f(r,p,t) is the probability distribution function of
the tracer particle.

If we multiply Eq. (7) by p? and integrate over p, we
immediately obtain

3 2 _ i (p2p> o i 2
at(l?)— FP— )/zay<p>
= 2y{pyp:) — 2ukFo(p) + 2D, (8)

where p = (p; + p2)"/?. Because the third term on the right-
hand side of Eq. (8) represents the viscous heating, which is
always positive as shown in Eq. (C2), and the fourth term is
the loss of the energy due to friction, the balance among the
third, the fourth, and the fifth terms on right-hand side of
Eq. (8) produces a steady state. It should be noted that
the first and the second terms on right-hand side do not
contribute to the energy balance equation for the whole
system.

Here we only consider the steady distribution, i.e., df/dt =
0. Thus, Eq. (7) is reduced to

P ) 0
=Vf+yi—f—-yp.—f
m ay ap,
0 14
— uky— - (—f) — DA, f =0, )
ap \Ipl

where A, = 9°/dp} +3*/9p?. If there is neither a shear
nor a density gradient, we find that Eq. (9) has the steady
solution obeying an exponential distribution, i.e., f(p) =
(k2 /2m) exp(—kp), where we have introduced x = uFy/D.
We adopt the perturbative expression for f in terms of
€ = o /A, which is the ratio of the diameter o to the interface
width A, and the dimensionless shear rate y* as (see the
derivation in Appendix D)

Fp.0) = fO0p.0)+efOV(p,6) + v f0p.6). (10)
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We also adopt the expansions

FUD(p,0) = Z F£9 sin(no), (11)

n=1

with (i, j) = (0,1) and (1,0), where 6 is the angle between p
and the y axis (in the counterclockwise direction; see Fig. 7).
Then we can solve Eq. (9) perturbatively as

F.0) = fO0p)+ef{" P (pysind +y* £,V (p)sin 26,
(12)
where f©0, fO and "% are given, respectively, by
2
FOV(p) = o exp(—xp), (13)

.1 _i 2 exn(—
SO0y = = pG+ kp + 17PN exp(—p).  (14)

2

00 p* exp(—«p). (15)

87 Dty

Here we have introduced fy = (mo?/¢)'/? and A given by
Eq. (D10). It should be noted that the other terms, except for
those in Eqgs. (12)—(15), automatically disappear within the
linear approximation as in Eq. (10).

The second, the third, and the fourth moments in the y’
and 7' directions after the rotation by the angle of 6 in the
counterclockwise direction are given, respectively, by

2 \_ 3 S5y . 3
(P} )= ) (1 F 3p.3 sin 2(0 1/;)) , (16)
3 765€¢A
{py)=— sin(9 — ), (17)
3 765¢ A
(p2)=— cos(6 — ), (18)

. 45 Ty
Py = (1 F o7 Sin200 - 1,,)) (19)

as shown in Appendix E, where (p;’,’z,) with n =2 or 4
represents (pY,) for a minus sign and (p7,) for a plus sign,
respectively. To reproduce the node of the third moment in
the MD simulation, we phenomenologically introduce the
angle v and replace 6 by 6 — ¢ in Eqgs. (16)—(19). Here we
choose ¢ = 27/9 to fit the node position of the third moment.
We have not identified the reason why the direction of the
node deviates from the direction in which the VDF becomes
isotropic.

Now let us compare Eqs. (16)—(19) with the MD simulation
for a set of parameters (n*,y*,¢*) = (0.305,107°2,10°2).
From the density profile (Fig. 10) and the fitting to the
second moment and the amplitude of the third moment,
we obtain € >~ 0.20, u =~ 1.3//me, D = 5.2+/me&3 /o, and
A >~ 0.088/m>¢?. 1t is surprising that Egs. (16)—(19) can
approximately reproduce the simulation results as in Fig. 11
except for the node positions of the second and the fourth
moments.
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(p

FIG. 11. (Color online) Second, third, and fourth moments ob-
tained by MD simulations for p* = 0.305, y* = 107%2, and ¢* =
10°2 (circles show the y’ direction and triangles the z’ direction) and
those obtained by Egs. (16)—(19) (the solid line shows the y’ direction
and the dashed line the 7z’ direction).

For the explicit form of the VDF, we first convert f(p,0)
to f(py,p;) as in Appendix F:

, xp(—k + +Kp+k
Py, Pz 3 p(—kp 3,3 p p

x (pysinyr — p.cos )
+ —[( 2 pz) sin 2y — 2p, p; cos 21#]).

4D
(20

We obtain the peculiar velocity distribution function in each
direction by integrating Eq. (20) with respect to u, or
uy as

sz 00
P(uy) = ?/ du, exp(—mku)

(5

2.

LT )511121//) @

(3—|—mku + m*k? z)uy sin ¥

mK2 oo
P(u;) =—/ duy exp(—mxu)

< 22 2)uZ cos
+ rZDV (u? — u?) sin 2w) 22)

where u = (u + uz)l/ 2. These expressions semiquantitatively
reproduce the VDF observed in our MD simulations as in
Fig. 12.
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FIG. 12. (Color online) Velocity distribution functions in the y
direction (crosses) and z direction (pluses) obtained by our MD
simulations. The dashed lines in the left and right figures are the
results of Egs. (21) and (22), respectively.

IV. DISCUSSION

Let us discuss our results. In Sec. Il A we did not
discuss the time evolution of the granular temperature
T, = (m/3N) vazl [v; — V|>, where V =V(r,t) is the
ensemble average velocity field [78,79]. The granular
temperature abruptly decreases to zero in the cluster phases in
Figs. 3(e)-3(i) when a big cluster that absorbs all gas particles
appears [65]. To clarify the mechanism of abrupt change of
the temperature during clusterings, we will need to study the
more detailed dynamics.

Moreover, to discuss the phase boundary between the
uniformly sheared phase and the coexistence phases, we
may use the stability analysis of a set of hydrodynamic
equations coupled with the phase transition dynamics [80].
Once we establish the set of hydrodynamic equations, it is
straightforward to perform weakly nonlinear analysis for this
system [61,62,81]. It should be noted that the set of equations
may be available only near the phase boundary between the
uniformly sheared phase and the coexistence phases.

In Fig. 8 the VDF in a uniformly sheared phase is almost
Gaussian. This result seems to be inconsistent with the results
for ordinary gases under a uniform shear flow [82], which
show that the VDF differs from the Gaussian function even in
a uniformly sheared phase. In this study, however, we restrict
our interest to only small inelastic and weakly sheared cases.
This situation validates the small deviation from the Gaussian
function.

V. CONCLUSION

We studied cohesive fine powders under a plane shear by
controlling the density, the dimensionless shear rate, and the
dissipation rate. Depending on these parameters, we found
the existence of various distinct steady phases as in Fig. 3
and we have drawn the phase diagrams for several densities
as in Fig. 4. In addition, the shape of clusters depends on
the initial condition of velocities of particles as in Fig. 5,
when the dissipation is strong. We also found that there is
a quasi-particle-hole symmetry for the shape of clusters in
steady states with respect to the density.

We found that the velocity distribution functions near the
interface between the dense region and the gaslike dilute region
in the dense-plate coexistence phase deviate from the Gaussian
function as in Fig. 8. Introducing a stochastic model and its
corresponding Kramers equation (7), we obtain its perturbative
VDFs as in Egs. (21) and (22), which reproduce the semiquan-
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titative behavior of the VDF observed in MD simulations as in
Fig. 12. This result suggests that the motion of a gas particle
near the interface is subjected to Coulombic friction force
whose origin is the activation energy in the dense region.
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APPENDIX A: RESULTS OF THE PHYSICAL BOUNDARY
CONDITION

In this appendix we present the results of our simulations
under the flat boundary condition, which is one of the typical
physical boundaries to clarify the influence of the boundary
condition. We prepare flat walls at z = +L/2, moving at
velocities £y L/2 in the y direction, respectively. When a
particle with a velocity (vy,vy,v;) hits the walls at z = +=L/2,
the velocity changes as (vy, = yL/2 —v,, —v;) after the
collision, respectively. The phase diagram of the system
for the physical boundary for n* = 0.305 is presented in
Fig. 13. We have obtained three steady phases: the uniformly
sheared phase, the coexistence phase between the dense-plate
and gas regions, and the dense-plate cluster phase. The
phase diagram is almost the same as the corresponding one
under the Lees-Edwards boundary condition [see Fig. 4(d)].
This can be understood as follows: If two particles at the
symmetric positions with respect to the origin of the system
simultaneously collide with the walls at z = L/2 and —L/2,
the pair of velocities after collisions is the same as that
after passing across the boundaries at z = L /2 for the
system under the Lees-Edwards boundary condition. This

n u ]
100.2 | m B B
n O
., 100 m °
\_p [ | [ ) [ )
102 Fe,/ 11 _® e e
e o o
10704 e o o o-
® [ ] L J L ®
10-0.5 10-0.3 10-0 1
*

FIG. 13. (Color online) Phase diagram under the flat boundary
condition for n* = 0.305: a uniformly sheared state [red solid circles,
Fig. 3(a)], the coexistence of a dense plate and gases [blue open
squares, Fig. 3(d)], and an isolated dense plate [black solid squares,
Fig. 3(2)].
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is realized after the averaging over the collisions. Thus,
the flat boundary condition is essentially equivalent to the
Lees-Edwards boundary condition.

APPENDIX B: CALCULATION OF THE COULOMBIC
FRICTION CONSTANT

In this appendix we try to illustrate the existence of the
Coulombic friction force for the motion of a tracer particle
near the interface. Let us consider a situation that a gas
particle hits and slides on the wall formed by the particles
in the dense region (see Fig. 9). If the kinetic energy of
the gas particle is less than the potential energy formed by
the particles in the dense region, it should be trapped in the
potential well. Therefore, the motion of the gas particle is re-
stricted near the interface. In this case, we can write the N-body
distribution function near the interface p(I',#) by using the
distribution function in the equilibrium system as [67,83—85]

,O(I'J)=peq(r)exp</ dTQ(—TT,)?z,E)), (B1)
0

where ' = {r;, pi}lN: 1> Peq(I') is the equilibrium distribution
function at time ¢t = 0, and
Q(t,r,)/,g) = - IBJ./VO—,VZ(tvr"}./9§)
—2BR.T,y,0) — A, T,y,0), (B2)
with

Coon PiaDip AU (r})
Uaﬂ(f,r,)/,C)—Z T_;ri,aw
i J#i

+Zri,angs(rij,vij) ) (B3)
J#i

R.T,y,0) =%Z®(O_rij)(vij Fi) (B4)

i#]j
AT, p,0) =— 52@(0 — i), (B5)
m =
i#]
FyS i) == €0 — (v - Fip™2E. (B6)

ij

Here we have introduced the inverse granular temperature
B =1/T and the local shear rate y; in the interface region.
If the dissipation is small and the shear rate is not large,
we may assume that Q(—t) =~ —By Vo' (—1), where o)1
is the mean-field yz component of the stress tensor. We
also assume that the stress tensor decays exponentially
as O‘MF( t)"’GMF(O)eXp(—|l‘|/‘C0) [67], where 1 is the
relaxatlon time of the stress tensor. From these relationships
we may use the approximate expression

p(T, r)~]‘[

x exp [ — BroyVio) (0)], (B7)

where HMF and AE; are, respectively, the mean-field
Hamiltonian per particle in the interface and the energy

= exp[—B(HM — AE))]
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fluctuation of the particle i/, which may be the activation
energy from the local trap. Here N; and V; are, respectively, the
number of particles and the volume in the interface region and
ZMF = [dr dpexp(—BHMF). There are two characteristic
time scales y~' and )'/,_' corresponding to the uniform
region and the interface between dense and dilute regions.
Because the time scale is obtained from the average over the
distribution function (B7) or the local mean-field distribution,
the relationship between y ~! and ))l_l is expected to be

v =y exp {B[AE — op Vo) ()]}, (BY)

where we have eliminated the subscript i for the particle. This
equation can be rewritten as

O.MF( ) —

| .
(AE +TIn ﬁ) . (B9)
Vi 14

Ton Vi

Therefore, we may estimate Coulombic friction constant as

oMF (0 1 Y
p=20_ (AE+T1nﬁ>,
P oV PV y

where P ~090s/03, V,~4303 AE ~3.5s, and
v =~ 0.83(e/ma?)'/? at the interface for a set of parameters
(n*,y*,¢*) = (0.305,107%2,10°2). In this expression we
cannot determine the relaxation time 7y from the simulation,
which is estimated to reproduce the average value of the
second moment with the aid of Eq. (16).

(B10)

APPENDIX C: DETAILED CALCULATION OF THE
VISCOUS HEATING TERM

In this appendix let us calculate the average of the viscous
heating term by using the distribution function near the
interface. From Eq. (B7) we can rewrite the distribution
function with the aid of Eq. (B3) as

N
1 D; pupzz
p(r,r)~§Hexp[—ﬁ (2 + Ty V )] (Cl)

where Z = f]—LN:’l dr;dp; expl—B(p?/2m + 1y Vipiypi./
m)]. Then (p, p.) is given by

(pypz> =/drpi,ypi,zp(rvt)

/ dply/ dpi . piyPi.:
- a—

0 2
:/ dp/ dép® sin 6 cos O
0 0

2 7V,
xexp[—ﬂ(%—}—%pzsinecos@)]
m m
T (% Bp* BroyiVi
__T dn 3 _PP Y, 2) .
2/0 pp CXP( 2m> 1( m p

(C2)

where I1(x) is the modified Bessel function of the first kind
[86]. Because I;(x) is positive for x > 0, Eq. (C2) ensures that
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the viscous heating term —y (p, p.) is always positive near the
interface.

APPENDIX D: PERTURBATION SOLUTION OF THE
KRAMERS EQUATION

In this appendix let us solve the Kramers equation (9)
perturbatively to obtain the steady VDF. Later we compare
this solution with the result of MD simulations.

First, we adopt the following three assumptions. The first
assumption is that the distribution function is independent of
both x and y, the coordinates horizontal to the interface. We
also assume that the distribution function f depends on z,
vertical to the interface, through the density and the granular
temperature:

of _dfdn  9f dT
9z dndz AT dz’

Second, we assume that the changes of the density and the
granular temperature near the interface can be characterized
by the interface width A as

dn N no dT T()

dz ~ A7 dz A
where ng =n(zo) = (n; +n,)/2 and Ty = T(z0) = (T; +
Tg)/2. Here n; and T; are the density and the granular
temperature in the dense region and n, and T, are those in
the dilute region, respectively. Third, we also assume that the
interface width A is much longer than the diameter of the
particles 0, 1i.e., ¢ = o /) < 1. From these assumptions df/0dz
may be rewritten as

8f no 0 T() 0
—~—€|l— - ——= ] f
0z o on o oT

(D)

, (D2)

)

(D3)

To solve Eq. (9) we adopt the perturbative expression (10).
Equation (9) thus reduces to the following three equations: For
the zeroth order,

d
—— - ( f(() 0)) pf((),()) — O, (D4)
ap \lpl
for the first order of €,
Pz @i _ TO f(o 0)
mD\o an o T
d
- ( e ”) —ApfOV =0,  (D5)
“ap "\ipl
and for the first order of y*,
af 00 d
_pTT 2 ( £ °>> — A, f19 =0, (D6)
D dpy ap \lpl
The solution of Eq. (D4) is given by
fO0 = Crexp(~kp) + Crexp(—kp)Eilkp), (D7)
where Fi(x) is the exponential integral Ei(x) =

— [Z(e7'/t)dt [86] and C; and C; are the normalization
constants. Here we set C, =0 because FEi(x) becomes
infinite at x = 0 and C; = «?/27 to satisfy the normalization
condition without the shear and the density gradient. Using
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Eq. (D7), Egs. (D5) and (D6) can be represented in polar
coordinates as

2
A <p2 - Xp) FO9sing
1 0 92 19 1 9
_ L9 con o 19 .1
K(p+8p>f +<8p2+p8p+ 2892>f
(D8)
and
£ pf0O 20
2Dty
1 2 193 1 9
=K< )f(lo) ( + _I_ > 2) f(l,o),
P ap> pop p*ao
(D9)
where we have introduced A as
0 T, 0
Az 0 S fo 9% (D10)
moDon moDOT

To solve Egs. (D8) and (D9) we adopt the expansions for

FED(p,6) =32 £ (pysin(nd) with (i,j) = (0,1) and
(1,0) [77]. Equation (D8) for each n reduces to the following
equations: Forn = 1,

Axc? 2
o P’ —ZP exp(—«kp)
T

=K\ fio+ +———-=hn"
<p 8p> ! ap2 " poap  p*) 7!

(D11)
and forn # 1,
1 2 19 n?
() (o)
ap ap>  pdp p?
(D12)

The solutions of Egs. (D11) and (D12) are given, respectively,
by

C 1+
===t zKp
Kk=p
A 64 6kp +3k2p> +i3p> + it pt
- a K3p exp(_Kp)
(D13)
and

FOU =1 (kp)" exp(—kp)U (n,2n + 1,kp)
+ an(KP)n eXP(_KP)LZ_nn(KP)

for n # 1, where U(a,b,x) and LZ(x) are, respectively, the
confluent hypergeometric function and Laguerre’s bipoly-
nomial [86] and the normalization constants C,; and C,,
(n=1,2,...) will be determined later. Similarly, Eq. (D9)
for each n reduces to the following equations: For n = 2,

K3
47 Dty
1 (1,0 32 10 4 (1,0
- + +—— = =)
“ ( 3P> h ap2 " poap p?)7?

(D15)

(D14)

pexp(—kp)
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and for n # 2,
19 2 19 n?
0=K<—+—)fn(l'0)+<—+————>
p op ap>  pdp p?

The solutions of Egs. (D15) and (D16) are given, respectively,
by

3—«p 6 + dkp + k% p?
2(1’0) =Cn——5— +Cu T exp(—kp)
p K'p
1 72 +48kp + 12k p? — k4 p* )
+ 8w Dry kZp? exp(—kp
(D17)
and

SN = Cualiep)" exp(—kp)U (n,2n + 1,kp)

+ Cualiep)' exp(—kp)L¥,(kp)  (DI8)

for n # 2, where the normalization constants C,3 and C,4
(n =1,2,...) will be determined later.

Here let us determine the normalization constants
Cuts...,Cpa (n =1,2,...). The distributions £ and -
should be finite at p = 0 and approach zero for large p.
Therefore, we obtain

Cnu =0, C12=i, Ci=0, Cy=-— 3 ,
TK ; 27 Dty

Ci=0, Cn=0 (n#1D,

Ci3=0, Cu=0 (n#2). (D19)

From these results we obtain

F(.0) = fOO 4 efOVsing + p* £"Psin20,  (D20)

where f©0, £ and " are given, respectively, by
2

FOOp) = = exp(—rp), (D21)
2T
on, A 2 2
Ji(p) = —apa +«xp+x p)exp(—«p), (D22)
F990) = = 2 exp(—kp). (D23)
2 87 Dty

APPENDIX E: DETAILED CALCULATIONS
OF VARIOUS MOMENTS

In this appendix we calculate the nth moments of p,s and p./
using the distribution function obtained in Appendix D. From
the definition of the moment, the nth moment of an arbitrary
function G(p) is given by

(G") = /dp G"(p.o)f(p.9). (E1)

We rotate the coordinate the coordinate (y,z) by 6 counter-
clockwise and introduce the new Cartesian coordinate (y’,z’)
as in Fig. 7. From this definition we obtain the nth moments
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of py:Forn =2,
00 2
(py) = / dp / dep® cos* (¢ — 0)
0 0
x [FO0p) + ef P (pysing + y* £10(p) sin 2]

3 (1= Ginog (E2)
=—(1- sin ;
K2 2Dk?

forn =3,

o0 2
(py) = / dp f dop* cos* (¢ — 0)
0 0

x [£O0p) + i V(p)sing + 7 f3V(p) sin 2]

765¢A .
=— 5 sin6; (E3)
K

and for n = 4,

00 2
(p}) = /0 dp /O dep’ cos*(p — 6)

x [fOOp) + ef{"P(p)sing + p* £3V(p) sin 2¢ ]

45 s

Similarly, we can calculate the each moment of p, so that we
obtain Egs. (16)—(19).

APPENDIX F: VELOCITY DISTRIBUTION FUNCTION
FOR EACH DIRECTION

In this appendix we derive the velocity distribution function
in the Cartesian coordinate (y,z) and calculate the velocity
distribution functions in the y and z directions. The velocity
distribution function in polar coordinates (p,f) is given by
Eq. (12), where we replace 6 by 6 — ¢ as in Eqgs. (16)—
(19), which can be converted into the form of the Cartesian
coordinate as

K2

€A ) 2
f(py,p:) =5=exp(—kp)| 1 — 75 pB +kp +Kk"p)
2 33
X sin(@ — ¥) — A p’sin2(0 — ¥)
4D
K’ €A 2 2
=—exp(—«p)| 1+ =B +«kp+Kp’)
2 3k3
x (pysinyr — p,cosyr)

+ %[(p; — p2)sin2y — 2p, p; cos 21p]>,
(F1)

where p = /p2 + p2. Next let us calculate the velocity

distribution functions in the y and z directions. In this paper
we focus on the VDF for the fluctuation velocity, which is
defined by the deviation from the average velocity. Therefore,
we can replace py and p, by mu, and mu; in Eq. (F1). The
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velocity distribution function in the y direction P(u,) is given
by integrating Eq. (F1) with respect to u, as

P(uy) = /00 d(mu;) f (muy,mu)

o0

I’l’lK2 oo

= du, exp(— mxu)(

) (3 + mku

+ m’k uz)uy sin Y + 4_Dy( — ug) sin21ﬁ),
(F2)
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where u = /u? + u?2. Similarly, we can calculate the velocity

distribution function in the z direction P(p;) as

P(u;) 2/00 d(muy) f (muy,mu_)

o0
mi? [* J ( ) A(3 N
=— uy exp(—mku - mKu
2t ) P 33
+m?k’u J/( uz)sin21p
4D :
(F3)
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