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For a random walk on a confined one-dimensional domain, we consider mean first-passage times (MFPT) in
the presence of a mobile trap. The question we address is whether a mobile trap can improve capture times over
a stationary trap. We consider two scenarios: a randomly moving trap and an oscillating trap. In both cases, we
find that a stationary trap actually performs better (in terms of reducing expected capture time) than a very slowly
moving trap; however, a trap moving sufficiently fast performs better than a stationary trap. We explicitly compute
the thresholds that separate the two regimes. In addition, we find a surprising relation between the oscillating
trap problem and a moving-sink problem that describes reduced dynamics of a single spike in a certain regime of
the Gray-Scott model. Namely, the above-mentioned threshold corresponds precisely to a Hopf bifurcation that
induces oscillatory motion in the location of the spike. We use this correspondence to prove the uniqueness of
the Hopf bifurcation.
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I. INTRODUCTION

Numerous problems in nature can be formulated in terms
of expected escape time of Brownian particles in the presence
of traps. This escape time is often referred to as the mean
first-passage time (MFPT). For example, a cell is regulated
by chemical reactions involving a small number of signaling
molecules that have to find their targets in a complex and
crowded environment [1]. Further examples include oxygen
transport in muscle tissue [2], cold atoms in optical traps [3],
molecular self-assembly [4], optimal search strategies [5,6],
and proteins searching for target sequences on a DNA
strand [7–12].

In a recent review of MFPT processes on confined do-
mains [12], it was remarked that while the case of stationary
traps is well studied, MFPT problems with mobile traps in
confined domains still remain largely unexplored. It is only
recently that attention has shifted to mobile traps [13–16],
which is not only more realistic in many situations, but
can significantly alter the system’s behavior. In this paper,
we formulate two MFPT problems with a mobile trap on a
confined one-dimensional domain and study the effect of trap
motion on the average MFPT.

Mobile traps occur naturally in a variety of scenarios.
An early example was introduced in [17] for the annihila-
tion reaction A + B → 0, motivated by the annihilation of
mobile monopole-antimonopole pairs in the early universe.
This general model may also describe chemical kinetics
in diffusion-limited regimes [18,19] where reaction rates
are limited by the encounter rate of the reactants, and
collision-induced quenching of excited-state particles [20].
Other examples that fit into the mobile traps framework
include ligands binding to a receptor on a nonstationary
cell, and disease spread [13], where susceptible walkers
become infected upon encounter with infected walkers.
See [21] and references therein for applications of moving
traps to population genetics, neurophysiology, and statis-
tics. Perhaps the most common example is that in which
predators search for mobile prey [22–26]. Related MFPT
problems with stationary traps involve random walks in
the presence of time-constant [27,28] and time-fluctuating
fields [29–34].

The following scenario illustrates the types of questions
that the prototypical MFPT problems below seek to address.
Consider a child in a mall that becomes separated from
her father. Unable to remember where she initially became
separated, the girl performs a random walk in an attempt to
locate her father. The question then becomes what the father
should do in order to find his daughter in the shortest amount
of time. While he might instinctively move about in an active
search for the child, it may in fact be more beneficial to remain
stationary. The answer depends on the father’s initial location
relative to physical boundaries, how fast he moves in relation
to the daughter, and what type of motion he follows.

On an infinite domain, it was claimed in [35] for continuous
space and proven in [36,37] for a discrete lattice that a mobile
target in the presence of randomly distributed Brownian traps is
always expected to be captured more quickly than a stationary
target. In our prototypical examples below, we show that finite
domain effects can cause motion to delay expected capture
time when the motion is too slow. We note that, unlike [35]
and [36], we reverse the role of target and traps so that we
compare average capture times in the presence of a stationary
versus mobile trap.

We now state the MFPT problems that we analyze below.
We consider a particle undergoing a random walk inside
an isolated one-dimensional interval, while the trap moves
according to the following mechanisms: (A) it undergoes a
time-oscillatory motion about the center of the domain with
a prescribed frequency and amplitude and (B) a random walk
with prescribed diffusion rate. In each problem, we formulate
an associated boundary-value problem for the MFPT and
compute asymptotic solutions to calculate critical trap speeds
below which a mobile trap leads to longer capture times. In
a manner analogous to that employed in [13,25,38], we show
below that the MFPT associated with these two scenarios may
be obtained by solving the following two systems.

Problem A. Randomly moving particle with an oscillating
trap and reflective end points:

uxx + ut = −1, ux(0,t) = 0 = ux(1,t),

u(x,0) = u(x,2π/ω), (1.1a)

u(ξ (t),t) = 0, ξ (t) = 1
2 + ε sin(ωt). (1.1b)
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This problem corresponds to a backwards heat equation. Here,
u(x,t) denotes the dimensionless mean first-passage time (i.e.,
the expected time to reach the trap) for a particle located at
space location x ∈ (0,1) at time t within the period of the trap.
The trap is assumed to oscillate around the center x = 1/2
with frequency ω and amplitude ε, while the end points at x =
0,1 are reflective. For a random walker whose initial location
and start time are uniformly distributed over x ∈ (0,1) and
t ∈ (0,2π/ω), respectively, the expected MFPT is given by

ū = ω

2π

∫ 2π
ω

0

∫ 1

0
u(x,t) dx dt. (1.2)

Surprisingly, this problem is also intimately connected to
oscillatory spike motion in certain reaction-diffusion systems
such as the Gray-Scott model [39–43]. This connection will
be studied below in Problem C.

Problem B. Randomly moving particle and trap:

uxx + a2uyy = −1, (x,y) ∈ (0,1)2, (1.3a)

∂nu = 0 for (x,y) ∈ ∂((0,1)2),

u = 0 when x = y. (1.3b)

Here, u(x,y) is the dimensionless expected time for a particle
starting at location x to hit the trap starting at location y. The
constant a2 is the ratio of trap and particle diffusivities. For a
randomly moving particle whose starting location is uniformly
distributed on (0,1), the expected MFPT is given by

ū(y0; a) =
∫ 1

0
u(x,y0)dx. (1.4)

In (1.4), y0 is the initial location of the randomly diffusing trap.
The dependence of ū in (1.4) on a is through that of u. We
emphasize that the diffusivities of the two random walkers may
be different (i.e., a �= 1). For a = 1, an exact solution of (1.3)
may be sought using the method of images. This approach
was taken in [44], though instead of solving (1.3) directly, the
MFPT was obtained from the solution of the diffusion equation
on the same domain with the same boundary conditions.

Finally, we show that Problem A is intimately connected to
the following problem arising in reaction-diffusion models:

Problem C. A moving sink problem arising from reduced
dynamics of an interior spike in the Gray-Scott model:

ut = uxx + 1 − δ(ξ (t) − x),

ux(0,t) = 0 = ux(1,t), (1.5a)

ξ ′(t) = β(ux(ξ (t)−,t) + ux(ξ (t)+,t)). (1.5b)

Here, ξ (t) represents the location of the spike as a function of
(rescaled) time. In Appendix A, we show how (1.5) is obtained
from a certain regime of the Gray-Scott model. All quantities
in Problems A, B, and C are dimensionless.

We now summarize our results. For Problem A, in the limit
of small amplitude ε � 1, we calculate a critical frequency
ωc such that a trap with frequency ω > ωc performs more
optimally (in terms of reducing the average MFPT ū) than a
stationary trap. Conversely, for ω < ωc, trap motion impairs
capture time. An algebraic equation for ωc is given in Sec. II.
For Problem B, we show that the comparison depends both
on the initial location of the trap as well as its speed relative

to that of the particle (denoted by a). In particular, for a trap
initially located at the center of the domain, we find that the
moving trap is more optimal when a > ac ≈ 0.53. In both
of these problems, the existence of a critical trap mobility
may be inferred by a simple argument. When the trap is
stationary (ω = a = 0), symmetry dictates that the optimal
trap location be at the center of the domain. All other locations
are suboptimal. When the trap is barely mobile (ω,a � 1),
it spends almost all of its time remaining nearly stationary at
suboptimal locations. The average MFPT in this case must be
larger in comparison to when the trap remains stationary at
its optimal location. However, in the limit of high mobility
(ω,a � 1), the trap may be thought of as everywhere at once,
including at the optimal stationary location. In this case, the
average MFPT would clearly be smaller in comparison to the
stationary trap. There must then exist a “critical mobility” for
which the average MFPT’s associated with the stationary and
mobile traps are equal.

In Problem B, we also investigate how a mobile trap
compares to a stationary trap not located optimally at the center
of the domain. In the limit of slow trap diffusivity (a � 1), we
find that a stationary trap is more optimal as long as its location
y is not “too close” to the boundaries; that is, provided that
y ∈ (yc,1 − yc) where yc = O(a lna). The precise value of yc

is given in Sec. III.
By analogy to [22], we refer to Problem B as the “drunken

robber, drunken cop” problem: both robber and cop are drunk
(at different levels of intoxication), and the more they drink,
the faster they are assumed to stagger about. Referring to (1.3)
where x and y denote the location of the robber and cop,
respectively, the case of small a that we study analytically
below corresponds to a “drunk robber and tipsy cop.” Roughly
speaking, the conclusion is that it is more optimal for the cop
to be sober than to be slightly tipsy (as long as he is starting at
an “advantageous” location not too close to the boundaries),
but it is better still for the cop to be highly inebriated (large a).1

Finally, we show the following unexpected relationship
between Problems A and C. For small β in (1.5), one
can show that ξ → 1/2 at t → ∞. This equilibrium state
becomes unstable due to a Hopf bifurcation as β is increased
past some βHopf. At the Hopf bifurcation, we show that the
oscillation frequency of ξ is precisely the critical frequency
ωc from Problem A. Furthermore, we exploit this connection
to rigorously prove both the existence and uniqueness of βHopf.
This appears to be a general phenomenon; for example, this
equivalence (as well as existence and uniqueness) still holds if
uxx is replaced by uxx − μu in both (1.1) and (1.5).

II. OSCILLATORY TRAP

Let us now derive (1.1). Consider a trap that is oscillating
around the center of the domain with a given frequency and a
small amplitude. We assume insulating boundary conditions.
This situation is shown schematically in Fig. 1(a). In contrast
to cases with stationary traps (see [12] and references therein),
the MFPT associated with a location x changes in time due to

1This assumes, rather unrealistically, that the speed of the random
walk increases with increased inebriation.
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FIG. 1. (a) Particle undergoing an unbiased random walk with a reflective left and right boundary and a mobile trap oscillating about the
center of the domain. (b) The equivalent two-dimensional random walk with deterministic drift upwards with unit velocity. The thick gray
vertical lines at x = 0 and x = 1 represent reflective walls. The domain is periodic in t , so a particle exiting through the top reenters at the
bottom.

the motion of the trap. The state of this system may be defined
in terms of two variables: the location of the particle and the
location of the trap. Each time step, the particle takes one step
either to the left or to the right, while the trap location ξ (t)
moves according to the deterministic function ξ (t) = 1/2 +
ε sin(ωt). This suggests that the one-dimensional random walk
depicted in Fig. 1(a) may be mapped to the equivalent two-
dimensional random walk shown in Fig. 1(b). Here, the time
(vertical) axis assumes the role of the second spatial dimension.
The two thick vertical gray lines at x = 0 and x = 1 represent
the reflective walls, while the 2π/ω periodicity in the vertical t
axis (horizontal dashed lines) is a consequence of periodic trap
dynamics. The mobile trap is mapped to an interior absorbing
segment indicated by the solid black curve that divides the
domain into a left and right half. Since particles can only stay
in one-half for their entire lifetime, the mobile trap acts as a
spatially dependent absorbing boundary when only the left or
right half of the domain is considered (see below).

For a two-dimensional walk with random dynamics in the
horizontal x direction and deterministic drift in the positive t

direction, a static equation for the MFPT u(x,t) associated with
location x at time t may be readily derived. In analogy to the
derivation of [38] for a discrete random walk with stationary
traps, we write

u(x,t) = 1
2 [u(x + 	x,t + 	t) +u(x − 	x,t + 	t)] +	t.

(2.1)

Equation (2.1) states that the MFPT of a particle located at
location (x,t) in the two-dimensional domain is the average of
the MFPT associated with the two locations that the particle
will next occupy with equal probability, plus the 	t time that
it takes to move there. Expanding the right-hand side of (2.1)
for small 	x and 	t , and defining D ≡ 	x2/(2	t), we obtain
the following backward-time diffusion equation:

Duxx + ut = −1, ux(0,t) = 0 = ux(1,t),

u(x,0) = u(x,2π/ω), (2.2a)

u(ξ (t),t) = 0, ξ (t) = 1
2 + ε sin(ωt). (2.2b)

See [21] for an alternate derivation of (2.2a), and also for higher
moments of first passage times. The constant D in (2.2a) can
be scaled to unity without loss of generality, which leads to
the boundary-value problem in (1.1). We remark that (2.1) is
in contrast to a regular diffusive process, for which the state at
(x,t) is an average of states at an earlier time t − 	t . This is
due to the fact that particles captured by the interior absorbing
segment in Fig. 1(b) have left the system and thus cannot pass
information in the direction of drift; instead, information from
the absorbing segment propagates in the direction opposite the
drift.

The solution of (1.1) may be computed numerically
by solving the associated forward-time diffusion equation
[obtained by time reversing t → −t in (1.1)], which quickly
converges to a 2π/ω time-periodic solution. Alternatively,
one can also solve the boundary-value problem associated
with the t-periodic boundary conditions in (1.1). We adopt
the latter approach below, using FlexPDE software2 to solve
the associated boundary-value problem. In Figs. 2(a) and 2(b),
we compare the MFPT as given by the PDE solution of (1.1)
with ε = 0.2 and ω = 80 versus that given by Monte Carlo
simulations. The figures depict the MFPT associated with each
location in space, at a given instant during the cycle of the
trap dynamics. While the trap is located near x = 0.5 in both
figures, the MFPT differs greatly due to the direction of motion
of the trap. In particular, the MFPT is high directly behind the
trap, and low directly in front of it. Figure 2(c) shows the
corresponding space-time plot.

The Monte Carlo results were generated as follows. At a
given time tm ∈ [0,T ) during the cycle of trap, 10 000 particles
are placed at a particular point in space xn. Each particle
undergoes a random walk and the time to capture is recorded
for each. The average of the capture times is then recorded as
the MFPT associated with location xn at time tm in the trap’s
cycle. Repeating over each location of the discretized domain,
we generate a figure of the type in Figs. 2(a) and 2(b). The

2FlexPDE is a general-purpose finite element method software; see
http://www.pdesolutions.com
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FIG. 2. (Color online) Comparison of MFPT as given by the PDE solution of (1.1) with ε = 0.2 and ω = 80 (dashed) vs that given by
Monte Carlo simulations (solid). (a) MFPT when the trap is located near x = 0.5 and moving leftward. (b) MFPT when the trap is located near
x = 0.5 and moving rightward. Note that the MFPT is high (low) directly behind (in front of) the trap. (c) Space-time representation of MFPT
from a numerical solution of (1.1). The increments on the vertical axis are in terms of 2π/ω.

procedure is then repeated for multiple values of tm to capture
the time dependence.

A. Critical oscillation frequency

As stated in the Introduction, our goal is to determine the
threshold frequency ωc for which a trap oscillating about x =
1/2 with amplitude ε � 1 and frequency ω > ωc performs
more optimally than a stationary trap located at x = 1/2. To
facilitate analysis, we exploit the left-right symmetry [see
Fig. 2(c)] and consider only the left half of the domain
0 < x < 1/2 + ε sin ωt , 0 < t < 2π/ω. On this half-domain,
the interior absorbing segment in Fig. 1(b) acts as an absorbing
Dirichlet boundary. The expression ū in (1.2) for the average
MFPT then becomes

ū = ω

π

∫ 2π
ω

0

∫ 1/2+ε sin(ωt)

0
u(x,t)dx dt. (2.3)

To find ωc in the limit of small ε, we treat (1.1) as a
perturbed boundary problem and compute a three-term regular
asymptotic expansion for u. That is, we expand u(x,t) as

u(x,t) = u0(x) + εu1(x,t) + ε2u2(x,t). (2.4)

In (2.4),

u0(x) = −x2/2 + 1/8 (2.5)

is the time-independent MFPT associated with a stationary
trap with spatially averaged MFPT ū0 = 1/12. With (2.4), ū

in (2.3) has the small-ε expansion,

ū ∼ 1

12
+ ε

ω

π

∫ 2π
ω

0

∫ 1/2

0
u1(x,t)dx dt

+ ε2 ω

π

[ ∫ 2π
ω

0

∫ 1/2

0
u2(x,t)dx dt

+
∫ 2π

ω

0
u1(1/2,t) sin ωt dt − 1

8

]
. (2.6)

We show below that the O(ε) term in (2.6) evaluates to zero.
The condition on the leading-order threshold value of ωc must
then occur when the O(ε2) term is also zero.

To obtain this condition, we must calculate u1 and u2

in (2.6). The insulating condition at x = 0 and the periodicity
condition in t remain unchanged for ui , i = 0,1,2. For the
Dirichlet condition at x = ξ (t) in (1.1b), we expand for small
ε and collect powers to obtain the following boundary-value
problems:

u0xx + 1 = 0, u0x(0) = 0, u0(1/2) = 0, (2.7a)

u1xx + u1t = 0, u1x(0,t) = 0,

u1(1/2,t) = − sin(ωt)u0x(1/2), (2.7b)

u1(x,0) = u1(x,2π/ω),

u2xx + u2t = 0, u2x(0,t) = 0,

u2(1/2,t) = − sin(ωt)u1x − u0xx(1/2) sin2(ωt)/2,

u2(x,0) = u2(x,2π/ω). (2.7c)

The solution for (2.7a) is given by (2.5), while solving for u1

in (2.7b) yields

u1 = eiωt cosh(
√−iωx)

4i cosh(
√−iω/2)

− e−iωt cosh(
√

iωx)

4i cosh(
√

iω/2)
. (2.8)

Next, Eq. (2.8) with (2.7c) suggests that u2 in (2.7c) has the
form

u2(x,t) = 1

4
− 1

8

√
iω tanh(

√
iω/2)

− 1

8

√−iω tanh(
√−iω/2)

+p(x)ei2ωt + q(x)e−i2ωt . (2.9)

Since the t integral in (2.6) of the oscillatory modes in (2.9)
evaluate to zero, we find that

ū = 1

12
+ ε2

8
h(ω), (2.10a)

where

h(ω) ≡ 4 −
√

iω tanh(
√

iω/2) − √−iω tanh(
√−iω/2).

(2.10b)
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FIG. 3. (a) Comparison between numerically computed values of the quantity ε−2(ū − ū0) (circles) and the asymptotic result given by (2.10)
(solid curve). Here, ε = 0.01. Note the axis crossing near ω ≈ ωc. (b) Critical oscillation frequency ωc for a range of oscillation amplitude ε.
Observe that for ε small, ωc ∼ 9.6017.

We show below that h(ω) in (2.10b) is monotonic decreasing
and has a unique zero. We therefore conclude that the average
MFPT is larger when the trap oscillates with small amplitude
(0 < ε � 1) than when it remains stationary (ε = 0) when
0 < ω < ωc, where ωc ≈ 9.6017 satisfies

h(ωc) = 0. (2.11)

In particular, the most detrimental scenario is when the
oscillation is vanishingly slow, which gives ū ∼ 1/12 + ε2/2
when ω → 0 in (2.10). Conversely, the average MFPT is
lower in the presence of an oscillating trap when ω > ωc.
In Fig. 3(a), we show a favorable comparison between
numerically computed values of the quantity ε−2(ū − 1/12)
(circles) and the asymptotic result given by (2.10) (solid curve).
The numerical results were obtained from the FlexPDE finite
element solver. We note that both plots cross the horizontal
axis near ω ≈ ωc.

To show that the positive root to h(ω) exists and is
unique, we find an alternative solution to (1.1) by way of
an eigenfunction expansion in space. While the analysis is
less convenient, it leads to the equivalent and more useful
expression for h(ω),

h(ω) = 8

{
1

2
−

∞∑
k=0

1

(2k + 1)4/ω2 + 1

}
. (2.12)

The equivalence of (2.12) and (2.10) can also be seen directly
by using the identity

tanh(s) =
∞∑

k=0

2s

s2 + (
2k+1

2

)2 . (2.13)

From (2.12), we observe that h(ω) is monotonic decreasing
since each individual term in the sum is monotonic increasing
in ω. Next, we calculate the large ω asymptotics of the sum

in (2.12) as

∞∑
k=0

1

(2k + 1)4/ω2 + 1
∼

√
ω

2

∫ ∞

0

1

1 + s4
ds

∼ π

4

√
2ω, ω � 1. (2.14)

With (2.12), Eq. (2.14) shows that h(ω) → −∞ as ω → ∞.
With h(0) = 4 > 0, we thus conclude that h(ω) is a decreasing
function of ω, positive for small ω and negative for sufficiently
large ω. This proves the existence and uniqueness of a positive
root of h(ω).

In Sec. IV, we show that the critical frequency ωc is identical
to a Hopf bifurcation frequency of a certain regime of the Gray-
Scott model, the resulting reduced system of which is given
in (1.5). The problem of splitting probability is considered
briefly in the following section. We show that, in contrast to
the MFPT problem, the splitting probability does not exhibit
the type of behavior characterized by the existence of a critical
oscillation frequency.

B. Splitting probabilities

The existence of a critical oscillation frequency in Problem
A might suggest a similar type of behavior when considering
the problem of splitting probability in the presence of a
stationary and oscillatory trap. However, we show briefly here
that in the limit of small oscillation amplitude, the random
walker is always more likely to become trapped by the mobile
trap instead of the stationary one. This problem consists
of a trap at the right boundary whose position is given by
ξ (t) = 1

2 + ε sin(ωt), ε � 1, and a stationary trap at x = 0 on
the left. By analogy to the derivation for the MFPT problem
(1.1), and that given in [38], we obtain the ODE for the
(rescaled) splitting probability,

ut + uxx = 0, (2.15a)

u(0,t) = 1, u[1/2 + ε sin(ωt),t] = 0,

u(x,0) = u(x,2π/ω). (2.15b)
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In (2.15), u(x,t) gives the probability that a random walker
starting at location x at time t < 2π/ω gets captured by the
stationary trap located at x = 0. We find that the average of
this probability over one period of trap oscillation, given by

ū = ω

π

∫ 2π
ω

0

∫ 1/2+ε sin(tω)

0
u(x,t)dx dt, (2.16)

is less than 1/2 for any ω. Indeed, using a computation similar
to that performed in Sec. II, we find that

ū = 1
2 + ε2{1 −

√
iω coth(

√
iω/2)

−√−iω coth(
√−iω/2)}, ε � 1. (2.17)

It is immediate from the identity (2.13) that the term in (2.17)
proportional to ε2, which accounts for the small amplitude
oscillation of the right-hand trap, is negative for all ω. We
thus conclude that, in the limit of small amplitude oscillations,
the mobile trap is more likely to capture the random walker
than the stationary trap on the opposite side, regardless of ω

(unlike Problem A, which exhibited a threshold behavior in ω).
Numerical solutions of (2.15) with ε = O(1) suggest that the
same conclusion also holds for O(1) amplitude oscillations.

III. BROWNIAN TRAP

In this section, we consider the case of a Brownian trap.
To derive a boundary-value problem describing the MFPT, we
adopt the same approach as in [13,25]. At each instant in time
the system may be defined by the locations x and y of the
particle and trap, respectively. Assuming that each undergoes
an unbiased discrete random walk, the system in state (x,y)
may move to one of its nearest neighbors every 	t time step.
The two-agent random walk in one dimension can then be
mapped onto a one-agent random walk in two dimensions on
a rectangular lattice with horizontal and vertical spacings 	x

and 	y. The PDE for the MFPT v(x,y) may then be readily
obtained in the same manner as in Sec. II. We write

v(x,y) = 1
4 [v(x + 	x,y) + v(x − 	x,y) + v(x,y + 	y)

+ v(x,y − 	y)] + 	t, (3.1)

which states that the MFPT associated with the state (x,y) is the
average of that of the four states it may evolve to next, plus the
	t time that elapses between the transition. Expanding (3.1)
for small 	x and 	y we obtain

(	x)2

2	t
vxx + (	y)2

2	t
vyy + 1 = 0. (3.2)

Rescaling v in (3.2) by v = 2	t/(	x)2u we then obtain the
boundary value (1.3) with a = 	y/	x.

In Fig. 4, we compare the numerical solution of (1.3) with
a2 = 0.1 against MFPT results from Monte Carlo simulations.
In the Monte Carlo simulations, the MFPT associated with
a given point x was computed by averaging over 500
realizations of a randomly diffusing particle-trap pair starting
from respective locations x and y0. In Fig. 4, y0 = 0.3. The
capture time of a particular realization was taken to be the time
elapsed before the particle and trap locations first coincided.

The main question that we seek to address is the following:
for a given speed ratio a and an initial trap location y0, is it

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

x

M
F
P
T

Monte Carlo
PDE solution

FIG. 4. Comparison of the numerical solution of (1.3) with
a2 = 0.1 (dashed) against MFPT results from Monte Carlo simu-
lations (solid). The starting location of the trap is y0 = 0.3.

more optimal for a trap to move randomly or to remain station-
ary? As in Sec. II, we address this question by comparing the
average MFPT over x. That is, for a given a and y0, we com-
pare ū(y0; a) = ∫ 1

0 u(x,y0)dx for zero and nonzero a. Using
the underlying symmetry u(x,y) = u(1 − y,1 − x) to reduce
the domain from a square to a triangle 0 < x < y,0 < y < 1,
this average may then be calculated as

ū(y0; a) =
∫ 1

y0

u(x,y0)dx +
∫ 1

1−y0

u(x,1 − y0)dx. (3.3)

By computing ū numerically, we find that there is a critical
value ac ≈ 0.53 such that ū(1/2,ac) = ū(1/2,0) and moreover
that ū(y0,a) < ū(y0,0) for any y0, as long as a > ac. That is,
regardless of initial trap location, a mobile trap is more optimal
[in the sense of reducing ū(y0; a)] than a stationary trap as long
as the trap moves quickly enough. When a < ac, there exists
yc(a) such that ū(y0; a) > ū(y0; 0) as long as y0 ∈ (yc,1 − yc).
Moreover, we find analytically that yc(a) → 0 as a → 0. We
thus conclude that a very slow trap performs worse than a
stationary trap except when its initial location is very close to
the boundary. In this limit of a very slow trap, we determine
the asymptotic formula for yc:

yc ∼ 2

π
a ln

[
48

π3a

]
, a � 1. (3.4)

These results are summarized in Fig. 5(a).
The derivation of (3.4) requires the analysis of the con-

tribution of the boundary layer of (1.3) near y = O(a). In
the outer region y � O(a), we write u ∼ uo with uo ∼
u0 + a2u1 + O(a4). From (1.3), both u0 and u1 satisfy the
boundary-value problem,

uxx + 1 = 0, 0 < y < 1, y < x < 1,

ux(1,y) = 0, u(y,y) = 0. (3.5)

Solving (3.5), we obtain for the outer solution

uo ∼ (1 + a2)

[
y2

2
− x2

2
+ x − y

]
. (3.6)

We note that (3.6) does not satisfy the no-flux boundary
condition in (1.3b) on the line y = 0, which will be satisfied
by the boundary layer. In this inner region where y = O(a),
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FIG. 5. (a) Comparison of the asymptotic solution (solid curve) for yc as given by (3.4) and the numerical result (circles) obtained by
solving the full PDE (1.3). For trap starting location y0 < yc (y0 > yc), the mobile (stationary) trap is more optimal on average. For a � 0.53,
the mobile trap is always more optimal. (b) Comparison of the asymptotic solution (solid curve) for yc as given by a numerical solution of (B4).
Compared to (a), we observe a greater range of agreement with the numerical results.

we let u ∼ U where we expand U as

U (x,η) = U0 + aU1 + a2U2 . . . , y = aη. (3.7)

Next, expanding the Dirichlet boundary condition U (aη,η) =
0 along the diagonal x = y, we obtain the following boundary-
value problems:

U0xx + U0ηη + 1 = 0, U0(0,η) = 0,

U0x(1,η) = 0, U0η(x,0) = 0, (3.8a)

U1xx + U1ηη = 0, U1(0,η) = −ηU0x(0,η),

U1x(1,η) = 0, U1η(x,0) = 0, (3.8b)

U2xx + U2ηη = 0,

U2(0,η) = −η2

2
U0xx(0,η) − ηU1x(0,η),

U2x(1,η) = 0, U2η(x,0) = 0. (3.8c)

To determine the large-η behavior for (3.8), we write (3.6) in
terms of inner variables as

U ∼ x − x2

2
− aη + a2

(
x − x2

2
+ η2

2

)
. (3.9)

Matching powers of a in (3.7) and (3.9) suggests that we write

U0 = x − x2

2
+ V0, U1 = −η + V1(x,η),

U2 = x − x2

2
+ η2

2
+ V2(x,η), (3.10)

where Vi → 0 as η → ∞. Substituting (3.10) into (3.8), we
find that V0 = 0 and

V1(x,η) = −
∞∑

n=0

2

λ2
n

e−λnη sin λnx, λn ≡ (2n + 1)π

2
.

(3.11)

We will see later that to determine the leading-order value for
yc, it is not necessary to compute V2. It is instead computed in
Appendix B, where we determine yc to higher accuracy.

Finally, we construct a uniform solution using the Van Dyke
matching principle by writing uunif = uo + U − uc, where uc

is the common part obtained by expanding the outer solution
in inner variables or, equivalently, the inner solution in outer
variables. Up to O(a2), we then obtain

uunif = y2

2
− x2

2
+ x − y + um(x,y; a), (3.12a)

where

um(x,y; a)

= aV1(x,y/a)+a2

(
y2

2
− x2

2
+ x − y + V2(x,y/a)

)
.

(3.12b)

In (3.12), um(x,y; a) accounts for the effect of trap mobility on
the MFPT, while V1(x,η) is given by (3.11). The value of y0

at which um(x,y0; a) has no effect on ū(y0; a) is precisely the
critical value that determines where the mobile trap becomes
more optimal in comparison to the stationary trap. Substituting
(3.12) into (3.3), we obtain that the critical value y0 = yc

satisfies

− 2

λ3
0

e−λ0
yc
a + 1

3
a = 0. (3.13)

In (3.13), we have used that, under the assumption yc � a,
V1(x,y/a) ∼ −(2/λ2

0)e−λ0y/a sin λ0x and that V2(x,y/a) �
O(1). The solution of (3.13) for yc is given by (3.4), showing
that the assumption yc � a is indeed self-consistent. We thus
conclude that the mobile trap is more optimal only if its starting
location y0 is sufficiently close to one of the boundaries and is
detrimental otherwise. The starting location y0 = ym at which
slow trap motion is most detrimental is given by

ym = 2

π
a ln

(
8

a2π2

)
> yc,

where it increases average MFPT by a2/3 to leading order.
This completes the derivation of the formula (3.4).

In Fig. 5(a), we plot the asymptotic solution (solid curve) for
yc(a) in (3.4) and compare it to the numerical result (circles)
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obtained by solving the full PDE (1.3). We remark that the
agreement is excellent even for moderately large values of a.
In Appendix B, we compute yc(a) accurate for a larger range of
a by calculating V2. Note that, due to the reflection symmetry
about y = 1/2, the mobile trap in this case is always more
optimal than the stationary trap as long as a > ac ∼ 0.53.
While we are only able to determine this value numerically,
its existence may be ascertained as follows. First, we calculate
from (3.6) and (3.3) that

ū(y0; a) = (1 + a2)
(

1
3 − y0 + y2

0

)
, a � 1. (3.14)

In calculating ū(y0; a) in (3.14), we have let a → 0 while
keeping y0 constant so that the boundary layer need not be
considered. Since a2 > 0, we observe from (3.14) that for any
given initial trap location y0, trap motion leads to a higher
average MFPT if the speed is sufficiently small. Further, we
note that ū(y0; 0) � 1/12. However, in the other limit a → ∞,
we calculate [by letting u → u/a2 in (1.3) and noting that this
rescaling simply reverses the roles of x and y in the analysis]
that

ū(y0; a) ∼ 1

6a2
+ O(a−4), a � 1. (3.15)

In the limit of high trap mobility, Eq. (3.15) shows that
the average MFPT approaches zero asymptotically in a.
Therefore, ū(y0; a) < ū(y0; 0) as a → ∞. There then must
exist at least one intermediate value ac for which ū(y0; ac) =
ū(y0; 0).

IV. MOVING-SINK PROBLEM

We now compute the Hopf bifurcation value for β for
Problem C. The derivation of the reduced dynamics (1.5) from
the Gray-Scott model is given in Appendix A. We show that
the Hopf bifurcation frequency is given precisely by (2.11)
with h(ω) defined in (2.10b).

The steady state is given by ξ (t) = 1/2 and u(x,t) =
u0(x) + C where C is any constant and

u0(x) =
{− (x−1)2

2 , x > 1
2 ,

− x2

2 , x < 1
2 .

(4.1)

Linearizing around this steady state we let

ξ (x) = 1
2 + η eλt , u(x,t) = u0(x) + φ(x)eλt , η,φ � 1,

to obtain the eigenvalue problem

λφ = φxx + δ′( 1
2 − x

)
η, (4.2a)

φ′(0) = φ′(1) = 0, (4.2b)

λη = −2βη + β
[
φ+

x

(
1
2

) + φ−
x

(
1
2

)]
. (4.2c)

The equation in (4.2a) is equivalent to removing δ′ and
replacing it by the jump conditions φ+(1/2) − φ−(1/2) = −η

and φ+
x (1/2) = φ−

x (1/2). The solution is then given by

φ(x) = η

2 cosh(
√

λ/2)

{
− cosh(

√
λ(x − 1)), x > 1

2 ,

cosh(
√

λx), x < 1
2 .

Substituting into (4.2c) yields

λ = −2β + β
√

λ tanh(
√

λ/2). (4.3)

To find the Hopf bifurcation frequency ωH , we set λ = iωH

in (4.3) and calculate the Hopf bifurcation threshold

βH = iωH

−2 + √
iωH tanh(

√
iωH/2)

. (4.4a)

The corresponding frequency is determined by imposing that
β must be real. That is, setting the imaginary part of the right-
hand side of (4.4a) to zero, we have

h(ωH ) ≡ 4 −
√

iωH tanh(
√

iωH /2)

−
√

−iωH tanh(
√

−iωH /2) = 0, (4.4b)

where h(ω) is the same function as that defined in (2.10b).
By (4.4b), we thus find that the equation for the Hopf
bifurcation frequency ωH is identical to that obtained for
ωc in (2.11). In particular, as shown above by (2.12)–(2.14),
the positive solution for ωH exists and is unique. This also
proves the uniqueness of the Hopf bifurcation threshold in
a particular regime of the original Gray-Scott model. The
equivalence between problems A and C is important for two
reasons. First, it gives an interesting physical interpretation for
Hopf bifurcation frequency: it is precisely the same frequency
at which trap oscillation in Problem A leaves the average
MFPT unchanged. Second, if the equivalence carries over to
two or more dimensions, the solution of Problem A, which
may be obtained easily by regular asymptotic expansions,
can yield significant insight into the behavior at the Hopf
bifurcation point of Problem C, a far more difficult problem
to analyze.

V. DISCUSSION

It is often assumed that trap motion improves capture
time [35–37]. Using two simple examples (oscillatory and
random trap motion), we have shown that when finite domains
are considered, this may not always be the case: a mobile trap
can lead to a slower capture time if its mobility is sufficiently
low. In particular, for a trap located at the center of the domain,
we find that undergoing random motion impairs its capture
time if the motion is not sufficiently fast (more than 0.53
times the speed of the particle). For a trap under prescribed
motion oscillating with small amplitude about the center of
the domain, the effect of motion on the average MFPT also
depends on the mobility of the trap: a mobile trap leads to
a higher average MFPT when its oscillation frequency ω

is less than some critical frequency ωc ≈ 9.6017. When the
oscillation amplitude is not small, the dependence of ωc on the
amplitude is shown in Fig. 3(b), where the individual points
were computed from full numerical solutions of (1.3). The
increasing behavior of ωc with ε reflects the fact that the more
the trap deviates from its optimal location at the center of
the domain, the faster it needs to move in order to recover
to the center sufficiently quickly. Observe that for ε small,
ωc ∼ 9.6017.

We also showed a surprising connection between the
MFPT problem with oscillating interior trap and the frequency
of oscillations in spike position for the Gray-Scott model.
In particular, we showed that the critical and bifurcation
frequency in the respective problems are identical. By showing
this equivalence, we were able to prove the existence and
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uniqueness of a Hopf bifurcation in a particular limit of the
Gray-Scott model.

An interesting problem would be to see if the equivalence
between Problems A and C carries over to two or more
dimensions. If it does, analysis of the easier Problem A
could yield insights into the much more difficult problem of
computing the Hopf threshold of Problem C. The derivation of
(1.1) for the MFPT extends easily to higher dimensions, and
thus may also be employed to formulate PDE’s for the MFPT in
the presence of general trap motion and domain geometry. This
allows for a full investigation of MFPT problems with mobile
traps by way of either numerical computations or asymptotic
analysis. Such a study has not yet been carried out.

Another interesting problem would be to replace the
sinusoidal trap motion in Problem A by a general periodic
f (t) with the same period and amplitude. This analysis could
be done by writing f (t) in terms of its Fourier series. An
optimization problem may then be posed by asking what f (t)
minimizes average MFPT, while penalizing the average square
velocity of the trap. In practice, this type of problem lends
to situations where reduced capture times must be weighed
against higher-energy expenditure, for example, in predator
search strategy.

ACKNOWLEDGMENTS

J.C.T. is supported by an AARMS Postdoctoral Fel-
lowship. T.K. is supported by NSERC Discovery Grant
No. RGPIN-33798 and Accelerator Supplement Grant No.
RGPAS/461907.

APPENDIX A: DERIVATION OF PROBLEM C

We begin with the Gray-Scott model as scaled in [39]:

vt = ε2vxx − v + Auv2,

vx(0,t) = vx(1,t) = 0, (A1a)

τut = Duxx + 1 − u − uv2

ε
,

ux(0,t) = ux(1,t) = 0, (A1b)

supplemented by appropriate initial conditions. In the limit
ε → 0, it is shown that (A1) admits a single spike solution
whose dynamics are given by the reduced system

ut = Duxx + 1 − u − 6

A2u0
δ(x − ξ ),

ξt = τε2

u0
(ux(ξ+(t),t) + ux(ξ−(t),t)), (A2)

where u0 = u(ξ (t),t). In (A2), ξ (t) represents the location of
the center of the spike. We assume that A � 1 in (A2) and
make a change of variables

u = 1 + û

A2
. (A3)

With (A3) in (A2), the leading-order terms yield

ût = Dûxx − û − 6δ(x − ξ ), ξt = τε2

A2
(û+

x + û−
x ). (A4)

Next, we suppose that D � 1 and make the final change of
variables in (A4):

û = 6

(
−1 + ũ

D

)
, t = t̂/D, β = 6τε2

A2D2
.

The resulting leading-order expression becomes precisely
(1.5) upon dropping the hats.

APPENDIX B: NEXT ORDER TERM
FOR COMPUTATION OF yc

A more accurate formula for yc can be obtained by keeping
all terms from (3.12a) in (3.13). In particular, this requires the
full computation of V2 in (3.10). Substituting (3.10) for U2

into (3.8c), we obtain the equation for V2:

V2xx + V2ηη = 0, V2(0,η) = f (η), V2x(1,η) = 0,

V2η(x,0) = 0, V2 → 0 as η → ∞. (B1)

In (B1), f (η) is defined as

f (η) ≡ η

∞∑
n=0

2

λn

e−λnη. (B2)

To solve (B1), we use a Fourier cosine transform and its inverse
defined by

Ĝ(x,ω) = 4
∫ ∞

0
g(x,η) cos(2πωη)dη,

g(x,η) =
∫ ∞

0
Ĝ(x,ω) cos(2πωη)dω.

Proceeding, we calculate that

V2 =
∫ ∞

0

F̂ (ω)

cosh(2πω)
cosh[2πω(x − 1)] cos(2πωη)dω,

(B3)

where F̂ (ω) is the Fourier cosine transform of f (η) in (B2).
The resulting expression for um(x,y; a), accurate to O(a2),
is then given by (3.12b) with V2(x,y/a) given by (B3). The
condition that um(x,y; a) integrates to zero in (3.3) then yields
the condition for yc,

−
∞∑

n=0

2

λ3
n

e−λnyc/a cos(λnyc) + a

[
(yc)2 − yc + 1

3

]

+ a

∫ ∞

0

F̂ (ω)

2πω cosh(2πω)
sinh[2πω(x − 1)]

× cos(2πωyc/a) = 0. (B4)

Solving (B4) numerically for yc, we obtain the solid curve in
Fig. 5(b). Note that, in comparison to Fig. 5(a), which contains
the leading-order expression for yc in (3.4), we observe a larger
range of agreement between the asymptotic and numerical
(open circles) results.
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