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We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic
system as its working substance and works between two heat reservoirs at constant temperatures Th and Tc (< Th).
Although the behavior of spin-1/2 system differs substantially from that of the harmonic system in that they obey
two typical quantum statistics, the efficiencies at maximum power based on these two different kinds of quantum
systems are bounded from the upper side by the same expression ηmp � η+ ≡ η2

C/[ηC − (1 − ηC) ln(1 − ηC)]
with ηC = 1 − Tc/Th as the Carnot efficiency. This expression ηmp possesses the same universality of the
CA efficiency ηCA = 1 − √

1 − ηC at small relative temperature difference. Within the context of irreversible
thermodynamics, we calculate the Onsager coefficients and show that the value of ηCA is indeed the upper bound
of EMP for an Otto engine working in the linear-response regime.
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I. INTRODUCTION

Heat engines proceeding in finite time are optimized for
powers and efficiencies within the framework of finite-time
thermodynamics [1–5], which was initiated by the seminal
paper of Curzon and Ahlborn [1]. Under the assumptions that
heat flow obeys the linear Fourier law and that irreversibility
only arises from the heat flow, Curzon and Ahlborn considered
a Carnot-like heat engine model working between a hot and
a cold reservoir at constant temperatures Th and Tc(< Th),
and they found the efficiency at maximum power (EMP) to
be ηCA = 1 − √

Tc/Th = 1 − √
1 − ηC with ηC = 1 − Tc/Th

the Carnot efficiency. Since then, intensive studies have been
carried out on the bounds and possible universality of the EMP
[6–19], and some of them indeed have disclosed certain sort
of universality of the CA efficiency [6,9,10,16–19].

Quantum heat engines [17,20–33] supply good model sys-
tems to find emergence of basic thermodynamic description at
the quantum mechanical level and reveal the relation between
the classical and quantum thermodynamic systems. A large
number of publications (see Refs. [20,21] for a review) have
been devoted to the research into the models of quantum heat
engines proceeding finite time. Among most of these studies,
finite-time thermodynamics as a very useful tool was used to
optimize the heat engines, like the Carnot engine [22,23,31],
the Otto engine [17,24–30], and the Brayton engine [32,33],
and so on. An Otto cycle is reciprocating and partitioned into
four branches, two adiabats, where no heat exchanges between
the working substance and its environment, and two isochores,
which are heat-transfer processes. Three of the authors [17] of
the present work optimized a quantum Otto engine (QOE)
model, which uses a two-level atomic system as its working
substance and works between two heat reservoirs at constant
temperatures Tc and Th, and found that the EMP ηmp is bounded

*Electronic address: wangjianhui@ncu.edu.cn

from the upper side by a function of the Carnot efficiency ηC ,

ηmp � η+ ≡ η2
C

[ηC − (1 − ηC) ln(1 − ηC)]

= ηC

2
+ η2

C

8
+ 7η3

C

96
+ O

(
η4

C

)
, (1)

which was also derived previously in a steady-state engine
model based on a mesoscopic [18] or a macroscopic [12]

system. It is clear that η+ in Eq. (1) and ηCA = ηC

2 + η2
C

8 +
6η3

C

96 + O(η4
C) share the same universality at small relative tem-

perature difference. It is widely believed that the performance
in finite time of a classical Otto cycle depends sensitively
on the working substance [13]. Here it does raise a very
interesting question that deserves to be studied. Is this result
(1) still valid for the Otto engines which use other kinds of
quantum systems instead of the two-level system? To answer
this question, we use a spin-1/2 or a harmonic system which
obeys one of the two typical quantum statistics (Fermi-Dirac
and Bose-Einstein) as the working substance of the Otto engine
to determine the EMP.

The relationship between the irreversible thermodynamics
and finite-time thermodynamics was first discussed in Ref. [34]
. In his seminal work, Van den Broeck addressed using the
Onsager relations, the generality of the CA efficiency and
proved that ηCA is the upper bound of the EMP for heat
engines in the linear response regime �T → 0, with �T =
Th − Tc. Various cyclic or steady-state models of heat engines
or refrigerators [35–40], such as Brownian motors [36–38],
electronic transport systems [39], and a macroscopic Carnot
cycle [40], etc., have been subsequently investigated, in some
of which the Onsager relations have been calculated explicitly
within the framework of linear [40] or nonlinear [41,42]
irreversible thermodynamics. However, rarely has the issue
of the EMP and of the Onsager coefficients been discussed
for the QOEs. It is therefore of great interest to consider the
QOEs within the framework of irreversible thermodynamics,
which may help us understand the intrinsic relation between
the finite-time and irreversible thermodynamics.
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In the present paper, we employ a spin or a harmonic system
as a working substance to set up a QOE model that consists
of two isochores and two adiabats. Optimizing with respect to
the power of the QOE, we find that the upper bound of EMP

is η+ = ηC

2 + η2
C

8 + 7η3
C

96 + O(η4
C), which agree well with ηCA.

Within the framework of the irreversible thermodynamics, we
prove that the EMP for the Otto cycle is indeed bounded from
above by ηCA, which becomes achievable when the model
satisfies the tight-coupling condition.

II. EXPECTATION HAMILTONIAN OF A SPIN−1/2 OR A
HARMONIC OSCILLATOR SYSTEM

A. A spin−1/2 or a harmonic oscillator system

We first consider a quantum system with a magnetic
moment M placed in a magnetic field B whose direction is
assumed to be constant and along the positive z axis. The
Hamiltonian of the interaction between the magnetic moment
M of the quantum system and the external magnetic field B is
given by Ĥ (t) = −M · B = 2μBS · B = 2μBBz(t)Sz, where
μB is the Bohr magnetron, S is a spin angular momentum, and
� = h/(2π ) with h being the Planck constant. For simplicity,
we adopt � = 1 and define ω(t) = 2μBBz(t) throughout
the paper. Since the spin angular momentum and magnetic
moment are in opposite directions, the frequency of the
trap ω(t) must be positive. Therefore, the Hamiltonian of a
spin−1/2 system coupling with the time-dependent field ω(t)
can be expressed as

Ĥ = ω(t)Ŝz. (2)

In view of the fact that the expectation value of the spin angular

momentum Sz is given by S = 〈Sz〉 = − 1
2 tanh

(
βω

2

)
, we can

write the expectation of the Hamiltonian as

〈Ĥ 〉 = ωS = −1

2
ω tanh

(
βω

2

)
. (3)

Let us consider a single harmonic oscillator with time-
dependent frequency ω(t). The Hamiltonian of the harmonic
oscillator is described by

Ĥ = ω(t)
(
N̂ + 1

2

) = ω(t)
(
â†â + 1

2

)
, (4)

where N̂ is the number operator and â†,â are the bosonic
creation and annihilation operators, with N̂ = â†â. The ex-
pectation of the Hamiltonian of the oscillator with inverse
temperature β is then given by

〈Ĥ 〉 = ωn ≡ ω

(
n̄ + 1

2

)
= 1

2
ω coth

(
βω

2

)
, (5)

where the use of 〈N̂〉 = n̄ = 1
eβω−1 and of n ≡ (n̄ + 1

2 ) has
been made, with n rather than n̄ being used to denote the mean
population.

For a spin or a harmonic system, the expectation Hamilto-
nian 〈Ĥ 〉 with inverse temperature β can be expressed as

〈H 〉 = ωf (e−βω/2), (6)

where f is the mean population n for the harmonic system or
the mean polarization S for the spin−1/2 system.

B. Motion equation of the system Hamiltonian

The cycle of operation of the QOE is composed of two
adiabats and two isochores. The quantum dynamics are
generated by external fields during the two adiabatic processes
and by heat flows from hot and cold reservoirs in the two
isochoric processes. Based on a semigroup approach, the
change in time of an operator X̂ during an adiabatic or an
isochoric process is described by the quantum master equation
[24,30,31]:

dX̂

dt
= i[Ĥ ,X̂] + ∂X̂

∂t
+ LD(X̂), (7)

where LD(X̂) = ∑
α kα(V̂ †

α [X̂,V̂α] + [V̂ †
α ,X̂]V̂α) represents

the Liouville dissipative generator when the system is coupled
to a heat reservoir. Here V̂ †

α and V̂α are operators in the Hilbert
space of the system and are Hermitian conjugates and kα

are phenomenological positive coefficients. When X̂ = Ĥ ,
the internal energy of the system is the expectation value
of the Hamiltonian, i.e., E = 〈Ĥ 〉. Then substituting Ĥ into
Eq. (7) leads to the quantum version of the first law of
thermodynamics,

dE

dt
= d−W

dt
+ d−Q

dt
=

〈
∂Ĥ

∂t

〉
+ 〈LD(Ĥ )〉. (8)

The power and the instantaneous heat flow are identified as
P = d-W

dt
= 〈 ∂Ĥ

∂t
〉 and d-Q

dt
= 〈LD(Ĥ )〉, respectively.

The operators V̂ † and V̂ , are chosen as the bosonic
(spin) creation â† (Ŝ† = Ŝx + iŜy) and annihilation operators
â (Ŝ = Ŝx − iŜy) for the harmonic oscillator (spin−1/2)
system. Substituting X̂ = Ĥ = ω(â†â + 1

2 ) or X̂ = Ĥ =
ωŜz into Eq. (7), where LD(X̂) = k+(â[X̂,â†] + [â,X̂]â†) +
k−(â†[X̂,â] + [â†,X̂]â) or LD(X̂) = k+(Ŝ[X̂,Ŝ†] +
[Ŝ,X̂]Ŝ†) + k−(Ŝ†[X̂,Ŝ] + [Ŝ†,X̂]Ŝ), we find the motion of
the system Hamiltonian,

d〈H 〉
dt

= −γ (〈H 〉 − 〈H 〉eq), (9)

where γ = k− − k+(γ = k− + k+) is the heat conductivity
for the harmonic (spin) system and k+/k− = e−βω obeys
the detailed balance ensuring that the system evolves in
a specific way to the correct equilibrium state asymptoti-
cally [29]. Here 〈H 〉eq = ωneq = ω( k+

k−−k+
+ 1

2 ) (or 〈H 〉eq =
ωSeq = −ω

2
k−−k+
k−+k+

) is the asymptotic value of 〈H 〉. This asymp-
totic population (polarization) must correspond to the value at
thermal equilibrium: n = 1

2 coth(βω) [S = − 1
2 tanh(βω)].

III. QUANTUM OTTO CYCLE

It follows, using Eq. (6) and (8), that for a spin-1/2 system
or for a harmonic system the first law of thermodynamics can
be expressed as

dE = d−W + d−Q = f dω + ωdf, (10)

where d−Q = ωdf and d−W = f dω. The energy of the system
can change either by particle transition from one level to the
other (changing f ) or by varying the energy gap between the
energy levels (changing ω). It is clear that a thermodynamic
process during which the physical quantity f (ω,T ) remains
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FIG. 1. (Color online) Schematic diagram of a quantum Otto cycle working with a harmonic system in the (ω,n) plane. (a) Without
nonadiabatic dissipation; (b) with nonadiabatic dissipation. 1 → 2 and 3 → 4 are two isochoric processes, while 2 → 3 and 4 → 1 are two
adiabatic processes. neq

h and neq
c are populations of the harmonic system at thermal equilibrium with two heat reservoirs at inverse temperatures

βh and βc.

constant is a quantum adiabatic process. Based on quantum
adiabatic theorem [43], a system would remain in its initial
state during an adiabatic process, but it must fulfill the
condition that the time scale of its state change must be much
larger than that of the dynamical one, ∼ E/�. That means
the time required for completing a quantum adiabatic process
should be very large and cannot be negligible. Therefore, we
must consider nonadiabatic dissipation [17,29] (due to rapid
change of the system energy level) and, in particular, the time
taken for any quantum adiabatic process.

Because of nonadiabatic dissipation, the heat is developed
and yields an increase in entropy in an “adiabatic” process
which becomes nonisentropic. In what follows, even if there
exists nonadiabatic dissipation in an “adiabatic” process, we
still use the word “adiabatic” to merely indicate that the
working substance, isolated from a heat reservoir, has no heat
exchange with its surroundings.

An irreversible QOE cycle 1 → 2 → 3 → 4 → 1 based on
a harmonic system is drawn in the (ω,n) plane, as shown in
Fig. 1. (A similar schematic diagram, which can be seen in
Ref. [29], is not plotted here for the QOE based on a spin
system). Along two isochoric processes 1 → 2 and 3 → 4,
the working system, at constant volume ωb and ωa , is coupled
to a hot and a cold heat reservoir whose temperatures are Th

and Tc, respectively. Let fi be the populations or polarizations
at the instants i with i = 1,2,3,4. Along the adiabatic process
2 → 3 (4 → 1), the working substance is decoupled from the
hot (cold) reservoir, and f is changing from f2 to f3 (f4 to f1).
The cycle model is operated in the following four branches.

A. Hot isochore 1→ 2

The magnetic field ω is kept fixed at constant value of ωb and
no work is done. The working subsystem is in contact with a
hot reservoir at inverse temperature βh during a period τh, with
βh = 1/Th. It follows, using Eq. (10), that the instantaneous
heat flow becomes

d−Q12

dt
= ωb

df (t)

dt
= γh

[
f

eq
h − f (t)

]
ωb, (11)

where γh denotes the heat conductivity between the working
substance and the hot reservoir and f

eq
h is the mean population

(polarization) of the harmonic (spin) system at thermal
equilibrium with the hot reservoir.

We can see from Eq. (11) that, for the hot isochore, besides
heat transport between the working medium and the heat
reservoir, the internal dissipation affecting the value of f (t)
at any time instant t can also account for the irreversibility
that limits the performance of the heat engine. This internal
dissipation is caused by internal dynamics [26,27], such as
relaxation to (local) equilibrium, and decoherence, etc., and it
is generated spontaneously within the quantum system.

In view of the boundary conditions that f (0) = f1(ωb,β1)
and f (∞) = f

eq
h (ωb,βh), the general solution of Eq. (11) can

be readily obtained, f (t) = f
eq
h + (f1 − f

eq
h )e−γht , resulting

in the following relation:

f2 = f
eq
h + (

f1 − f
eq
h

)
. (12)

Then the heat absorbed directly from the system in the
isochoric process becomes

Qh ≡ Q12 = E2 − E1 = (f2 − f1)ωb. (13)

B. Adiabatic expansion 2 → 3

The system is decoupled from the hot reservoir, changing
ω from ωb to ωa during time τa . Heat caused by the work
to overcome the adiabatic dissipation is developed and the
population (polarization) is increased from f2 to f3, though
there is no heat exchanged directly between the system and
its surroundings. As in the low-dissipation case [6,17,29],
we assume that the increase of population (polarization) in
an adiabatic process is inversely proportional to be the time
required for completing this process. Then, we have

f3 = f2 + σa/τa, (14)

where σa is the dissipation coefficient for the adiabatic
expansion. The work done directly during this process, W 0

23,
can be determined according to

W 0
23 =

∫ τa

0
f

dω

dt
dt = (ωa − ωb)

(
f2 + σa

2τa

)
, (15)
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while the additional heat generated on this process becomes

W add
23 = Q23 =

∫ τa

0
ω

df

dt
dt = σa(ωa + ωb)

2τa

, (16)

which is the additional work to overcome the nonadiabatic
dissipation. The total work done on the adiabatic compression
2 → 3, W23, turns out to be

W23 = W 0
23 + W add

23

= (ωa − ωb)

(
f2 + σa

2τa

)
+ σa(ωa + ωb)

2τa

. (17)

C. Cold isochore 3 → 4

The system becomes coupled to a cold reservoir at inverse
temperature βc (> βh) in a time of τc. In a way similar to that
for the step 1 → 2, the heat current in this process can be given
by

d−Q34

dt
= ωa

df (t)

dt
= γc

[
f eq

c − f (t)
]
ωa, (18)

thereby yielding the following relation:

f4 = f eq
c + (

f3 − f eq
c

)
e−γcτc . (19)

Here γc is the heat conductivity between the working substance
and the cold reservoir and n(t) should be restricted by
the boundary constraints: f (0) = f2(ωa,β3) and f (∞) =
f

eq
c (ωa,βc). As in the hot isochore, Eq. (18) describing the heat

current along the cold isochore shows that the irreversibility
results not only from heat transport between the working
substance and its surroundings but also from internal dynamics
of the system. The amount of heat absorbed by the system from
the cold reservoir can be directly calculated as

Qc ≡ Q34 =
∣∣∣∣
∫ τb

0
ωa

df

dt
dt

∣∣∣∣ = ωa

[
(f2 − f1) + σa

τa

+ σb

τb

]
.

(20)

D. Adiabatic compression 4 → 1

The frequency ω changes from ωb to its initial value ωa after
time τb, while f increases from f4 to f1. The time required
for completing this adiabat is τb. As in the adiabatic expansion
1 → 2, we assume

f1 = f4 + σb

τb

, (21)

with σb the dissipation coefficient for the process. It is easy
to find, using the computation similar to that for the adiabatic
expansion, that the work done and the heat generated on this
adiabat are

W 0
41 =

∫ τb

0
f

dω

dt
dt = (ωb − ωa)

(
f1 − σb

2τb

)
, (22)

W add
41 = Q41 = σb(ωa + ωb)

2τb

, (23)

respectively. Then the total work done on this process reads

W41 = W 0
41 + W add

41

= (ωb − ωa)

(
f1 − σb

2τb

)
+ σb(ωa + ωb)

2τb

. (24)

Repeatedly performing the above sequence of consecutive
steps leads to the result that some of heat systematically
extracted from the hot reservoir is released to the cold reservoir,
while the rest of the heat is delivered as work. After a single
cycle, the total energy of the system as a state function remains
unchanged, namely, �E = Qh − Qc + W23 + W41 = 0. The
total work done by the system per cycle, with W = −(W23 +
W41), and the efficiency are, respectively, given by

Wcycle = (f2 − f1)(ωb − ωa) − ωa

(
σa

τa

+ σb

τb

)
, (25)

η = W

Qh

= 1 − ωa

ωb

− ωa

ωb

(σa/τa + σb/τb)

(f2 − f1)
. (26)

On the right-hand side of Eq. (25), the first term represents
the total positive work done by the system, while the second
term is the total negative work done by the system [indicated
by the two blue areas in Fig. 1(b)] to overcome internal
friction in two adiabats. Equation (26) shows that the efficiency
η decreases monotonically as the nonadiabatic dissipation
coefficient σa,b increases. For the remainder of the paper,
our analysis mainly focuses on the case that the nonadiabatic
dissipation is very weak and even vanishing, while the time
required for completing the quantum adiabatic process is
quite long in order for the quantum adiabatic condition to
be satisfied.

In the absence of the dissipation on the adiabatic processes,
the polarization or population f (e−βω/2) is kept unchanged
[see Eqs. (14) and (21)], and the efficiency (26) simplifies
to η = 1 − ωa

ωb
due to σa,b → 0. In such a case, there exists

an adiabatic relation: βω = T ω−1 = const either for the spin
system [30] or for the harmonic system. A comparison between
this adiabatic relation and that for classical ideal gas, T V γ−1 =
const, with γ the adiabatic parameter, shows that the Otto
cycle efficiency, η = 1 − ωa

ωb
, is in analogy with the efficiency

of the Otto cycle working with the classical ideal gas, εIG =
1 −

(
Va

Vb

)γ−1
, where Va and Vb (> Va) denote the constant

volumes during the two isochores. Thus, the frequency ω plays
the role of the volume variable, and our model can be regarded
as a quantum version of the classical Otto engine. Moreover,
the frequency ω, as an energy unit in the energy spectrum, is
merely a function of characteristic size of the system [28], and
it can thus be identified as the system volume.

IV. THE EFFICIENCY AT MAXIMUM POWER OUTPUT

Following the same approach as in Ref. [29], we can derive
the following relations by combining Eq. (19) with Eq. (12),
f2 − f1 = g(τc,τh)�f eq, where

g(τc,τh) = (eγcτc − 1)(eγhτh − 1)

eγcτc+γhτh − 1
(27)

and �neq = n
eq
h − n

eq
c , with �f eq = f (e−βcωa/2) −

f (e−βhωb/2).
Considering τcycle = τc + τh + τadi, with τadi ≡ τa + τb

the total time required for completing the two adiabatic
processes, and using Eq. (25), the power output can be
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derived as

P = W

τcycle

= 1

τcycle

[
(ωb − ωa)�f eqg(τc,τh) − ωa

(
σa

τa

+ σb

τb

)]
.

(28)

We find that, from Eq. (28), the positive work condition is

�f eq >
ωa

(ωb − ωa)

(σa/τa + σb/τb)

g(τc,τh)
, (29)

which must be satisfied in order that our engine model can
produce positive work. In the ideal case when the adiabatic
process is isentropic and σa = σb = 0, the power output in
Eq. (28) and the positive work condition in Eq. (29) then
simplify to

P = g(τc,τh)

τcycle
(ωb − ωa)�f eq, (30)

ωb

ωa

<
βc

βh

= Th

Tc

, (31)

respectively. This positive condition (31) confirms the Carnot’s
theorem.

It can be seen from Eq. (26) that the efficiency increases
monotonically with a decrease in the dissipation coefficients
σa,b and must approach its upper bound when σa,b are
vanishing. Now let us consider the upper bound of the EMP,
which is obtained in the heat engine with two isentropic
processes, within the assumption that the time allocations
to the two isochores (τc and τh) and to the adiabats τadi are
given. Based on Eq. (A11), optimizing power output becomes
equivalent to optimizing two values of external fields ωa and
ωb. In the appendix, we show that, setting ∂P/∂ωa = 0 and
∂P/∂ωb = 0, the EMP can be analytically approximated by

ηmp = η2
C

ηC − (1 − ηC) ln(1 − ηC)
, (32)

whether for a spin-1/2 or for a harmonic system. This
expression of EMP, as one main result of the present paper,
was previously obtained for the heat engines based on a
two-level atomic system [17], Feynman’s ratchet [18], and
the classical transport [12]. We have proved in the appendix
that the EMP given by Eq. (32) holds well in the region of
all finite temperatures, restricted to neither the classical limit
when the temperature is high enough nor the linear-response
regime when �(1/β) → 0 with �(1/β) = 1/βh − 1/βc. It is
interesting to note that, in contrast to the classical Otto engine
where the EMP is dependent on the working substance [13],
the QOEs based on a spin or a harmonic system have the same
upper bound of the EMP, which is attainable as nonadiabatic
dissipation is vanishing.

Expanding η+ up to the third term of ηC gives rise to ηmp =
ηC/2 + η2

C/8 + 7η3
C/96 + O(η4

C), which is in nice agreement
with the expansion of the CA efficiency ηCA, with ηCA =
ηC/2 + η2

C/8 + 16η3
C/96 + O(η4

C). These values of EMP η+
are very close to those of the CA efficiency ηCA, particularly
at small relative difference of temperatures they have the same
universality, ηC/2 + η2

C/8.

V. IRREVERSIBLE THERMODYNAMICS

We consider the Onsager relations and the EMP by mapping
our model into a general linear irreversible heat engine when
the model proceeds in the linear-response regime. We assume
that the heat engine is working in the linear-response regime
where the temperature difference �T = Th − TC is very small.
The work is performed under an external force F and it is
determined by W = Fx, where x is the thermodynamically
conjugate variable of F . In the linear-response regime with
�T → 0, a thermodynamic force X1 = F/Tc 	 F/T , where
T ≡ (Tc + Th)/2 and its conjugate flux J1 = ẋ. We also define
the inverse temperature difference 1/Tc − 1/Th 	 �T/T 2 as
another thermodynamic force X2 and the heat flux Q̇h as its
conjugate flux J2.

The Onsager relations are used to describe these fluxes and
forces as

J1 = L11X1 + L12X2, (33)

J2 = L21X1 + L22X2, (34)

where Lij ’s are the Onsager coefficients with the symmetry
relation L12 = L21. Since the entropy variation of working
substance coming back to its original state is vanishing for our
engine model after a whole cycle, the entropy production rate
σ̇ can be expressed as σ̇ = − Q̇h

Th
+ Q̇c

Tc
= − Ẇ

Th
+ Q̇c( 1

Tc
− 1

Th
),

where the dot denotes a quantity divided by the cycle period
τcycle. In the linear response regime where �T → 0, σ̇ can be
approximated by

σ̇ 	 −W

T

1

τcycle
+ Q̇c

�T

T 2
, (35)

where the higher terms like O(�T Ẇ ) and O(�T 3Q̇c) have
been neglected. Considering the decomposition σ̇ = J1X1 +
J2X2, we can define the thermodynamic [14,38,40] force as

X1 = −Ẇ/T ,X2 = �T /T 2, (36)

and their conjugate thermodynamic forces

J1 = 1/τcycle,J2 = Q̇c. (37)

Considering the Carnot’s theorem, we have η = 1 −
ωa/ωb � ηC = 1 − Tc/Th. It is therefore indicated that in the
linear response regime, there exists the relation

�ω/ω � �T /T , (38)

where we have used �ω = ωb − ωa with ω ≡ (ωa + ωb)/2.
When the QOE works in the linear response regime �T → 0
but it can still produce positive work, even the Carnot efficiency
ηC 	 �T /T (as the upper bound of the efficiency η) tends
to be vanishing, implying that we may assume �ω/ω 	
�T/T → 0.

We turn to the explicit calculation of the Onsager co-
efficients Lij ’s, adopting an approach similar to the ones
used in theoretical models of a Brownian and a macroscopic
Carnot cycle [38,40]. To determine L11, we consider the
relation between 1/τcycle and X1 in the case of �T → 0 as
well as �ω → 0. For simplicity, we assume σa ≡ σb ≡ σ/2,
τa ≡ τb ≡ τcycle/α with α > 1. From Eq. (20), the amount of
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heat released to the cold reservoir becomes

Qc = ωa�f eqg + ωaσα

τcycle
. (39)

Since �T → 0, from Eq. (28) we can write the work W as

W = �ω�f eqg − ωaσα

τcycle
. (40)

Setting �ω = �T = 0 in Eq. (40) and using the approxima-
tion ωa 	 ωb 	 ω, we find

1

τcycle
= T

ωασ

−W

T
, (41)

which, together with Eqs. (33) and (36), gives rise to

L11 = T

ωσα
. (42)

Likewise, Q̇c at �T = 0 can be expressed by using
Eqs. (39) and (41) as

Q̇c = T g�f eq

ασ

−W

T
+ ωσα

τ 2
cycle

. (43)

Since the second term in the above equation is the O(W 2)
quantity from Eq. (41), Q̇c with �T = 0 can be evaluated up
to the linear order of W ,

Q̇c = T g�f eq

ασ

−W

T
. (44)

From Eqs. (34) and (36), the coefficient L21 is determined
according to

L21 = T g�f eq

ασ
. (45)

Here g = g(τc,τh) is a function of the time τc and τh defined
in Eq. (27), and it is thus a function of the cycle time
τcycle(=1/J1). The value of parameter g situated between
0 � g � 1, however, is dimensionless and it thus can be casted
into the expressions of the Onsager coefficients.

In the linear-response regime when �T → 0, we can
assume from Eq. (38) that �ω/ω 	 �T/T → 0; therefore
W in Eq. (40) is approximately

W = T ω�f eqg
�T

T 2
− ωσα

τcycle
. (46)

When setting W = 0, we can obtain from Eq. (46) that

1

τcycle
= T g�f eq

σα

�T

T 2
. (47)

Substitution of W = 0 into Eq. (40) leads to

L12 = T g�f eq

σα
. (48)

From Eqs. (45) and (48), we see that the Onsager symmetry
relation L21 = L12 is confirmed as expected. In the case of
W = 0, Q̇c can be derived from Eqs. (39) and (47) as

Q̇c = ωT (�f eq)2g2

σα

�T

T 2
+ ωσα

τ 2
cycle

. (49)

Since here the second term is O(�T 2) quantity, we can neglect
this term and then obtain

L22 = ωT (�f eq)2g2

σα
. (50)

As expected, these Onsager coefficients derived in our
model satisfy the constraints L11 � 0,L22 � 0 and L11L22 −
L12L21 � 0, which originates from the positivity of the entropy
production rate σ̇ .

Now consider EMP for our linear irreversible heat engine,
following the approach first proposed in Ref. [34]. With
consideration of Eqs. (36) and (37), the power and the
efficiency can be expressed as P = Ẇ = −J1X1T and η =
Q̇h/Ẇ = −J2/(J1X1T ), respectively. It then follows, using
the condition ∂P/∂X1 = 0, that the EMP takes the form
as η∗ = �T

2T

q2

1−q2 , where q = L12/
√

L11L22 as the coupling
strength parameter has been used. These Onsager coefficients
given by Eqs. (42), (45), (48), and (50) show that here the linear
irreversible heat engine satisfies the tight-coupling condition
|q| = 1. In such a case, the EMP becomes [38]

ηmp = �T

2T
= ηCA + O(�T 2). (51)

It is also the upper bound of EMP since the coupling strength
parameter satisfies the relation |q| � 1, which is equiva-
lent to the condition that L11 � 0, L22 � 0, and L11L22 −
L12L21 � 0.

VI. CONCLUSIONS

We have employed both finite-time and irreversible ther-
modynamics to consider the EMP for a QOE, in which the
working substance is composed of a spin-1/2 and a harmonic
system. From a view point of finite-time thermodynamics, we
showed that the EMP, whether for the spin or harmonic system,
is bounded from above by the same value η+ determined by
Eq. (1) which displays the same universality as ηCA at small
relative temperature differences. Within the framework of the
linear irreversible thermodynamics, we proved that ηCA is
the upper bound of the EMP for the heat engines in linear
response regime when the temperature difference �T → 0,
and we also calculated the Onsager coefficients for the
irreversible QOEs.
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APPENDIX: ANALYTICAL EXPRESSION OF EMP FOR
A QOE WORKING WITH A HARMONIC

OR A SPIN-1/2 SYSTEM

1. For a harmonic system

For a harmonic engine with two isentropic adiabats (σa,b =
0), the power output in Eq. (28) is reduced to

P = W

τcycle

= G(τc,τh,τadi)(ωb − ωa)[coth (βhωb) − coth (βcωa)],

(A1)

where we have used G(τc,τh,τadi) ≡ g(τc,τh)
2(τc+τh+τadi)

, with g(τc,τh)
defined in Eq. (27). Then the extremal conditions of ∂P /∂ωa =
0 and ∂P/∂ωb = 0 lead to

(ωb − ωa)βc =
[

coth

(
ωaβc

2

)
− coth

(
ωbβh

2

)]

× sinh2

(
ωaβc

2

)
, (A2)

(ωb − ωa)βh =
[

coth

(
ωaβc

2

)
− coth

(
ωbβh

2

)]

× sinh2

(
ωbβh

2

)
. (A3)

Dividing directly both sides of Eq. (A2) by Eq. (A3) and
defining r = √

βc/βh, we have

1

r
= 1/xh − xh

1/xc − xc

, (A4)

in which xh ≡ e− ωbβh
2 and xc ≡ e− ωaβc

2 . The physical solution
to Eq. (A4) can be obtained,

xh =
√

x4
c + (4r2 − 2)x2

c + 1 + x2
c − 1

2rxc

, (A5)

from which we expand xh up to the sixth order,

xh = rxc − r(r2 − 1)x3
c + r(r2 − 1)(2r2 − 1)x5

c + O
(
x7

c

)
.

(A6)

From Eq. (A5), we note that the condition x2
c − (4r2 − 2)xc +

1 > 0 must be satisfied in order for xh to be a real number.
This condition, together with the fact that 0 < xc < 1, leads
to 0 < xc � x+

c , where x+
c = −

√
(2r2 − 1)2 − 1 + 2r2 − 1 is

the upper bound of xc. Here x+
c is the same as corresponding

one derived from the two-level atomic system (see the
appendix in Ref. [17]). We can think of two effective facts: (1)
the upper bound of xc decreases quickly with increasing r and
rapidly approaches zero, favoring xh 	 rxc when r � 1 and
x+

c → 0, and (2) if r is approximated equal to 1, the expansion
coefficients on the right side of Eq. (A6) becomes vanishing,
favoring xh 	 rxc when r → 1 and x+

c → 1. Therefore,
Eq. (A6) can be simplified as

xh = rxc. (A7)

This approximation, restricted to neither the linear-response
regime �1/β → 0 with �(1/β) = 1/βh − 1/βc (i.e., r → 1)
nor the high-temperature limit when βω � 1 (i.e., xc → 1), is
valid at finite temperatures.

When we multiply both sides of Eqs. (A2) and (A3), we
obtain ωb − ωa = (2 sinh(ωaβc − ωbβh)/

√
βcβh, or

2

(
ln xc

βc

− ln xh

βh

)
= xh/xc − xc/xh√

βcβh

, (A8)

where xc and xh were defined in Eq. (A4). Considering
Eqs. (A7) and (A8), we have

ln xc = (r2 − 1)
√

βcβh + 2rβc ln(r)

2r(βh − βc)
(A9)

and

ln xh = ln xc + ln r. (A10)

Substituting r = 1/
√

1 − ηc, with the Carnot efficiency ηc =
1 − βh/βc, into the expression η∗ = 1 − ωa

ωb
= 1 − βh ln xc

βc ln xh
, we

then derive the analytical expression of EMP [see Eq. (32)].

2. For a spin-1/2 system

If the working substance is a spin-1/2 system, then the
power output for the heat engine becomes

P = W

τcycle
= G(τc,τh,τadi)(ωb − ωa)[tanh (βcωa)

− tanh (βhωb)], (A11)

with G(τc,τh,τadi) defined in Eq. (A1). We set ∂P/∂ωa = 0
and ∂P/∂ωb = 0, obtaining

(ωb − ωa)βc =
[

tanh

(
ωaβc

2

)
− tanh

(
ωbβh

2

)]

× cosh2

(
ωaβc

2

)
, (A12)

(ωb − ωa)βh =
[

tanh

(
ωaβc

2

)
− tanh

(
ωbβh

2

)]

× cosh2

(
ωbβh

2

)
. (A13)

Based on Eqs. (A12) and (A13), we find, in the same way
that we obtained Eqs. (A5) and (A9), and that for the spin-
1/2 system, optimal relations among xc,xh and r are also
determined by Eqs. (A5), (A9), and (A10). As a consequence,
the EMP for a heat engine working with a spin-1/2 system
can be approximated by Eq. (32), the same as the one obtained
from the heat engine based on the harmonic system.
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