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Strong-coupling phases of the anisotropic Kardar-Parisi-Zhang equation
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We study the anisotropic Kardar-Parisi-Zhang equation using nonperturbative renormalization group methods.
In contrast to a previous analysis in the weak-coupling regime, we find the strong-coupling fixed point
corresponding to the isotropic rough phase to be always locally stable and unaffected by the anisotropy even
at noninteger dimensions. Apart from the well-known weak-coupling and the now well-established isotropic
strong-coupling behavior, we find an anisotropic strong-coupling fixed point for nonlinear couplings of opposite
signs at noninteger dimensions.
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I. INTRODUCTION

The Kardar-Parisi-Zhang (KPZ) equation [1–4], origi-
nally intended to describe growing interfaces, has become
a paradigm for kinetic roughening and dynamical scaling
phenomena. Apart from its relevance in statistical physics
a connection to condensed-matter systems has also been
established recently [5,6]. A variant of the original KPZ
model, namely the anisotropic Kardar-Parisi-Zhang (AKPZ)
equation, was introduced some years later in the 1990s by
Villain and Wolf [7,8], aiming at describing vicinal surfaces
and the effect of anisotropy. It was long more a subject of
academic interest and much less studied than the standard KPZ
model. However, the AKPZ equation also experienced recently
an unexpected relevance in condensed-matter systems. It was
shown by Chen and coworkers that the order parameter for the
dynamics of a driven Bose-Einstein condensate maps onto a
compact form of the AKPZ equation [9,10]. In contrast to the
standard KPZ equation, however, where by means of an exact
solution in one dimension [11–17] and extensive simulations in
higher dimensions [18–28] the phase diagram is relatively well
understood, much less effort was spent on the AKPZ equation
and most of the studies are limited to the weak-coupling regime
[8,29–33]. An understanding of the AKPZ equation which
includes the strong-coupling behavior has been missing until
now.

The AKPZ equation assumes the d-dimensional space to
be partitioned into two orthogonal and isotropic subspaces
with dimensions d⊥ and d‖. In the original work by Wolf [8]
where the dimensions of the two sectors were chosen equally
(d‖ = d⊥ = 1) so the total dimension is d = 2, the anisotropy
was found to be only of minor importance and basically
leading to the same universality classes as the isotropic KPZ
equation. That is, if both couplings were chosen with an
equal sign, the isotropic KPZ behavior was recovered at long
distances, whereas in the case of an opposite sign or with one
vanishing coupling the weak-coupling Edwards-Wilkinson
(EW) behavior with logarithmic roughness was obtained. The
results of Wolf were confirmed by numerical simulations
[34–36] and the logarithmic correlations by exact arguments
[37]. In contrast, studies on variants of the KPZ equation
[38–42] as well as on related models [43,44] indicated that

anisotropy may become important in some cases. A subsequent
study of the AKPZ equation performed by Täuber and Frey
(TF) [29] by means of dynamic renormalization group later
revealed that the result of Wolf is only a special case and the
situation in generic dimension is more complex. Depending
on the total dimension d and on the splitting in the two sector
dimensions d‖ and d⊥, TF argued that the anisotropy can lead
not only to new universality classes but also may cause the
isotropic solution to become unstable.

In the present study, we reexamine the AKPZ equa-
tion using nonperturbative renormalization group (NPRG)
methods. The NPRG approach to the KPZ equation was
developed in Refs. [45–48]. It successfully yields the KPZ
phase diagram with the correct strong-coupling behavior
and the corresponding exponents are in close agreement
with simulation results in d = 2 and d = 3. In d = 1 the
exact exponents are recovered and the scaling function of
the height-height correlation compares very accurately with
the exact scaling function from Ref. [11]. Throughout this
work we use two different approximations: the simpler local-
potential prime approximation (LPA′) [49] to obtain the phase
diagram and the more-accurate next-to-leading order (NLO)
approximation of Ref. [47] in order to check our findings.
The LPA′ approximation does not lead to accurate numbers
for the exponents but in general it reproduces qualitatively the
phase diagram with the correct strong-coupling behavior. A
similar strategy with these two approximations has recently
been successfully followed to study the KPZ equation with
Gaussian long-range correlated noise [48].

As shown by TF, the stability of the weak-coupling isotropic
EW fixed point as well as of the weak-coupling uniaxial
(EWU) fixed point are changed when a third weak-coupling
anisotropic (EWA) fixed point is crossing them. This happens
in certain dimension combinations. Their analysis also applies
to the transition fixed points in the leading order of an
ε = d − 2 expansion. They conjectured that this perturba-
tive analysis of the stability of the KPZ equation against
anisotropic perturbations could be extended to the transition
fixed points for more general dimensions and probably to the
strong-coupling regime. TF further speculated that a finite
upper critical dimension may result from this instability. Our
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analysis of the NPRG flow equations, however, shows that
no prediction for the strong-coupling behavior can be drawn
from the stability changes in the weak-coupling sector. In the
weak-coupling regime, our results are in close agreement with
the ones by TF and we recover the same fixed points with the
predicted stability changes. In addition to the weak-coupling
regime, the NPRG approach also describes the strong-coupling
behavior with the isotropic rough phase, characterized by a
fully attractive strong-coupling (SC) fixed point. If both initial
nonlinear couplings are chosen with an equal sign (and, in the
case d > 2, sufficiently large) the isotropic strong-coupling
fixed point is always reached. That is, we find that the
stability change of the isotropic EW fixed point, triggered
by the crossing EWA fixed point, does not affect the isotropic
strong-coupling fixed point. In our scenario the isotropic rough
phase is always locally stable for an arbitrary splitting in
the two sector dimensions. If the initial nonlinear couplings
are chosen with opposite signs or if one of them is zero
(the uniaxial case), additional strong-coupling fixed points
are found in some cases. We observe, however, that these
fixed points do not enter in the quadrant where both couplings
have the same sign and therefore never cross the isotropic
strong-coupling fixed point to change its stability.

The paper is organized as follows. In Sec. II, we shortly
present the NPRG formalism for the AKPZ equation, the
ansatz and the approximations that we used and the corre-
sponding flow equations. In Sec. III the fixed-point solutions
of the flow equations are presented and the full phase diagram
of the system is determined. The results are summarized in
Sec. IV. Technical details and the connection to the results by
TF can be found in the Appendices.

II. METHOD

A. AKPZ field theory

The AKPZ equation [8] reads

∂h(t,�x)

∂t
= ν‖ ∇2

‖h(t,�x) + ν⊥ ∇2
⊥h(t,�x) + λ‖

2
(∇‖h(t,�x))2

+ λ⊥
2

(∇⊥h(t,�x))2 + η(t,�x), (1)

where h(t,�x) ≡ h(t,�x‖,�x⊥) is a single valued height profile
which depends on the spatial substrate coordinates �x =
(�x‖,�x⊥)T and on time t . Parallel and perpendicular components
of the substrate have dimensions d‖ and d⊥ in each sector so the
total substrate dimension is d = d‖ + d⊥. The AKPZ equation
has two surface-tension terms and two nonlinear couplings
proportional to νi and λi with i = {‖,⊥}. The last term η(t,�x)
represents the noise. As in Refs. [8,29] we choose Gaussian
white noise with zero mean 〈η(t,�x)〉 = 0 and the isotropic
correlator

〈η(t,�x)η(t ′,�x ′)〉
= 2D δ(d‖)(�x‖ − �x ′

‖) δ(d⊥)(�x⊥ − �x ′
⊥) δ(t − t ′), (2)

where D is the noise amplitude. A field theory can be derived
in the usual way with the Janssen-de Dominicis procedure
[50], introducing an additional Martin-Siggia-Rose response
field h̃ [51]. Equation (1) thereby yields the generating

functional

Z[j,j̃ ] =
∫

D[h,ih̃] exp

(
−S[h,h̃] +

∫
x
{jh + j̃ h̃}

)
,

(3a)

S[h,h̃] =
∫

x

{
h̃(x)

[
∂th(x) − ν‖ ∇2

‖h(x) − ν⊥ ∇2
⊥h(x)

− λ‖
2

(∇‖h(x))2 − λ⊥
2

(∇⊥h(x))2

]
− D(h̃(x))2

}
,

(3b)

where j and j̃ are sources and we have introduced the notation
x ≡ (t,�x‖,�x⊥) for convenience. For later reference, we also
write frequency and momentum labels as q ≡ (ω,�q‖,�q⊥) and
use the Fourier transform convention of Ref. [47] throughout
this work. Being only of technical relevance and without loss
of generality, we work in the following with the rescaled AKPZ
action, such that ν‖ = ν⊥, see Appendix B.

The AKPZ action Eq. (3b) is invariant under both infinites-
imal field transformations,

(i)

{
h′(t,�x) = �x · ∂t �v(t) + h(t,�x + 〈�λ,�v(t)〉)
h̃′(t,�x) = h̃(t,�x + 〈�λ,�v(t)〉) , (4a)

(ii) h′(t,�x) = h(t,�x) + c(t), (4b)

with �v ≡ (�v‖,�v⊥)T and 〈�λ,�v〉 ≡ (λ‖�v‖,λ⊥�v⊥)T apart from
some terms which variations are linear in the fields. The
parameters �v and c of these transformations are infinitesimal
vector and scalar, respectively, depending on time. Relation (i)
corresponds to the Galilean symmetry in a time-gauged form
[46,52] and (ii) is the shift symmetry also gauged in time.
As in Ref. [46], general Ward identities can be deduced from
them. These symmetries constitute the central ingredients to
device our NPRG ansatz in Sec. II C. Note that the Cole-Hopf
version of the AKPZ action with the related Z2 symmetry
holds only in the specific case where ν‖λ⊥/(ν⊥λ‖) = 1, as
pointed out in Ref. [8]. Contrarily to the isotropic situation,
there is no time-reversal symmetry [45,53] in the anisotropic
case. In the symmetric case where ν‖ = ν⊥ and λ‖ = λ⊥ an
additional rotational symmetry is present and the AKPZ action
identifies with the isotropic one. In the uniaxial case with
λ⊥ = 0 an additional symmetry exists and this implies that
the hypersurface γ = ν‖/ν⊥ = 0 is closed along the flow. To
the best of our knowledge this symmetry has not yet been
discussed elsewhere in the literature. We refer to Appendix E
for further details.

B. Nonperturbative renormalization group

The NPRG can be seen as a generalization of Wilson’s idea
to construct an effective field theory for the long-range physics
by continuously integrating out fast degrees of freedom. We do
not go into details here and only highlight the main steps. We
refer the reader to Refs. [49,54,55] for a general introduction
to the NPRG. The implementation of the NPRG method to
describe out-of-equilibrium situations can be found, e.g., in
Refs. [56–59] and the first application to the KPZ problem is
achieved in Ref. [45]. The starting point in a NPRG description
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is to add a regulator term,


Sκ = 1

2

∫
q
hi(−q) [Rκ (q)]ij hj (q), (5)

to the action Eq. (3b), where i,j ∈ {1,2} label the field and
response field h1 = h,h2 = h̃. Rκ is the regulator matrix and
κ is a running cutoff. The generating functional therefore
depends on the external scale κ ,

Zκ [j,j̃ ] =
∫

D[h,ih̃] exp

(
−S − 
Sκ +

∫
x
{jh + j̃ h̃}

)
.

(6)

The form of the regulator is quite general but its asymptotic
behavior must fulfill some requirements. For κ � q the
regulator behaves like a mass with Rκ ∼ κ2 so all fluctuations
are suppressed in the limit κ → ∞. Lowering the cutoff κ ,
the cutoff function vanishes, so that in the limit κ → 0 the
original theory without a regulator is recovered. We choose
the regulator function as

Rκ (q) = r

(
q2

κ2

) (
0 ν‖

κq
2
‖ + ν⊥

κ q2
⊥

ν‖
κq

2
‖ + ν⊥

κ q2
⊥ −2Dκ

)
, (7)

with qi = |�qi |, where i = {‖,⊥} such that it preserves all
the symmetries of the AKPZ action. The scale-dependent
parameters ν‖

κ , ν⊥
κ , and Dκ are defined later in Eqs. (26) and

(34). We use an exponential cutoff function of the form

r(x) = α/[exp(x) − 1], (8)

where α is a free parameter which can be varied to assess the
quality of an approximation. Unless otherwise indicated, we
choose α = 4 throughout this work since the variations of the
critical exponents are minimal around this value for d = 2,3
[48]. Defining the functional Wκ = logZκ , field expectation
values are obtained as functional derivatives with respect to
the sources j and j̃ ,

ϕ(x) = 〈h(x)〉 = δWκ

δj (x)
, ϕ̃(x) = 〈h̃(x)〉 = δWκ

δj̃ (x)
. (9)

The effective action �κ [ϕ,ϕ̃] is defined as

�κ [ϕ,ϕ̃] + Wκ [j,j̃ ] =
∫

jiϕi − 1

2

∫
ϕi [Rκ ]ij ϕj , (10)

which is up to a term proportional to Rκ the Legendre transform
of Wκ . The exact flow for �κ [ϕ,ϕ̃] is given by Wetterich’s
equation, which reads, in Fourier space [49,54,55,60],

∂κ�κ = 1

2
Tr

∫
q
∂κRκGκ (11)

and where

Gκ = [
�(2)

κ + Rκ

]−1
(12)

is the full propagator in presence of external fields.

C. Ansatz

Our aim is to build an approximation scheme for the
AKPZ equation, which automatically preserves along the flow
the symmetries of the problem, summarized in Eq. (4). The
strategy which is inspired from Refs. [61,62] and is similar to

the approach used in Ref. [46] for the isotropic KPZ equation is
to construct an ansatz in terms of symmetry-invariant building
blocks. In the AKPZ equation these building blocks are the
covariant time derivative of the field

Dtϕ = ∂tϕ − λ‖
2

(∇‖ϕ)2 − λ⊥
2

(∇⊥ϕ)2, (13)

and the Galilean invariants ϕ̃, ∇2
‖ϕ, and ∇2

⊥ϕ and gradients
and appropriate covariant time derivatives of them. In order
to keep the full momentum dependence of the two-point
functions, we further introduce four running functions f X

κ ( �p)
with X ∈ {λ,D,ν‖,ν⊥}. In principle, these running functions
also depend on the frequency like in Ref. [46]. However,
to preserve the anisotropic momentum dependence while
keeping the equations numerically tractable, we use the next-
to-leading order (NLO) approximation of Ref. [47]. It consists
in neglecting the frequency dependence of the four flowing
functions f X

κ (ω, �p) → f X
κ ( �p) within the loop integrals, which

reduces drastically the numerical complexity. In the isotropic
case, this approximation is reliable typically up to d � 3.5, as
can be inferred from the dependence of the exponents in the
cutoff parameter α, see Ref. [47]. Moreover, we only focus in
this work on the zero frequency sector and thus the frequency
dependence can be completely dropped from the running func-
tions such that the NLO ansatz for the AKPZ equation reads

�κ [ϕ,ϕ̃] =
∫

x

{
ϕ̃f λ

κ (∇)Dtϕ − (∇2
‖ϕ)f ν‖

κ (∇)ϕ̃

− (∇2
⊥ϕ)f ν⊥

κ (∇)ϕ̃ − ϕ̃f D
κ (∇)ϕ̃

}
, (14)

with f X
κ (∇) ≡ f X

κ (−∇2
‖ ,−∇2

⊥). Taking functional derivatives
of the ansatz with respect to ϕ and ϕ̃ and evaluating them at
ϕ = ϕ̃ = 0 we obtain for the two-point functions

�(2,0)
κ (ω, �p‖, �p⊥) = 0, (15a)

�(1,1)
κ (ω, �p‖, �p⊥) = iω f λ

κ (p‖,p⊥) + �p 2
‖f

ν‖
κ (p‖,p⊥)

+ �p 2
⊥f ν⊥

κ (p‖,p⊥), (15b)

�(0,2)
κ (ω, �p‖, �p⊥) = −2f D

κ (p‖,p⊥). (15c)

Further, we make the reasonable approximation

f ν⊥
κ (p‖,p⊥) = γ −1

κ f ν‖
κ (p‖,p‖), (16)

where γκ = ν‖
κ/ν

⊥
κ and use the notation f ν‖

κ ≡ f ν
κ for conve-

nience. We are left with three flowing functions f X
κ , where

X ∈ {λ,D,ν}. These functions are extracted from the two-
point functions as

f ν
κ (p‖,p⊥) = 1

�p2
‖ + γ −1

κ �p2
⊥

Re�(1,1)
κ (ω, �p‖, �p⊥)

∣∣∣∣
ω=0

, (17a)

f λ
κ (p‖,p⊥) = 1

ω
Im�(1,1)

κ (ω, �p‖, �p⊥)

∣∣∣∣
ω=0

, (17b)

f D
κ (p‖,p⊥) = − 1

2
�(0,2)

κ (ω, �p‖, �p⊥)

∣∣∣∣
ω=0

. (17c)

From Eqs. (7), (12), and (15) the propagator follows as

Gκ (ω,�q‖,�q⊥) = 1

Pκ (ω,q)

[
2kκ (q) Yκ (ω,q‖,q⊥)

Y ∗
κ (ω,q‖,q⊥) 0

]
,

(18)
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where

kκ (q‖,q⊥) = f D
κ (q‖,q⊥) + Dκ r(q2/κ2), (19a)

lκ (q‖,q⊥) = q2
‖
[
f ν

κ (q‖,q⊥) + ν‖
κ r(q2/κ2)

]
+ q2

⊥
[
f ν

κ (q‖,q⊥) + ν⊥
κ r(q2/κ2)

]
, (19b)

Yκ (ω,q‖,q⊥) = iω f λ
κ (q‖,q⊥) + lκ (q‖,q⊥), (19c)

Pκ (ω,q‖,q⊥) = (
ω f λ

κ (q‖,q⊥)
)2 + (lκ (q‖,q⊥))2. (19d)

The scale derivative of the regulator matrix Eq. (7) is

∂κRκ (�q)

=
[

0 q2
‖∂κS

‖
κ (q) + q2

⊥∂κS
⊥
κ (q)

q2
‖∂κS

‖
κ (q) + q2

⊥∂κS
⊥
κ (q) −2∂κS

D
κ (q)

]
,

(20)

where

SX
κ (q2) = Xκr(y), y = q2/κ2 (21)

and

κ∂κS
X
κ (y) = −Xκ

[
ηX

κ r(y) + 2y ∂yr(y)
]

(22)

and we use the notation

X ∈ {D,‖,⊥}, Xκ ∈ {Dκ,ν
‖
κ ,ν

⊥
κ },

(23)
ηX

κ ∈ {
ηD

κ ,η‖
κ ,η

⊥
κ

}
.

The running coefficients Xκ and anomalous dimensions ηX
κ

will be defined later in Eq. (26). Within the NLO approxima-
tion, the remaining n-point functions all vanish, except

�(2,1)
κ (ω1,ω2; �p‖1, �p‖2, �p⊥1, �p⊥2)

= (λ‖ �p‖1 · �p‖2 + λ⊥ �p⊥1 · �p⊥2)

× f λ
κ (| �p‖1 + �p‖2|,| �p⊥1 + �p⊥2|). (24)

D. Dimensionless flowing functions

To analyze the fixed-point properties of the flow equations,
dimensionless and renormalized quantities (indicated by a hat)
are introduced. Momentum and frequency are measured in
units of the running cutoff κ‖ ≡ κ ,

p̂‖ = p‖/κ, p̂⊥ = p⊥
/(

γ 1/2
κ κ

)
, ω̂ = ω/(ν‖

κκ
2), (25)

and we define three running coefficients {Dκ,ν
‖
κ ,ν

⊥
κ } and the

related anomalous dimensions ηX
κ via

ηD
κ = −κ∂κ ln Dκ, η‖

κ = −κ∂κ ln ν‖
κ , η⊥

κ = −κ∂κ ln ν⊥
κ .

(26)

At the initial cutoff scale κ ≡ � the running coefficients are
equal to unity: D� = ν

‖/⊥
� = 1. Due to the Galilean symmetry

Eq. (4a) both coefficients λ‖/⊥ are not renormalized and thus no
additional running couplings are needed for them. We define
the anisotropy ξ , dynamical z, and roughness χ exponents as

x⊥ ∼ x
ξ

‖ , t ∼ xz
‖, h ∼ x

χ

‖ . (27)

With the field dimensions [h(x)] = (κd−2Dκγ
d⊥/2
κ /ν‖

κ )1/2 and
[h̃(x)] = (κd+2ν‖

κγ
d⊥/2
κ /Dκ )1/2 and the rescaling Eq. (25), the

physical critical exponents can be deduced from the anomalous

dimensions at a fixed point (indexed by a star) via

ξ = 1 − (η‖
∗ − η⊥

∗ )/2, (28a)

z = 2 − η‖
∗, (28b)

χ = [2 − d + ηD
∗ − η‖

∗ + d⊥/2(η‖
∗ − η⊥

∗ )]/2. (28c)

Expressed in terms of dimensionless quantities, the AKPZ
flow equations depend on the two dimensionless couplings,

ĝ‖
κ = g

‖
bκ

d−2

(
Dκγ

d⊥/2
κ

ν3
‖κ

)
, (29a)

ĝ⊥
κ = ĝ‖

κγ
2
κ

g⊥
b

g
‖
b

, (29b)

where the bare couplings are defined in Eq. (B3). We will not
study the flow in terms of the nonlinear couplings ĝ‖

κ and ĝ⊥
κ

directly but rather in terms of ĝ‖
κ ≡ ĝκ and the anisotropy ratio

γκ . The flows of the coupling and of the anisotropy ratio are

∂sĝκ = ĝκ

[
d − 2 − ηD

κ + 3η‖
κ − (d⊥/2)(η‖

κ − η⊥
κ )

]
, (30a)

∂sγκ = −γκ (η‖
κ − η⊥

κ ), (30b)

where s = ln(�/κ) is called the RG “time” and ∂s ≡ κ∂κ .
Further, dimensionless running functions with two momen-

tum arguments are defined by

f̂ X
κ (p̂‖,p̂⊥) = f X

κ (p‖,p⊥)/Xκ, (31)

for X ∈ {D,ν,λ} and Xκ ∈ {Dκ,ν
‖
κ ,1}. Their flows are given

by

∂sf̂
X
κ (p̂‖,p̂⊥)

= ηX
κ f̂ X

κ (p̂‖,p̂⊥) + p̂‖ ∂p̂‖f̂ X
κ (p̂‖,p̂⊥)

+ (1 − η‖
κ/2 + η⊥

κ /2)p̂⊥∂p̂⊥f̂ X
κ (p̂‖,p̂⊥) + Î X

κ (p̂‖,p̂⊥),

(32)

with ηX
κ ∈ {ηD

κ ,η‖
κ ,0}, and ÎX

κ (p̂‖,p̂⊥) are the loop integrals

Î X
κ (p̂‖,p̂⊥) = (

κ∂κf
X
κ (p‖,p⊥)

)/
Xκ. (33)

At the origin, the scale-dependent functions are normalized
such that f̂ X

κ (0,0) = 1.
Finally, we have to calculate the flow of the anomalous

dimensions from the ansatz for �κ . We deduce from the two-
point functions in Eqs. (15) that the running coefficients can
be expressed as

ν‖
κ = lim

ω→0, �p‖→0

(
lim
�p⊥→0

�(1,1)(ω, �p‖, �p⊥)/ �p2
‖

)
, (34a)

ν⊥
κ = lim

ω→0, �p⊥→0

(
lim
�p‖→0

�(1,1)(ω, �p‖, �p⊥)/ �p2
⊥

)
, (34b)

Dκ = − lim
ω→0, �p⊥→0, �p‖→0

�(0,2)(ω, �p‖, �p⊥)/2. (34c)

Note the ordering of the limits for the two momenta
to obtain the parallel and perpendicular components. From
Eq. (33), we further define loop integrals with zero external
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arguments

Î ‖
κ = lim

ω→0, �p‖→0

(
lim
�p⊥→0

κ∂κ�
(1,1)(ω, �p‖, �p⊥)/(ν‖

κ �p2
‖)

)
, (35a)

Î⊥
κ = lim

ω→0, �p⊥→0

(
lim
�p‖→0

κ∂κ�
(1,1)(ω, �p‖, �p⊥)/(ν⊥

κ �p2
⊥)

)
, (35b)

Î D
κ = − lim

ω→0, �p⊥→0, �p‖→0
κ∂κ�

(0,2)(ω, �p‖, �p⊥)/(2Dκ ). (35c)

Therefore, from the definition of the anomalous dimensions
Eq. (26) and Eqs. (34) and (35)

0 = ηX
κ + Î X

κ (36)

follows, where X ∈ {D,‖,⊥}. Due to the regulator each
integral ÎX

κ itself depends linearly on ηX
κ and can be written in

the form

Î X
κ = Î XD

κ ηD
κ + Î X‖

κ η‖
κ + Î X⊥

κ η⊥
κ + Î X0

κ . (37)

Equations (36) and (37) thus form a linear set of equations that
can be solved for the exponents. Explicit expressions for the
integrals ÎXY

κ with X,Y ∈ {D,‖,⊥} are given in Eqs. (C1) and
(C2) of the Appendix.

The NLO approximation [47] noticeably reduces the
complexity of the flow equations but the loop integrals in
Eqs. (33) are still four-dimensional integrals and numerically
cumbersome. However, for a qualitative picture of the phase
diagram it is sufficient to consider only the flow of the
scale-dependent couplings and to set all flowing functions to 1:

f̂ X
κ (p̂‖,p̂⊥) → f̂ X

κ (0,0) ≡ 1. (38)

This approximation is usually referred to as LPA′ [49]. For the
isotropic KPZ equation the roughness exponent χ is overesti-
mated at the LPA′ level but the qualitative behavior and the cor-
rect strong-coupling physics is already obtained. In addition,
the LPA′ allows us to study analytically the weak-coupling
limit of the flow and we recover the results of TF in that limit,
see Appendix A. Only in order to test the robustness of the
various features of the phase diagram obtained in the LPA′ ap-
proximation will we resort to the NLO approximation. A sim-
ilar strategy, with both LPA′ and NLO, was adopted to study
the long-range KPZ equation in a previous study [48]. Hence,
in the following, the LPA′ results are presented, except when
they disagree with the NLO ones, which will be indicated.

E. Numerical implementation

In the LPA′ approximation the two flow equations (30) for
the couplings, and in addition the three flow equations (32)
for the running functions at NLO, are solved numerically by
explicit Euler time stepping. Stable fixed-point solutions are
typically found for RG “times” s � −10. The flowing func-
tions f̂ X

κ (p̂‖,p̂⊥) are discretized on rectangular and equidistant
p̂‖ × p̂⊥ grids. Between the grid points, they are interpolated
by bicubic splines. Numerical integrations over the two radial
momentum components and over the two angles are performed
by Gauss-Legendre quadrature. Note that even though the mo-
mentum grid in the two dimensionless momentum directions
p̂‖ and p̂⊥ is equidistant, the dimensionful grid is properly
rescaled according to Eq. (25) to account for the anisotropy. In
the LPA′ approximation, the two-dimensional radial integrals

for ÎX
κ Eqs. (C1) are reduced to one-dimensional integrals

according to Eq. (C3). We initialize all flowing functions at
f̂ X

� (p̂‖,p̂⊥) = 1.

III. RESULTS

A. NPRG fixed-point solutions

We present in the following the various fixed-point solutions
that we find within the NPRG approach. As can be inferred
from the β functions (30), all the set (ĝ = 0,γ ) is a continuous
line of fixed points. Within them, there are particular points
where the flow along the γ direction is vanishing even
for a nonzero but small coupling ĝ. These fixed points are
EW, EWA, and EWU, for which the coupling ĝκ → ĝ∗ = 0
(presented below). Quite generally, we find in this sector
the same results as TF within the perturbative approach. In
particular, we recover the same stability conditions as TF and
find the EW exponents χEW = (2 − d)/2 and zEW = 2 since
ηD

∗ = η
‖
∗ = η⊥

∗ = 0 for these three weak-coupling solutions.
It is also clear that the isotropic fixed-point solutions (with
γ∗ = 1) of the AKPZ equation are also solutions of the KPZ
equation. These solutions are therefore independent of the
splitting into the sector dimensions d‖ and d⊥ and depend only
on the total dimension d.

Finally, let us define for convenience the rescaled coupling
constant ĝ′ = vd ĝ/4 with v−1

d = 2d−1πd/2�(d/2) that will
be used for the graphical representation of the RG flows
throughout this article.

1. Isotropic Edwards-Wilkinson fixed point (EW)

The isotropic EW fixed point corresponds to (ĝ∗,γ∗) =
(0,1). This fixed point is repulsive (respectively, attractive) in
the ĝ direction for d � 2 (respectively, d > 2). In the direction
of the anisotropy γ , the EW fixed point is attractive for d <

√
8

and repulsive for d >
√

8.

2. Anisotropic Edwards-Wilkinson fixed point (EWA)

The anisotropic EWA fixed point is located at (ĝ∗,γ∗) =
(0,(4 − d‖d)/(dd⊥ − 4)). It is repulsive (respectively, attrac-
tive) in the ĝ direction for d < 2 (respectively, d > 2). At
exactly d = 2, EWA is repulsive (respectively, attractive)
for d‖ � 1 + 1/

√
5 (respectively, d‖ < 1 + 1/

√
5). In the

direction of the anisotropy γ , the EWA fixed point is attrac-
tive for d < −
/2 +

√
(
/2)2 + 8 and

√
8 < d < 
/2 +√

(
/2)2 + 8 and repulsive for −
/2 +
√

(
/2)2 + 8 < d <√
8 and d > 
/2 +

√
(
/2)2 + 8 with 
 = d‖ − d⊥.

3. Uniaxial Edwards-Wilkinson fixed point (EWU)

The uniaxial EWU fixed point at (ĝ∗,γ∗) = (0,0)
corresponds to the situation when λ⊥ is zero. It is repulsive
(respectively, attractive) in the ĝ direction for d < 2 (re-
spectively, d > 2). Exactly at d = 2, EWU is repulsive
(respectively, attractive) in the ĝ direction for d‖ � −1 + √

5
(respectively, d‖ < −1 + √

5). In the direction of the
anisotropy γ , the EWU fixed point is repulsive for
d < −
/2 +

√
(
/2)2 + 8 and attractive for larger values of

d. A second EWU∞ fixed point at (0,∞) corresponds to the
reverse situation when λ‖ is equal to zero.
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4. Isotropic transition fixed point (T)

The transition fixed point T is located at γ∗ = 1 and
ĝ∗ > 0 and exists for d > 2. It is always repulsive in the
ĝ direction. In the direction of the anisotropy γ it is stable
against anisotropic perturbations for small d but becomes
unstable for larger values of d when the TA fixed point crosses
it. The exponents are exactly known: χT = 0 and zT = 2 in
all dimensions. Within our approximation scheme, they are
numerically found to be slightly negative [e.g., in d = 3 we
find χT = −0.08 (respectively, −0.12) in NLO (respectively,
LPA′) approximation], which physically implies χT = 0.

5. Anisotropic transition fixed point (TA)

The anisotropic transition fixed point is unstable and located
at ĝ∗ > 0. It is found for d > 2 and when the difference
between the sector dimensions is sufficiently large so the
anisotropic fixed point A is present. TA is always repulsive
in the ĝ direction. In the direction of the anisotropy, the TA
fixed point is attractive for small values of d when it is in the
γ < 0 quadrant but becomes unstable when it crosses the TU
fixed point and moves into the 0 < γ∗ < 1 quadrant. TA reverts
to attractive when it crosses the T fixed point at γ∗ = 1 and
turns into the γ∗ > 1 quadrant. For d > 2 and small differences
between the sector dimensions, TA merges with the TU fixed
point at γ∗ = 0, see Fig. 5.

6. Uniaxial transition fixed point (TU)

The uniaxial transition fixed point is unstable and located at
ĝ∗ > 0 and γ∗ = 0. It is found for d > 2 when the difference
between the sector dimensions is sufficiently large so the uni-
axial U fixed point is present. TU is always unstable in the ĝ

direction. In the direction of the anisotropy, TU is attractive
for small values of d when the TA fixed point is in the γ < 0
quadrant but becomes unstable when TA crosses it to move
into the γ > 0 quadrant. For d > 2 and a decreasing difference
between the sector dimensions, TU merges with the TA and
the A fixed point before it annihilates with U, see Fig. 5.

7. Isotropic strong-coupling fixed point (SC)

The strong-coupling fixed point SC is located at γ∗ = 1
and ĝ∗ > 0 and describes the isotropic rough phase of the KPZ
equation. Within the NLO approximation, the associated expo-
nents are in good agreement with the numerical ones in d = 2
and d = 3 [45–47]. The quality of the NLO approximation in
the isotropic case deteriorates with increasing dimension and
it does not yield reliable quantitative results above typically
d � 3.5. In all dimensions at the LPA′, and in all dimensions
d � 3.5 at the NLO approximation, we find the SC fixed point
to be locally stable and fully attractive.

8. Anisotropic fixed point (A)

The anisotropic fixed point A is located at γ∗ < 0 and ĝ∗ >

0. It is fully attractive for d < 2 and for d = 2 when d‖ >

1 + 1/
√

5. For d = 2 and d‖ = 1 + 1/
√

5 it coincides with
the EWA fixed point and moves to the negative quadrant for
smaller values of d‖. For d > 2, A is found for a large-enough
splitting between the sector dimensions. In that case it is also
fully attractive but the dominant exponents around A may

become complex. To the best of our knowledge, this fixed point
has not yet been found and may correspond to a new rough
anisotropic phase. Unfortunately, we find it only at noninteger
dimensions. In consequence, its physical role is unclear.

9. Uniaxial fixed point (U)

The uniaxial fixed point U is located at γ∗ = 0 and ĝ∗ > 0.
It is present for d < 2 and in d = 2 when d‖ > −1 + √

5. U
is attractive in the direction ĝ but repulsive in the anisotropy
direction γ . At d = 2 and d‖ = −1 + √

5 it crosses the EWU
fixed point and moves to the unphysical quadrant for smaller
values of d‖. For d > 2 and a decreasing difference between
both sector dimensions, U annihilates with the transition fixed
point TU.

B. Phase diagram

After the characterization of the various fixed-point solu-
tions, let us discuss the phase diagram of the AKPZ equation
in the (ĝ′,γ ) plane. For EW, EWU, and EWA we recover
the same stability conditions as TF in Ref. [29]. That is, the
stability of the weak-coupling fixed points against anisotropic
perturbations is changed by the EWA fixed point, which moves
along the (ĝ = 0,γ ) axis as a function of d‖ and d⊥ and
interchanges its stability with the other fixed points EWU,
EW, and EWU∞ when crossing them. The sector dimensions
d‖ and d⊥ we find at which these crossings occur agree with
those found by TF. Apart from this stability condition in the
ĝ direction reflecting the effect of anisotropic perturbations,
stability changes also occur in the γ direction to EW, EWU,
and EWA. This effect is already visible at the perturbative level
but requires nonperturbative methods to be thoroughly studied,
since the crossing fixed points can become strong coupling in
certain parameter regimes as detailed in Appendix D. This
analysis goes beyond the one of TF. In the following we will
show how the inclusion of the strong-coupling part changes
qualitatively our understanding of the phase diagram.

1. The case d < 2

To begin, the situation d below 2 is depicted in Fig. 1.
All the weak-coupling fixed points EW, EWU, and EWA are
unstable in the ĝ direction and three additional fixed points
are found; one fixed point U is unstable in the γ direction
while attractive in the ĝ direction along the γ = 0 axis, and
two locally fully attractive SC and A fixed points. When both
nonlinear couplings have the same sign, which corresponds
to the flow in the positive γ quadrant of Fig. 1, the flow is
always attracted by the SC fixed point and the well-known
isotropic KPZ rough phase is found. On the other hand, if the
couplings have opposite signs, which corresponds to the flow
in the negative γ quadrant, the flow is always driven towards
the A fixed point.

2. The case d = 2

Exactly at d = 2 the stability in the ĝ direction of the
weak-coupling fixed points EW, EWU, and EWA depends
on the splitting in the sector dimensions. The RG flow for
an increasing difference between d‖ and d⊥ is depicted in
Fig. 2. Figure 2(a) corresponds to Wolf’s result [8] with
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FIG. 1. (Color online) Typical RG trajectories in the (ĝ′
κ ,γκ )

plane for d < 2 (here d‖ = d⊥ = 0.8). All weak-coupling fixed
points EW (with γ∗ = 1), EWU (with γ∗ = 0), and EWA [with
γ∗ = (4 − d‖d)/(dd⊥ − 4)] are unstable in the ĝ direction and we
find two locally fully stable strong-coupling fixed points SC (with
γ∗ = 1) and A (with γ∗ < 0). Moreover, there is another U fixed point
with γ∗ = 0 which is attractive along the γ = 0 axis and repulsive in
the γ direction.

d‖ = d⊥ = 1. That is, the EW fixed point is repulsive and
EWU and EWA are both attractive in the ĝ direction. When
both nonlinear couplings have the same sign, the flow is
always attracted by the SC fixed point. On the other hand,
if the couplings have opposite signs, the flow is always driven
towards the weak-coupling EWA fixed point. The situation
changes when the difference between the sector dimensions
increases. For d‖ > −1 + √

5, first EWU becomes repulsive
in the ĝ direction, see Fig. 2(b). This stability change is induced
by the U fixed point, which crosses EWU at d‖ = −1 + √

5
and enters the physical quadrant. Since U is unstable in the
γ direction the flow is still attracted towards SC or EWA
if γ �= 0. However, if the difference between the two sector
dimensions is further increased above d‖ > 1 + 1/

√
5, EWA

is also crossed by A and turns repulsive in the ĝ direction, see
Fig. 2(c). For positive γ the SC fixed point continues to be the
only attractive fixed point, but in the negative γ quadrant, the
flow is driven towards A, similarly to the situation in d < 2.

3. The case 2 < d � 3

For d > 2 all three fixed points EW, EWU, and EWA
become attractive in the ĝ direction. More precisely, among
these fixed points, the ones that are attractive in the ĝ direction
in d = 2 remain so in d > 2, whereas for the others that are
repulsive in d = 2, they are crossed in d > 2 by a transition
fixed point as shown in Fig. 3 and thereby become stable in
the ĝ direction.

When d increases, the ordering in the γ direction of the
transition fixed points T, TU, and TA may differ from the
ordering of the EW, EWU, and EWA fixed points (see Figs. 3
and 4). For d larger than 2 and arbitrary splitting in the two
sectors, we find the flow in certain cases to be more complex.
For example in d = 3 we observe the flows displayed in
Fig. 5, which shows that for certain values of the splitting
the dominant exponents around the A fixed point are complex.
This gives a flow in form of spirals. Similar situations, with
spiral flows around fixed points, were already observed, for
example, in Ref. [63]. Unfortunately, we do not find the A

FIG. 2. (Color online) RG trajectories in the (ĝ′
κ ,γκ ) plane at

d = 2 with an increasing difference between the sector dimensions
(from up to down). (a) represents a typical flow for d‖ < −1 + √

5
(here d‖ = d⊥ = 1, which corresponds to Wolf’s result [8]). Both
the anisotropic fixed point EWA and the isotropic SC fixed point are
fully attractive. The uniaxial fixed point EWU is attractive in the ĝ

direction but unstable in the anisotropy direction. (b) Typical flow for
−1 + √

5 < d‖ < 1 + 1/
√

5 (here d‖ = 1.3 and d⊥ = 0.7). EWU is
now repulsive in the ĝ direction. (c) Typical flow for d‖ > 1 + 1/

√
5

(here d‖ = 1.5 and d⊥ = 0.5). EWA becomes repulsive in the ĝ

direction because the anisotropic fixed point A crosses it. Note
that in all cases the isotropic fixed point SC is not affected by the
weak-coupling stability changes and is always fully attractive.

fixed point in d = 3 for integer values of the sector dimensions.
If such a behavior had been present, it would imply a new
anisotropic universality class in physical situations.

In the positive γ region we did not find any case in which
the isotropic SC fixed point becomes locally unstable. For the
physically relevant case where both sector dimensions take
integer values (d‖ = 2,d⊥ = 1) we find the flow shown in
Fig. 5(d) within the LPA′ approximation. Within the NLO
approximation, the flow diagram slightly differs, since the
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FIG. 3. (Color online) RG trajectories in the (ĝ′
κ ,γκ ) plane for

d > 2 but with small d − 2. The difference between the sector
dimensions increases along the panels. The three weak-coupling
fixed points EW, EWU, and EWA are attractive in the ĝ direction
in all panels. (a) Typical flow for d‖ � 1.2 (here d‖ = d⊥ = 1.1). One
unstable transition fixed point T (γ∗ = 1) is present. (b) Typical flow
for 1.2 � d‖ � 1.4 (here d‖ = 1.31 and d⊥ = 0.702). Two unstable
transition fixed points T and TU (γ∗ = 0) are present. (c) Typical flow
for 1.4 � d‖ (here d‖ = 1.7 and d⊥ = 0.5). Three unstable transition
fixed points T, TU, and TA (γ∗ < 0) are present.

A and U fixed points are no longer present, as shown in
Fig. 6. However, this does not affect the associated physics.
Indeed, within both approximations there is a critical coupling
value ĝc in the positive γ quadrant which is given by the
separatrix (highlighted in blue) that goes through T. If the
coupling at the initial scale is below this critical value, the
flow renormalizes the coupling to zero and EW physics is
obtained. For a sufficiently large initial coupling ĝ > ĝc the
flow is attracted towards the SC fixed point, yielding the rough
isotropic phase. At this point, it is not clear why the U and
A fixed points are not present for d‖ = 2 and d⊥ = 1 in the
NLO approximation, although they are found for d < 2 in both
LPA′ and NLO approximations. One possibility is that both

FIG. 4. (Color online) RG trajectories in the (ĝ′
κ ,γκ ) plane. Typ-

ical flow for d approaching 3 with d⊥ ∼ 0.5 (here d‖ = 2.5 and
d⊥ = 0.5). The unstable transition fixed points T (γ∗ = 1), TA
(0 < γ∗ < 1), and TU (γ∗ = 0) are present. The ordering of the three
transition fixed points along the γ axis is no longer the same as
the one of the weak-coupling solutions (EWA, EW, and EWU). It is
useful to compare with Fig. 3. Note that we do not find a splitting in
d = 3 which corresponds to scenario C in TF [29] where the ordering
becomes EWA, EW, and EWU and TA, T, and TU.

fixed points A and U exist for more extreme splittings in the
sector dimensions. Unfortunately, this regime is numerically
hard to explore within the NLO approximation because the
double integral Eq. (C3) becomes badly conditioned.

4. The case d > 3

As already pointed out, the NLO approximation turns
out to become quantitatively unreliable in the isotropic
strong-coupling regime for dimensions d � 3.5 [45,47,48]. In
large dimensions one typically finds the strong-coupling fixed
point but the associated critical exponents largely depend on
the regulator. However, the quality of the NLO approximation
around the anisotropic or the uniaxial fixed point is a priori
not known. In the physically relevant cases d‖ = d⊥ = 2 and
d‖ = 3 with d⊥ = 1 we find the isotropic strong-coupling fixed
point always locally fully stable, both within the LPA′ and the
NLO approximations [64]. The flow is qualitatively similar
to Fig. 5(e) when d‖ = d⊥ = 2, whereas it resembles Fig. 4
when d‖ = 3 and d⊥ = 1 [65]. In contrast to the former case
in d = 3, we find the A fixed point for the integer splitting
d‖ = 3 and d⊥ = 1 at LPA′, but it is not present at NLO. This
indicates that the LPA′ (or even NLO) approximation may be
unreliable in this regime of the flow.

C. On the stability of the isotropic rough phase

In the previous section we stressed that the strong-coupling
behavior in the positive γ quadrant is always driven by a unique
and locally fully attractive SC fixed point. For noninteger
dimensions we find other fixed points A and U, but they
lie in the negative γ quadrant (respectively, at γ = 0). As
already mentioned, we never observe that these fixed points
enter the positive γ quadrant. Hence, they do not cross the
SC fixed point and leave its stability unchanged. Physically,
this implies that the isotropic rough phase is locally stable
against anisotropic perturbations even for arbitrary noninteger
sector dimensions. Our work generalizes the one of TF [29]
since we are able to study the strong-coupling regime. In
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FIG. 5. (Color online) RG trajectories in the (ĝκ ,γκ ) plane for
d = 3 and a decreasing difference between both sector dimensions
(from up to down). (a) The fixed point A is enclosed by the γ = 0 axis
and the separatrix (highlighted in blue) and shows a spiral flow (here
d‖ = 2.04855 and d⊥ = 0.95145). (b) The separatrix has formed a
closed loop around A. Inside this loop, the flow is directed towards A,
outside and for γ < 0 the couplings always flow to the weak-coupling
regime (here d‖ = 2.047 and d⊥ = 0.953). (c) The enclosed area
around A decreases in size (here d‖ = 2.035 and d⊥ = 0.965). (d) The
size of the attractive zone around A shrank down to zero. The TA
fixed point has approached TU at γ = 0 and merges with it. (here
d‖ = 2 and d⊥ = 1). (e) The end point of the separatrix where A was
located approaches the TU fixed point and merges with it. TU and U
approach each other (here d‖ = 1.73 and d⊥ = 1.27). (f) TU and U
have annihilated, so the flow in the uniaxial case is always driven to
the weak-coupling EWU. (here d‖ = d⊥ = 1.5).

FIG. 6. (Color online) RG trajectories in the (ĝ′
κ ,γκ ) plane for

d‖ = 2 and d⊥ = 1 in the NLO approximation, to be compared
with Fig. 5(d). The strong-coupling SC fixed point is locally fully
attractive, but neither the A nor the U fixed points are present. Note
that the position of the separatrix (highlighted in blue) is only roughly
estimated.

agreement with TF we find that the isotropic KPZ equation
may become unstable against anisotropic perturbations in the
weak-coupling regime. However, our results indicate that it is
not possible to naı̈vely extrapolate the perturbative results to
the strong-coupling regime in order to predict the stability
of the SC phase. In contrast to the weak-coupling regime
the isotropic strong-coupling fixed point SC remains always
locally fully stable.

IV. CONCLUSION

In this manuscript, we have presented a NPRG analysis
of the AKPZ equation. We have derived the associated flow
equations and solved them numerically to study the RG flow
and their fixed-point solutions. Two different approximations
were applied throughout this study, the simpler LPA′ approxi-
mation to obtain the qualitative features of the phase diagram
and the more accurate NLO approximation in order to check
our findings.

At weak coupling the LPA′ approximation leads to the
same equations (and stability conditions) as the perturbative
ones in the study by TF, but moreover, with the NPRG
approach we are able to study the strong-coupling regime.
We find that the isotropic rough KPZ phase is always locally
stable against anisotropic perturbations. The AKPZ equation
provides no hint for the existence of an upper critical dimension
of the strong-coupling phase (similarly to the conclusion
drawn from the analysis of the KPZ equation with long-range
noise [48]).

In fact, if both nonlinear couplings have the same sign,
the critical behavior of the AKPZ equation much resembles
that of the standard KPZ equation and the critical exponents
χ and z only depend on the total spatial dimension d but
not on the splitting in the two sector dimensions. That is,
for d � 2 the flow is always driven towards the isotropic
rough strong-coupling fixed point. For d > 2 there is a
critical coupling ĝc below which the flow renormalizes the
coupling to zero and EW physics is obtained. In contrast,
for sufficiently large coupling ĝ > ĝc the flow is attracted
towards the SC fixed point, describing the isotropic rough
phase. The anisotropy plays no role for nonlinearities of same
signs.

However, if the nonlinearities have different signs, the
anisotropy becomes relevant. The case d‖ = d⊥ = 1, initially
studied by Wolf finding only weak-coupling behaviors, turns
out to be only a special case, as already pointed out by
TF. In the general situation, we find a new locally attractive
anisotropic strong-coupling fixed point that could correspond
to a new universality class. However, it is present only for
certain noninteger values of d‖ and d⊥ and does not exist at
integer sector dimensions.

We hope that our results can have some relevance for the
physics of cold atoms, considering the recently established
connection with an anisotropic and periodic variant of the
KPZ equation [9,10]. The AKPZ equation readily incorporates
the effect of anisotropy but ignores that of periodicity. At
the current stage it is, however, not possible to predict the
importance of this missing ingredient and how it might change
the physics. This work is left for further studies.
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APPENDIX A: PERTURBATIVE ANALYSIS IN THE
WEAK-COUPLING LIMIT

In the limit ĝκ → 0, the anomalous dimensions simplify to

ηD
κ = −Î D0

κ , η‖
κ = −Î ‖0

κ , η⊥
κ = −Î⊥0

κ . (A1)

As emphasized in previous studies [48], the NLO approxima-
tion reduces to the LPA′ approximation in that limit because the
difference of the flowing functions f X to 1 is already of order
ĝ. We therefore can take the limit of small coupling directly in
the LPA′ approximation Eq. (38) and calculate explicitly the
loop integrals Eqs. (C1) to obtain

ηD
κ = ĝκ

[
d‖(d‖ + 2) + d⊥(d⊥ + 2)γ 2

κ + 2d‖d⊥γκ

]
A(d),

(A2a)

η‖
κ = −ĝκ [d(d‖ + d⊥γκ ) − 4]A(d), (A2b)

η⊥
κ = −ĝκγκ [d(d‖ + d⊥γκ ) − 4γκ ]A(d). (A2c)

These expressions are, up to the inverse sign convention and
the extra factor

A(d) = − vd

2d(d + 2)

∫ ∞

0
dq̂ q̂d−1 ∂q̂2r(q̂2)

[1 + r(q̂2)]2
, (A3)

similar to the one-loop results of TF [29]. The integral A(d)
is a positive constant which depends only on the dimension
and on the cutoff function. Note that for the special value
d = 2 this integral is independent of the regulator and we find
A(2) = 1/(64π ). The factor A(d) can further be absorbed by
a simple redefinition of ĝκ . For all the weak-coupling fixed
points EW, EWU, and EWA we therefore recover exactly the
same stability conditions as TF.

APPENDIX B: RESCALING

As already noted in Ref. [29] the AKPZ equation can
be rescaled such that either ν‖ = ν⊥ or |λ‖| = |λ⊥|. The
first variant is derived explicitly in this Appendix, since the
resulting rescaled AKPZ action is the one studied throughout
this work. Performing the substitution

h(t,�x) =
(

D

ν‖

)1/2

γ d⊥/4h′(t ′,�x ′), (B1a)

h̃(t,�x) =
(ν‖

D

)1/2
γ d⊥/4h̃′(t ′,�x ′), (B1b)

�x‖ = �x ′
‖, �x⊥ = γ −1/2 �x ′

⊥, t = t ′/ν‖, (B1c)

in the action Eq. (3b) where γ = ν‖/ν⊥, we obtain the rescaled
AKPZ action (to simplify notations, the primes are omitted):

S[h,h̃] =
∫

x

{
h̃(x)

[
∂th(x) − ∇2

‖h(x) − ∇2
⊥h(x)

−
√

g
‖
b

2
(∇‖h(x))2 −

√
g⊥

b

2
(∇⊥h(x))2

]
− (h̃(x))2

}
,

(B2)

where

√
g

‖
b ≡

(
λ2

‖Dγ d⊥/2

ν3
‖

)1/2

, (B3a)

√
g⊥

b ≡
(

λ2
⊥Dγ d⊥/2+2

ν3
‖

)1/2

. (B3b)

The rescaling therefore amounts to the substitution λ‖ →√
g

‖
b and λ⊥ →

√
g⊥

b in the original AKPZ action with all the
other constants set to unity.

APPENDIX C: FLOW INTEGRALS FOR THE
ANOMALOUS DIMENSIONS

In the NLO approximation, the flow integrals with zero
external frequency and momentum are

Î DD
κ = −ĝκ

vd‖vd⊥

2

∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥ (q̂2

‖ + γκ q̂
2
⊥)2 r(q̂2) k̂κ (q̂‖,q̂⊥)

f̂ λ
κ (q̂‖,q̂⊥)(l̂κ (q̂‖,q̂⊥))3

, (C1a)

Î D‖
κ = ĝκ

3vd‖vd⊥

4

∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥ q̂2

‖ (q̂2
‖ + γκ q̂

2
⊥)2 r(q̂2) (k̂κ (q̂‖,q̂⊥))2

f̂ λ
κ (q̂‖,q̂⊥)(l̂κ (q̂‖,q̂⊥))4

, (C1b)

Î D⊥
κ = ĝκ

3vd‖vd⊥

4

∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥ q̂2

⊥(q̂2
‖ + γκ q̂

2
⊥)2 r(q̂2) (k̂κ (q̂‖,q̂⊥))2

f̂ λ
κ (q̂‖,q̂⊥)(l̂κ (q̂‖,q̂⊥))4

, (C1c)

Î D0
κ = ĝκ

vd‖vd⊥

2

∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥ q̂2(q̂2

‖ + γκ q̂
2
⊥)2 (∂q̂2r(q̂2))k̂κ (q̂‖,q̂⊥)

f̂ λ
κ (q̂‖,q̂⊥)(l̂κ (q̂‖,q̂⊥))4

[3q̂2k̂κ (q̂‖,q̂⊥) − 2l̂κ (q̂‖,q̂⊥)], (C1d)
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Î ‖D
κ = ĝκ

vd‖vd⊥

4d‖

∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥

r(q̂2)

f̂ λ
κ (q̂‖,q̂⊥)(l̂κ (q̂‖,q̂⊥))3

[
2(γκ − 1)(q̂2

‖ q̂
2
⊥/q̂2)f̂ λ

κ (q̂‖,q̂⊥)l̂κ (q̂‖,q̂⊥)

+ (q̂2
‖ + γκ q̂

2
⊥)

(
f̂ λ

κ (q̂‖,q̂⊥)q̂‖∂q̂‖ l̂κ (q̂‖,q̂⊥) − l̂κ (q̂‖,q̂⊥)q̂‖∂q̂‖ f̂
λ
κ (q̂‖,q̂⊥) − 2(q̂2

‖/q̂
2)f̂ λ

κ (q̂‖,q̂⊥)l̂κ (q̂‖,q̂⊥)
)]

, (C1e)

Î ‖‖
κ = − ĝκ

vd‖vd⊥

4d‖

∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥

q̂2
‖ r(q̂2)

f̂ λ
κ (q̂‖,q̂⊥)(l̂κ (q̂‖,q̂⊥))3

[−(2q̂2
‖ − d‖(q̂2

‖ + γκ q̂
2
⊥))f̂ λ

κ (q̂‖,q̂⊥)k̂κ (q̂‖,q̂⊥)

+ (q̂2
‖ + γκ q̂

2
⊥)

(
f̂ λ

κ (q̂‖,q̂⊥)q̂‖∂q̂‖ k̂κ (q̂‖,q̂⊥) − 2kκ (q̂‖,q̂⊥)q̂‖∂q̂‖ f̂
λ
κ (q̂‖,q̂⊥)

)]
, (C1f)

Î ‖⊥
κ = − ĝκ

vd‖vd⊥

4d‖

∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥

q̂2
⊥r(q̂2)

f̂ λ
κ (q̂‖,q̂⊥)(l̂κ (q̂‖,q̂⊥))3

[−(2q̂2
‖ − d‖(q̂2

‖ + γκ q̂
2
⊥))f̂ λ

κ (q̂‖,q̂⊥)k̂κ (q̂‖,q̂⊥)

+ (q̂2
‖ + γκ q̂

2
⊥)

(
f̂ λ

κ (q̂‖,q̂⊥)q̂‖∂q̂‖ k̂κ (q̂‖,q̂⊥) − 2k̂κ (q̂‖,q̂⊥)q̂‖∂q̂‖ f̂
λ
κ (q̂‖,q̂⊥)

)]
, (C1g)

Î ‖0
κ =ĝκ

vd‖vd⊥

2d‖

∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥

q̂2(∂q̂2r(q̂2))

f̂ λ
κ (q̂‖,q̂⊥)(l̂κ (q̂‖,q̂⊥))3

[
f̂ λ

κ (q̂‖,q̂⊥)(2(γκ − 1)(q̂2
‖ q̂

2
⊥/q̂2)l̂κ (q̂‖,q̂⊥)

+ q̂2(2q̂2
‖ − d‖(q̂2

‖ + γκ q̂
2
⊥))k̂κ (q̂‖,q̂⊥)) + (q̂2

‖ + γκ q̂
2
⊥)(f̂ λ

κ (q̂‖,q̂⊥)(q̂‖∂q̂‖ l̂κ (q̂‖,q̂⊥)

− q̂2q̂‖∂q̂‖ k̂κ (q̂‖,q̂⊥) − 2(q̂2
‖/q̂

2)l̂κ (q̂‖,q̂⊥)) + (2q̂2k̂κ (q̂‖,q̂⊥) − l̂κ (q̂‖,q̂⊥))q̂‖∂q̂‖ f̂
λ
κ (q̂‖,q̂⊥))

]
, (C1h)

Î⊥D
κ =ĝκγκ

vd‖vd⊥

4d⊥

∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥

r(q̂2)

f̂ λ
κ (q̂‖,q̂⊥)(l̂κ (q̂‖,q̂⊥))3

[
2(1 − γκ )(q̂2

‖ q̂
2
⊥/q̂2)f̂ λ

κ (q̂‖,q̂⊥)l̂κ (q̂‖,q̂⊥)

+ (q̂2
‖ + γκ q̂

2
⊥)

(
f̂ λ

κ (q̂‖,q̂⊥)q̂⊥∂q̂⊥ l̂κ (q̂‖,q̂⊥) − l̂κ (q̂‖,q̂⊥)q̂⊥∂q̂⊥ f̂ λ
κ (q̂‖,q̂⊥) − 2(q̂2

⊥/q̂2)f̂ λ
κ (q̂‖,q̂⊥)l̂κ (q̂‖,q̂⊥))

]
, (C1i)

Î⊥‖
κ = − ĝκγκ

vd‖vd⊥

4d⊥

∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥

q̂2
‖ r(q̂2)

f̂ λ
κ (q̂‖,q̂⊥)(l̂κ (q̂‖,q̂⊥))3

[−(2γκ q̂
2
⊥ − d⊥(q̂2

‖ + γκ q̂
2
⊥))f̂ λ

κ (q̂‖,q̂⊥)k̂κ (q̂‖,q̂⊥)

+ (q̂2
‖ + γκ q̂

2
⊥)

(
f̂ λ

κ (q̂‖,q̂⊥)q̂⊥∂q̂⊥ k̂κ (q̂‖,q̂⊥) − 2kκ (q̂‖,q̂⊥)q̂⊥∂q̂⊥ f̂ λ
κ (q̂‖,q̂⊥)

)]
, (C1j)

Î⊥⊥
κ = − ĝκγκ

vd‖vd⊥

4d⊥

∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥

q̂2
⊥r(q̂2)

f̂ λ
κ (q̂‖,q̂⊥)(l̂κ (q̂‖,q̂⊥))3

[−(2γκ q̂
2
⊥ − d⊥(q̂2

‖ + γκ q̂
2
⊥))f̂ λ

κ (q̂‖,q̂⊥)k̂κ (q̂‖,q̂⊥)

+ (q̂2
‖ + γκ q̂

2
⊥)

(
f̂ λ

κ (q̂‖,q̂⊥)q̂⊥∂q̂⊥ k̂κ (q̂‖,q̂⊥) − 2kκ (q̂‖,q̂⊥)q̂⊥∂q̂⊥ f̂ λ
κ (q̂‖,q̂⊥)

)]
, (C1k)

Î⊥0
κ = ĝκγκ

vd‖vd⊥

2d⊥

∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥

q̂2(∂q̂2r(q̂2))

f̂ λ
κ (q̂‖,q̂⊥)(l̂κ (q̂‖,q̂⊥))3

[
f̂ λ

κ (q̂‖,q̂⊥)(2(1 − γκ )(q̂2
‖ q̂

2
⊥/q̂2)l̂κ (q̂‖,q̂⊥)

+ q̂2(2γκ q̂
2
⊥ − d⊥(q̂2

‖ + γκ q̂
2
⊥))k̂κ (q̂‖,q̂⊥)) + (q̂2

‖ + γκ q̂
2
⊥)

(
f̂ λ

κ (q̂‖,q̂⊥)(q̂⊥∂q̂⊥ l̂κ (q̂‖,q̂⊥)

− q̂2q̂⊥∂q̂⊥ k̂κ (q̂‖,q̂⊥) − 2(q̂2
⊥/q̂2)l̂κ (q̂‖,q̂⊥)) + (2q̂2k̂κ (q̂‖,q̂⊥) − l̂κ (q̂‖,q̂⊥))q̂⊥∂q̂⊥ f̂ λ

κ (q̂‖,q̂⊥)
)]

, (C1l)

where

k̂κ (q̂‖,q̂⊥) = f̂ D
κ (q̂‖,q̂⊥) + r(q̂2), (C2a)

l̂κ (q̂‖,q̂⊥) = q̂2
[
f̂ ν

κ (q̂‖,q̂⊥) + r(q̂2)
]
, (C2b)

q̂2 = q̂2
‖ + q̂2

⊥. (C2c)

The flow integrals in the LPA′ approximation are easily deduced from the above NLO expressions by setting the flowing
functions to 1 according to Eq. (38). Using the substitution q̂‖ = q̂ cos θ , q̂⊥ = q̂ sin θ the double integrals in Eqs. (C1) can be
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further simplified to simple radial integrals,∫ ∞

0
dq̂‖ q̂

d‖−1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥ Î (q̂) = vd

vd‖vd⊥

∫ ∞

0
dq̂ q̂d−1Î (q̂), (C3a)

∫ ∞

0
dq̂‖ q̂

d‖+1
‖

∫ ∞

0
dq̂⊥ q̂

d⊥−1
⊥ Î (q̂) = vdd‖

vd‖vd⊥d

∫ ∞

0
dq̂ q̂d+1Î (q̂), (C3b)

where Î (q̂) is a radial symmetric integrand.

In the isotropic case f̂ X(q̂‖,q̂⊥) ≡ f̂ X(q̂) and γ = 1. One
can then easily check that Eqs. (C1) with the help of Eq. (C3)
simplify to the isotropic expressions (A4) in Refs. [47,48],
with

Î Dν
κ = Î D‖

κ + Î D⊥
κ , (C4a)

Î νν
κ = Î ‖‖

κ + Î ‖⊥
κ = Î⊥‖

κ + Î⊥⊥
κ , (C4b)

Î ν0
κ = Î ‖0

κ = Î⊥0
κ , Î νD

κ = Î ‖D
κ = Î⊥D

κ . (C4c)

APPENDIX D: ON THE NATURE OF THE
ANISOTROPIC (A) FIXED POINT

We start with the β functions Eq. (30) in the perturbative
limit Eq. (A2). As mentioned before, in the limit of small
coupling ĝ the β functions coincide with the perturbative ones
studied by TF [29]. Let us define ε = 2 − d with ε > 0. For
small ε and ĝ ∼ O(ε) the one-loop β functions become

βĝ = −εĝ + β0ĝ
2 + O(ε3), (D1a)

βγ = ĝγ (γ − 1)[2 − 
 + γ (2 + 
)]A(d) + O(ε2), (D1b)

where

β0 = [8 − 16
 − 2
2 − 4γ (8 − 2
 − 
2)

+ γ 2(2 − 
)2]A(d).

FIG. 7. (Color online) Coupling constant ĝ′
∗ at the anisotropic A

fixed point close to d = 2 for different values of the sector dimension
d‖. The LPA′ results are obtained from a numerical solution of the
NPRG flow equations and perturbative results (labeled as pert.) from
the one-loop expression Eq. (D3). For d < 2 and small d‖ the A
fixed point is weak coupling and is well described by a perturbative
treatment. For larger values of d‖ the A fixed point becomes strong
coupling and the perturbative treatment is no longer justified. The
sector dimension d‖ = 1 + 1/

√
5 ≈ 1.45 stands as the boundary

beyond which the one-loop treatment for A breaks down, separating
the weak-coupling regime (white) from the strong-coupling regime
(shaded in gray).

The βγ function has three zeros (see Sec. III): γ∗ = 1 (isotropic
case), γ∗ = 0 (unitary case), and γ∗ = (
 − 2)/(
 + 2)
(anisotropic case). Substituting the anisotropic fixed-point
value for γ into the first β function [Eq. (D1a)], we obtain

βA(ĝ) = −εĝ + 8A(d)[4 − 5(d − 2d‖)2]

[d − 2(1 + d‖)]2
ĝ2 + O(ε3). (D2)

This function has the nontrivial fixed point

ĝ′
∗ = − vd

4A(d)

(d − 2)[d − 2(1 + d‖)]2

8[4 − 5(d − 2d‖)2]
. (D3)

In order to stay in the perturbative regime where ĝ∗ ∼ O(ε) is
valid, the dimension d‖ has to verify d‖ < 1 + 1/

√
5. For d <

2 and depending on the splitting in the sector dimensions, the
A fixed point therefore changes from weak coupling (for d‖ <

1 + 1/
√

5) to become strong coupling (for d‖ � 1 + 1/
√

5),
see Fig. 7.

Let us mention that for d‖ � 1 + 1/
√

5 and d � 2 the
perturbative treatment can be used in order to analyze the
A fixed point as long as at least two loop contributions are
included and d‖ − 1 − 1/

√
5 ∼ √

ε.
Finally, a similar analysis is possible for the uniaxial U

fixed point. The critical sector dimension is d‖ = √
5 − 1 in

that case.

APPENDIX E: GAUGE SYMMETRY OF THE UNIAXIAL
AKPZ EQUATION

The AKPZ action in the uniaxial case (γ = 0) is invariant
under the generalized gauged shift

h′(t,�x) = h(t,�x) + f (t,�x⊥), (E1)

except for the two terms

δS =
∫

x
{h̃(x)(∂tf (t,�x⊥) − ν⊥∇2

⊥f (t,�x⊥))}, (E2)

which variation is linear in the field. Following the same line
of reasoning as Ref. [46], one deduces that∫

�x‖

δ�

δh
=

∫
�x‖

δS

δh
= 0 (E3)

or, equivalently,

�(n,m)( �p‖ = 0, . . .) = (iω + ν⊥p2
⊥)δm1δn1. (E4)

This implies that η⊥
κ = 0 since ν⊥

κ is not renormalized in the
flow.
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