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The general equation of nonequilibrium reversible-irreversible coupling (GENERIC) is studied in light of
time-reversal transformation. It is shown that Onsager-Casimir reciprocal relations are implied by GENERIC in
the near-equilibrium regime. A general structure which gives the reciprocal relations but which is valid also far
from equilibrium is identified, and Onsager-Casimir reciprocal relations are generalized to far-from-equilibrium
regime in this sense. Moreover, reversibility and irreversibility are carefully discussed and the results are illustrated
in Hamiltonian dynamics, classical hydrodynamics, classical irreversible thermodynamics, the quantum master
equation, and the Boltzmann equation.
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I. INTRODUCTION

The mesoscopic time evolution of macroscopic systems
is experimentally observed to be time irreversible and dissi-
pative. The former property means, roughly speaking, that
the trajectories that begin at the moment at which the
time has been reversed are not seen to be retracing the
trajectories followed in the previous evolution. The latter
property then means that there exists a potential, called
entropy, that does not decrease during the time evolution.
Our objective in this paper is to define carefully both the
irreversibility and the dissipativity and to investigate their
relationship and consequences. Such an investigation can also
be seen as an investigation of the Onsager-Casimir reciprocal
relations (OCRR) [1–3] in the context of far-from-equilibrium
nonlinear mesoscopic dynamics possessing the structure of
general equation of nonequilibrium reversible and irreversible
coupling (GENERIC). In particular, it is shown that the
Hamiltonian part of the time evolution is responsible for the
antisymmetric coupling (discovered originally by Casimir [3])
while the dissipation potential is responsible for the symmetric
coupling. GENERIC enriched with some assumptions on its
behavior with respect to time-reversal transformation (TRT)
is then the far-from-equilibrium structure which yields OCRR
near equilibrium.

Finally, the results are illustrated in Hamiltonian dynamics,
classical hydrodynamics, the theory of mixtures within classi-
cal irreversible thermodynamics (CIT), the finite-dimensional
quantum master equation, and the Boltzmann equation.

II. STRUCTURE OF NONEQUILIBRIUM
THERMODYNAMICS

A. Time-reversal transformation

Let us first recall the notion of time-reversal transformation
[1,4]. Imagine a movie depicting motion of particles in an
isolated box. Suppose that the particles behave classically, i.e.,
their motion is described by Newton’s law,

ṗi = Fi, (2.1)
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where pi is momentum of the i-th particle and Fi is force
exerted on the i-th particle by other particles and walls of
the box. If the movie is played backwards, one can see that
velocities of the particles are reversed [5] and that the time
stamp goes in the opposite direction. This thought experiment
constitutes physical motivation for introducing TRT, which is
to be denoted by I.

Definition 1 [(TRT)]. TRT transforms any physical quantity
exactly in the same way as if velocities of all particles were
reversed. Moreover, the time stamp goes in the opposite
direction.

Let us now study properties of the transformation. Consider
a state variable xi , where i can be a discrete or a continuous
index. If velocities of all particles were reversed, the state
variable xi would change to I(xi). If, however, the velocities
were reversed once more, the variable must return to the
original value, i.e.,

I(I(xi)) = xi. (2.2)

Hence, operation I is idempotent.
If TRT does not alter the state variable or if it only changes

sign of the variable, we say that the variable has even or odd
parity, respectively. Parity of state variable xi is denoted by
P(xi) and we say that

P(xi) = 1 for xi even, (2.3)

P(xi) = −1 for xi odd. (2.4)

For example, momenta of particles in the box are odd as
I(pi) = −pi . On the other hand, positions of the particles are
even. It should be noted that not all state variables have parity.
For example, if we choose the probability density of position
and momentum (as in Boltzmann equation) as a state variable,
we obtain

I(f (r,v)) = f (r, − v) (2.5)

and this state variable has clearly no parity. In summary, parity
then can be defined as follows:

Definition 2 (Parity). A physical quantity has parity equal
to 1 if TRT does not alter the quantity, i.e., the quantity is even
under TRT. A physical quantity has parity equal to −1 if TRT
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inverts the sign of the quantity, i.e., the quantity is odd under
TRT.

TRT can be also applied to the time derivative of a state
variable. Since the time stamp of the inverted movie goes
backwards, TRT acts on the time derivative as follows:

I
(

dxi

dt

)
= − d

dτ
I(xi), (2.6)

where the backward-going time step was denoted by dτ .
Note that if the state variable is a field variable, for example,
momentum density u(r,t), the time derivative in the preceding
formula stands for the partial time derivative.

So far we have talked about TRT acting on state variables.
Let us now have a look at how TRT transforms evolution
equations. Consider, for example, the incompressible Navier-
Stokes equation [6],

∂ρ

∂t
= −u

ρ
· ∇ρ, (2.7)

∂u
∂t

= −div

(
1

ρ
u ⊗ u

)
− ∇p + μ�

(
u
ρ

)
, (2.8)

where ρ is the density field and u is the momentum density
field. The former equation expresses evolution of density while
the latter evolution of momentum density. Application of TRT
then gives

− ∂ρ

∂τ
= +u

ρ
· ∇ρ, (2.9)

∂u
∂τ

= −div

(
1

ρ
u ⊗ u

)
− ∇p − μ�

(
u
ρ

)
. (2.10)

Here we used that density and pressure are even variables while
momentum density is odd under TRT. Obviously, evolution
equation for density is not altered by TRT. On the other
hand, the sign of the viscous part of the evolution equation
of momentum density is changed. This means that if there
were no viscosity, evolution equations (2.7) and (2.8) would
describe motion of the fluid even if the movie were played
backwards. With nonzero viscosity, this is not true anymore.

Based on this motivation, let us now define reversible and
irreversible part of an evolution equation.

Definition 3 (reversibility based on TRT). Assume that the
evolution equation is solved with respect to time derivative, i.e.,
is in the form where, on the left-hand side, there is only the time
derivative of the state variable evolution, which the equation
describes. Moreover, assume that there are no time derivatives
on the rigt-hand side of the equation. The reversible part
of the evolution equation is then defined as the part of the
right-hand side which is transformed by TRT in the same way
as the left-hand side of the equation. The irreversible part is
then the rest of the right-hand side of the evolution equation.

For example, the right-hand side of Eq. (2.7) transforms in
the same way as the left-hand side of the equation. Indeed,
Eq. (2.9) has the same form as Eq. (2.7). The gradient of
pressure on the right-hand side of Eq. (2.8) is even as is
the left-hand side of the equation. On the other hand, the
viscous part is odd. Therefore, gradient of pressure generates
reversible evolution while the viscous part is irreversible. The
case where state variables have no parity will be commented on

later when analyzing the Boltzmann equation. This definition
of reversibility can be expressed more rigorously within
differential geometrically, see Sec. II E.

B. Structure of GENERIC

Within the GENERIC [7–9] framework each evolution
equation is expressed in the following form:

dxi

dt
=
∑

j

LijExj
+ δ�

δSxi

, (2.11)

where Lij represents the Poisson bivector field, � is the
dissipation potential, E is energy, and S is the entropy of the
system under consideration. The Poisson bracket between any
two functionals A and B may be constructed from the Poisson
bivector as

{A,B} = 〈A,LB〉, (2.12)

where 〈•,•〉 represents the scalar product in an appropriate
space of state variables [9]. The Poisson bracket is antisym-
metric and fulfills the Jacobi identity. The dissipation potential
is supposed to be a convex function of thermodynamic force
Sxi

near Sxi
= 0; it is zero for the force equal to zero and

it reaches the minimum for Sxi
= 0 (see Ref. [9] for more

details).
Moreover, approximating the dissipation potential by a

quadratic function in forces (here denoted by X), i.e., exploit-
ing convexity of the dissipation potential near equilibrium,

� = 1
2 〈X,MX〉 (2.13)

leads to formulation of a dissipative bracket,

[A,B] = 〈Ax,M · Bx〉. (2.14)

In this way evolution equation (2.11) may be approximated by
the following evolution equation:

dxi

dt
=
∑

j

LijExj
+
∑

j

MijSxj
, (2.15)

where Mij is the dissipative matrix, which is symmetric and
positive definite. Moreover, both matrices are assumed to fulfill
the following degeneracy conditions:∑

j

LijSxj
= 0 =

∑
j

MijExj
, (2.16)

which guarantees the separation of the antisymmetric (re-
versible, see Theorem 1 below) and symmetric (irreversible,
see Theorem 1 below) parts of a given evolution equation.

Note that if i and j are continuous indices, e.g., position
vectors r and r′, respectively, matrix multiplication in (2.15)
also consists of integration with respect to r′. We also suppose
that the system, which is to be described, is isolated, infinite,
or periodic, so boundary terms disappear when integrating by
parts.

In the whole paper we use the following assumption:
Assumption 1. We assume that evolution equations of

any physical system can be written in the GENERIC form.
Therefore, we limit ourselves to such time evolution that, from
the physical point of view, describes systems approaching a
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reduced description (e.g., to the description used in classical
thermodynamics).

Evolution equation (2.15) can be equivalently expressed in
terms of a thermodynamic potential,

�(x) = −S(x) + 1

T 0
E(x) − μ0

T 0
N (x), (2.17)

where T 0 is the equilibrium temperature, μ0 is the equilibrium
chemical potential, and N is the amount of mass in the system.
Note that neither the Poisson bracket nor the dissipative bracket
(or dissipation potential) alter the amount of mass N (x) [and
also energy E(x) as we have seen above]. Equation (2.15) then
becomes

dxi

dt
= (T 0Lij − Mij )�xj

. (2.18)

Both equations (2.15) and (2.18) are equivalent because of the
degeneracies of the brackets.

It is important to emphasize that the properties of the
operators L and M (or, more generally, the properties of
L and the dissipation potential �) that we required above
imply that the thermodynamic potential � [given in (2.18)]
plays the role of the Lyapunov function for the approach
to states that are solutions to δ�

δx
= 0 provided �(x) is a

convex function of x. Indeed, we see immediately that d�
dt

� 0.
From the physical point of view, a solution to δ�

δx
= 0 is a

thermodynamic equilibrium state [we denote it xth(μ0,T0)] and
−P0

V
= �(xth(μ0,T0)) is the equilibrium thermodynamics fun-

damental thermodynamic relation implied by the GENERIC
time evolution governed by (2.11). The symbol P0 stands for
the equilibrium pressure and V for the volume of the region
in R3 in which the macroscopic system under consideration is
confined. We assume that the confinement is fixed so V is a
constant.

We thus see that from the physical point of view, the
GENERIC equation (2.11) represents a passage from the
mesoscopic level on which x plays the role of state variables to
the level of equilibrium thermodynamics on which (V,E,N ),
where E = E(xth),N = N (xth), or, alternatively, (T0,μ0) serve
as state variables. It means that however far from equilibrium
we may be, the time evolution is still influenced by the total
energy and the total mass (since they remain constant during
the time evolution) and, consequently, since d�

dt
� 0, by the

equilibrium thermodynamic state approached as t → ∞. This
physical content of GENERIC (2.11) is manifestly displayed
in the appearance of two parameters [T0 and μ0 in (2.18)]. Note
that this is just an alternative formulation of two parameters,
namely the total energy and the total mass, appearing (im-
plicitly) in (2.11). A geometrical formulation of GENERIC
(in terms of the contact structure geometry) that manifestly
presents itself as a time evolution representing a passage
between two levels (one of which is not necessarily the level
of equilibrium thermodynamics) can also be discussed [9,10].

C. On equivalence of notions of reversibility

In the GENERIC framework the notion of reversibility is
such that [7,8]

Definition 4 (reversibility within GENERIC). The Poisson
bracket generates reversible evolution while the dissipation

potential (or the dissipative bracket) generates irreversible
evolution.

On the other hand, reversible processes in an isolated system
are often identified [6] via entropic arguments:

Definition 5 (entropic reversibility). Reversible evolution
of an isolated system does not raise entropy, i.e., Ṡ = 0, while
irreversible evolution raises entropy.

Are these two notions of reversibility and irreversibility
compatible? Moreover, are they compatible with Definition 3
of reversibility based on TRT?

The evolution equation of a functional A can be formulated
using Poisson and dissipative brackets as

dA

dt
= {A,E} + [A,S], (2.19)

which follows from equation (2.15) and the definitions of the
Poisson bracket and dissipative bracket. In particular, consider
A as the entropy, the evolution equation of which is the
following [due to the degeneracy conditions (2.16)]:

dS

dt
= {S,E} + [S,S] = [S,S] � 0, (2.20)

and where

dS

dt
= 0 ⇐⇒ [S,S] = 0. (2.21)

Therefore, if the dissipative matrix or bracket is not present
in the evolution equation of the state variable xi , Eq. (2.15),
the evolution equation describes some reversible processes
within the system in the sense of Definition 5 regarding
entropic reversibility. Thus, reversible processes in the sense
of Definition 4 do not raise the entropy of an isolated system,
and these two notions of reversibility and irreversibility are
in agreement. The same conclusion holds if the dissipation
potential is used instead of the dissipative bracket. Thus we
have just proven the following lemma:

Lemma 1. Definition 4 of reversibility or irreversibility
within GENERIC and the entropic Definition 5 are equivalent.

Are these two notions of reversibility compatible with
Definition 3 of TRT-based reversibility or irreversibility?

Assume that all state variables have definite parities, which
means that

I(xi) = P(xi)xi = ±xi. (2.22)

What is the parity of the functionals generating the evolution,
E and S? In the whole paper we use the following assumption:

Assumption 2 (parity of E, S, �, and �). Energy, en-
tropy, thermodynamic potential, and dissipation potential are
assumed to be even under TRT.

For energy the assumption is quite natural since if energy
(or the Hamiltonian) were not even, Hamilton equations would
not be reversible, see Sec. III A. For entropy, the assumption
also seems to be quite natural since we are not aware, to
the best of our knowledge, of any particular example of
noneven entropy. For example, if entropy is constructed as
S = −k

∑
i pi ln pi as is usual in statistical mechanics [11],

the entropy is obviously even. Moreover, nonequilibrium
statistical physics also leads to the same conclusion [4]. The
statement that entropy is even should, however, be taken as
an assumption. Thermodynamic potential is even since it is
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formed from energy and entropy, which are supposed to be
even. The assumption that the dissipation potential is even
is also natural (see Sec. II E), where it is shown that this
property of dissipation potential is needed to make all the
three definitions of irreversibility equivalent. This property of
the dissipation potential is fulfilled for all dissipation potentials
used in this manuscript, and we are not aware of any noneven
dissipation potential describing real systems.

Application of TRT on Eq. (2.15) then yields

− P(xi)
dxi

dτ
=
∑

j

P(Lij )LijP(xj )Exj

+
∑

j

P(Mij )MijP(xj )Sxj
, (2.23)

since functionals E and S are assumed to be even. This last
equation can be rewritten as

dxi

dτ
= −

∑
j

P(Lij )P(xi)P(xj )LijExj

−
∑

j

P(Mij )P(xi)P(xj )MijSxj
. (2.24)

The first term on the right-hand side of Eq. (2.15) causes
reversible evolution in the sense of Definition 4 while the sec-
ond term causes irreversible evolution. For the two definitions
3 and 4 to be compatible, it is necessary that after application
of TRT the first term does not alter structure of the equation
while the second does. In other words, the first term on the
right-hand side of Eq. (2.24) must be the same as the first term
on the right-hand side of Eq. (2.15) while the second term must
have opposite sign than the second term on the right-hand side
of Eq. (2.15), i.e.,

P(Lij ) = −P(xi)P(xj ), (2.25a)

P(Mij ) = P(xi)P(xj ). (2.25b)

These two equations are the necessary and sufficient
conditions for the notion of reversibility within GENERIC,
Definition 4, to be equivalent to the definition of reversibility
in the sense of Definition 3. This conclusion may be formulated
as the following theorem:

Theorem 1 (equivalence of definitions of reversibility).
Under these assumptions:

(1) All variables have definite parities.
(2) Assumption 2 holds true.
(3) Relations (2.25) are fulfilled.
The three definitions of reversibility-irreversibility (3, 4,

and 5) are equivalent.
Note that the second relation (2.25b) can be seen as a

consequence of the fact that the dissipation potential is even.
Indeed, parity of the quadratic dissipation potential (2.13) can
be written as

1 = P(Sxi
MijSxj

) = P(xi)P(xj )P(Mij ), (2.26)

which is equivalent to the second relation of (2.25).
In Sec. II E Definition 3 is formulated geometrically

and Theorem 1 is generalized. Moreover, it is shown that
Assumption 2 is sufficient to replace the second relation
from (2.25) not only in the case of a dissipative bracket. In other

words, the dissipation potential generates only irreversible
evolution automatically, and the second relation in (2.25) is
redundant if we work with the dissipation potential instead of
dissipative bracket.

D. Onsager-Casimir reciprocal relations

In this section we show that OCRR are implied by
GENERIC with conditions (2.25) near equilibrium. Near
equilibrium the general evolution equation (2.18) becomes [7]

ξ̇i =
∑

j

∑
k

[T Lij (xth) − Mij (xth)]
δ2�

δxjδxk

(xth)ξk, (2.27)

where the thermodynamic potential is approximated by
quadratic terms and both brackets are evaluated at equilibrium.
ξi denotes deviation of variable xi from the equilibrium value
of the variable. This equation can be rewritten in the standard
form of near-equilibrium evolution,

ξ̇i =
∑

j

KijXj , (2.28)

where the matrix of phenomenological coefficients K is
defined as

Kij = T Lij (xth) − Mij (xth) (2.29)

and the thermodynamic force X is defined as

Xj =
∑

k

δ2�

δxjδxk

(xth)ξk. (2.30)

The matrix K depends only on equilibrium values of state
variables (hence not evolving with time). Usually, the equilib-
rium values are even under TRT because odd variables, e.g.,
momentum, vanish at equilibrium. Therefore, each element of
the matrix is even as well,

P (K) = 1. (2.31)

Analogously, the same is true for matrices L and M evaluated
at equilibrium, i.e.,

P(Lij (xth)) = P(Mij (xth)) = 1. (2.32)

Comparing to parities indicated in relations (2.25), it
follows that all terms corresponding to state variables with
P(xi)P(xj ) = 1, i.e., with the same parities, vanish in
Lij (xth) while all terms corresponding to state variables
with P(xi)P(xj ) = −1, i.e., with opposite parities, vanish in
Mij (xth).

Therefore, we have derived that Lij (xth) is responsible for
coupling between state variables of different parities only
while Mij (xth) is responsible for coupling only between state
variables with the same parities. Now, from the antisymmetry
of L and symmetry of M, we obtain Onsager-Casimir
reciprocal relations, which say that state variables with the
same parities are coupled through a symmetric matrix while
state variables with opposite parities are coupled through
an antisymmetric matrix. OCRR can be thus regarded as a
consequence of GENERIC and the behavior of GENERIC
with respect to TRT. Let us now formulate these conclusions
as a theorem:
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Theorem 2. Let us assume that
(1) Assumption 1 holds.
(2) Parity may be assigned to each state variable xi , i.e.,

P(xi) is well defined, ∀xi .
(3) Both matrices Lij and Mij are even with respect to

TRT if evaluated at equilibrium. This is true, for example, if
the matrices are constructed from spatial gradients and state
variables.

(4) Relations (2.25) are valid.
(5) Assumption 2 holds and thus definitions of reversibility

3, 4, and 5 are equivalent according to Theorem 1.
Then state variables with the opposite parities are coupled

through the antisymmetric part of the matrix Kij in Eq. (2.28)
while state variables with the same parity are coupled through
the symmetric part in the near-equilibrium regime. This is the
statement of Onsager-Casimir reciprocal relations, which are
thus proved for any system near equilibrium.

Corollary 1. Since the symmetric part is given by the
dissipative bracket and the antisymmetric by the Poisson
bracket, it follows that state variables with opposite parities are
coupled only through the Poisson bracket while state variables
with the same parities are coupled only through the dissipative
bracket near equilibrium.

We have, therefore, shown that the structure of GENERIC
and its behavior with respect to TRT implies OCRR near
equilibrium. This means that we have identified the general
structure which contains OCRR and which is valid far from
equilibrium. In this sense, GENERIC intrinsically contains
OCRR and thus can be considered as a generalization of OCRR
into far from equilibrium regime. Note that other thermo-
dynamic theories like classical irreversible thermodynamics
(CIT) [6] or extended irreversible thermodynamics (EIT) [12]
do not posses this property since OCRR have to be supplied
to them.

Note also that symmetry of the dissipative bracket was
crucial to recover OCRR. Recently, some arguments support-
ing the possibility of a nonsymmetric dissipative matrix were
given [13]. Since the symmetry of the dissipative bracket was
important to recover OCRR, we believe that the potential-
based formulation of GENERIC, which becomes (2.15) for
quadratic dissipation potentials, should be preferred to the
forms with the nonsymmetric dissipative bracket.

Finally, note that OCRR provides insight into mathematical
behavior of the linearized GENERIC; see Appendices B and C.

E. Geometrical interpretation of reversibility and irreversibility

The hitherto-derived results can be formulated more rig-
orously within differential geometry. Generally, an evolution
equation is an equality between the time derivative of state
variables and a vector field on a tangent bundle of the manifold
[14] of state variables M, i.e.,

dx
dt

= V i(x)
∂

∂xi
= V(x), (2.33)

where state variables were denoted as coordinates x. Note
that we use Einstein’s summation convention in this section.
Time-reversal transformation I provides a diffeomorphism of
manifold M to itself. This diffeomorphism then induces a
push-forward of the vector field on the right-hand side of

Eq. (2.33),

I


(
V i ∂

∂xi

)
= ∂Ii

∂xj
(x)V j (x)

∂

∂I(x)i
. (2.34)

This push-forward then acts on Eq. (2.33) as follows:

dI(x)

dτ
= −I
V|I(x), (2.35)

where dt was replaced by −dτ as in Definition 3. Definition
3 can be then reformulated as follows:

Definition 6. Vector field V is called reversible if and only if
the push-forward only adds a minus sign in front of the vector
field,

I
V = −V|I(x) . (2.36)

Roughly speaking, it means that all “arrows” along integral
curves of the vector field are inverted if TRT is applied on
the state variables. Recall that in the sense of Definition 3 the
reversible part of the right-hand side of the evolution equation
keeps the same form as the left-hand side with respect to TRT
and that a minus sign is added in front of the left-hand side due
to transformation of dt to dτ . This is the minus sign which
appears on the right-hand side of Eq. (2.36). Therefore, both
definitions of reversibility 3 and 6 are equivalent.

Lemma 2. Definitions of reversibility 3 and 6 are equivalent.
Definition 6 is, however, more rigorous since it is formu-

lated as a differential geometric identity (2.36).
Let us now formulate conditions (2.25), which ensured that

the Poisson and dissipative brackets generate only reversible
and irreversible evolution in the sense of Definition 3 geomet-
rically. Assume, therefore, as well as in the derivation of the
conditions, that all state variables have definite parities. That
means that TRT acts on state variables as follows:

I(x)i = P (xi)xi. (2.37)

The Jacobi matrix of this transformation is then

∂I(x)i

∂xj
= P (xi)δi

j , (2.38)

where δ is the Kronecker delta. The Poisson vector field, which
generates the reversible evolution, can be expressed as

V = Lij (x)
∂E

∂xj

∂

∂xi
, (2.39)

where summation stands generally for the scalar product and
indices i and j may be also continuous as within the Boltzmann
equation in Sec. III E. Condition (2.36) can be then rewritten
as

Lij |I(x) = −P (xi)P (xj )Lij |x, (2.40)

which is the geometrical interpretation of relation (2.25a).
But does any Poisson bracket satisfy this relation? To

the best of our knowledge this is an open problem. All the
examples of Poisson brackets formulated in this paper satisfy
the relation, and we suppose that it is generally valid. To prove
that, however, one would have to formulate how a Poisson
bracket on a level of description can generally be inherited
from a Poisson bracket on the most microscopic level of
description, e.g., from the Hamiltonian dynamics, because
TRT on the more macroscopic level is inherited from TRT
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on the most microscopic level and the Poisson bracket on the
most microscopic level is reversible (Hamiltonian dynamics
is reversible). A method of how to obtain a Poisson bracket
on the more macroscopic level from the Poisson bracket of
Hamiltonian dynamics by projection operators was formulated
by H. C. Öttinger [15], and it is easy to show that any Poisson
bracket obtained by use of this method fulfills relation (2.40)
and thus is reversible. Nevertheless, the validity of the Jacobi
identity for the Poisson bracket has not been derived in general
and hence one cannot regard the method as generally valid yet.

In summary, it is still an open problem to show that
any Poisson bracket on any level of description fulfills
relation (2.36), and it is still necessary to prove that any
Poisson bracket generates only reversible evolution. If the
projection operator method [15] of construction of Poisson
bracket on a more macroscopic level of description turned
out to be generally valid, the problem would be solved since
Poisson brackets constructed by the method automatically
satisfy condition (2.40). Moreover, it can be shown by means
of a quantum master equation that condition (2.40) is satisfied
at least at equilibrium; see Sec. III D.

Analogically to the reversible evolution, irreversible evo-
lution is generated by a vector field which is invariant to the
push-forward I
 induced by TRT. This leads to the following
definition:

Definition 7. A vector field generates irreversible evolution
if the push-forward induced by TRT acts on the field as follows:

I
V = V|I(x) . (2.41)

Therefore, if all state variables have definite parity, a
condition analogical to (2.40) holds also for the M matrix,

Mij |I(x) = +P (xi)P (xj )Mij |x, (2.42)

which is the geometrical interpretation of relation (2.25b).
In the more general setting where irreversible evolution

is described by dissipation potential instead of dissipative
matrix, the irreversible part of evolution equations transforms
as follows:

I


(
∂�

∂ ∂S
∂xi

∂

∂xi

)

= ∂Ii

∂xj

∂�

∂ ∂S
∂xj

∣∣∣
x

∂

∂Ii(x)
= ∂Ii

∂xj

∂�

∂ ∂S
∂Ik

∂Ik

∂xj

∣∣∣∣
x

∂

∂Ii(x)

= ∂Ii

∂xj

∂�

∂ ∂S
∂Il

∂ ∂S
∂Il

∂ ∂S
∂Ik

∂Ik

∂xj

∣∣∣∣
x

∂

∂Ii(x)
= ∂Ii

∂xj

∂�

∂ ∂S
∂Il

∂xj

∂Ik
δk
l

∣∣∣∣
x

∂

∂Ii(x)

= ∂�

∂ ∂S
∂Ii (x)

∂

∂Ii(x)
, (2.43)

because both dissipation potential and entropy are even under
TRT in accordance with Assumption 2. We have thus proven
the following lemma:

Lemma 3. Any even dissipation potential satisfies rela-
tion (2.36) and thus generates only irreversible evolution.

Note that the dissipation potential (as a function on
manifold M) is even if it is not altered by the push-forward
induced by TRT.

In summary, it is still an open problem to prove that
any Poisson bracket generates only reversible evolution,
i.e., that relation (2.36) holds for the vector field generated
by the bracket. On the other hand, any even dissipation
potential automatically satisfies the condition for irreversible
evolution (2.41). Since we are not aware of any Poisson
bracket inconsistent with relation (2.36) and of any noneven
dissipation potential, we believe that all the definitions of
reversibility (3, 4, 5, and 6) are equivalent.

F. Nonentropic dissipation and time-reversal
non-Hamiltonian dynamics

We have assumed so far that the mesoscopic time evolution
describing an approach to a more macroscopic level of
description is the time evolution generated by the abstract
GENERIC equation described above. However, this is not true
in general. We shall present below some well-known examples
of non-GENERIC mesoscopic time evolution. Before doing
so, we note that there are essentially two strategies for dealing
with such dynamics. First is to relax the stringent GENERIC
structure presented above in this paper. The second is then
to regard the non-GENERIC time evolution as a reduced
or an incomplete version of the GENERIC time evolution
formulated on a more microscopic level of description. The
first strategy is followed by Hütter et al. [13] and by Öttinger
[15] by allowing, for instance, nonsymmetric dissipative
bracket. We follow the second strategy. We present a few
examples and then arguments in favor of our approach.

First, we present two examples of Hamiltonian dynamics
with, as it is called by Villani [16], nonentropic dissipation. The
first is, of course, the Hamiltonian mechanics of N particles
(N ∼ 1023) composing isolated macroscopic systems. Exper-
imental observations show that this time evolution approaches
thermodynamic equilibrium states at which the behavior is
seen to be described well by the classical equilibrium ther-
modynamics. The main objective of nonequilibrium statistical
mechanics is to reformulate this dynamics into a dynamics
in which this feature of solutions is manifestly displayed as
an entropic dissipation. The mathematical rigorosity of such
reformulations still remains inadequate.

Another example of the similar type has been, however,
recently [16] investigated using complete mathematical rigor.
The Hamiltonian time evolution in this example is generated
by the Vlasov kinetic equation [16,17] describing the time
evolution of macroscopic systems with long-range interactions
(e.g., Coulomb interactions). No dissipative term is present in
the Vlasov equation, and the Boltzmann entropy is conserved.
It is nevertheless well known [16,18] that solutions to the
Vlasov equation experience the so-called Landau damping.
We thus have another example of the time evolution equation
with nonentropic dissipation. We conjecture that the Vlasov
kinetic equation can be approximately reformulated (with a
rigorous meaning and control of the approximation) into an
equation displaying manifestly the Landau damping as an
entropic dissipation with an appropriately chosen entropy.

The next example is the feature of solutions of the Navier-
Stokes equations (i.e., equations possessing the GENERIC
structure described in this paper), known as the Kolmogorov
energy cascade, emerging in turbulent flows. The passage
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of energy from large to small vortices described by the
Kolmogorov cascade is a degradation of energy that is not
seen in entropy production. Öttinger has suggested recently
[19] to include this dynamics into GENERIC by allowing
nonsymmetric irreversible brackets. Following the spirit of the
previous two examples we suggest reformulating the Navier-
Stokes equation into an equation in which the Kolmogorov
energy cascade appears as an entropic dissipation. Such a
reformulation is an interesting challenge.

In the next example we illustrate dynamics with irreversible
time evolution that is not Hamiltonian. It is the time evolution
equation that involves a “slip.” Contrary to the previous exam-
ple, the way such non-GENERIC equations are related to the
abstract GENERIC is well understood and illustrated in detail
in many examples. The macroscopic physical systems in which
the time evolution equations with slip arise are suspensions of
particles in a simple fluid whose time evolution is governed
by the classical fluid mechanics. The suspended particles can
be of various shapes, deformable or not deformable, and, for
example, macromolecular chains. If the particles are passively
advected (or, in other words, Lie dragged) with the fluid then
the GENERIC structure of the simple fluid can be easily
extended to the GENERIC structure of the suspension (we
recall that in the Hamiltonian part it is though the concept of
semidirect product [20]). But, in reality, the particles are not
passively advected and, depending on the physics taking place
on the particle-fluid interface, a “slip” occurs in the advection.
With the slip, the time evolution is no longer GENERIC (in
the sense of this paper); it involves a time-reversible term that
is not Hamiltonian. But if we take into account the physics
of the particle-fluid interface by lifting the formulation of the
dynamics into a larger space in which another fluid velocity,
namely the fluid velocity on the particle-fluid interface, is
adopted as an independent state variable, then the dynamics
becomes again GENERIC. The slip in this lifted formulation
appears as a true dissipative term involving the extra velocity
state variable. The original non-GENERIC time evolution
equation with the slip is then a reduced version of the lifted
GENERIC dynamics in which the extra velocity state variable
has been eliminated by considering its time evolution as fast
and by limiting ourselves to the stage in which its time
evolution has already been completed. This procedure has
been explicitly illustrated in the finite-dimensional version of
GENERIC [21], in polymeric fluids [22], and in suspensions
of rigid spheres [23] (i.e., in the context of the Smoluchowski
equation).

Regarding another relaxation of the GENERIC structure
with nonsymmetric irreversible brackets proposed by Öttinger
[15], we shall see in Sec. III E that GENERIC with dissipation
potential (i.e., GENERIC structure discussed in this paper)
allows us to formulate the Boltzmann collision term as well as
the time evolution equations arising in chemical kinetics.

Finally, we collect the arguments supporting our decision
to insist on the GENERIC structure described above in this
paper. First, it is the physics. The role of statistical mechanics
is to regard macroscopic systems on a hierarchy of levels
of description. Such levels are then related by a dissipative
dynamics possessing the GENERIC structure an involving a
appropriately chosen entropy. In the case of the slip, the physics
responsible for it is the true dissipation (the friction) involving

T. 1

L. 1

L. 3

L. 2

open
problem

GENERIC (A. 1)

E,S,Φ,Ξ even (A. 2)TRT (Def. 1) Parity (Def. 2)

∀xi ∃P (xi)

(Ir)reversibility from TRT (Def. 3)

(Ir)reversibility in GENERIC (Def. 4)

(Ir)reversibility from entropy (Def. 5)

Geometric (ir)reversibility (Def. 6)

Relation (II.25a)

Relation (II.25b)

Reversibility of Ham. dyn. (L. 4)

OCRR (T. 2)

FIG. 1. (Color online) Conceptual map of this paper. The abbre-
viation L. stands for lemma, T. for theorem, and A. for assumption.

the fluid velocity on the particle-fluid interface. There is
absolutely no problem in seeing the time evolution equations
with the slip as reduced versions of true GENERIC equations
in which the physics that is behind the slip is explicitly
expressed. This completely fits the multiscale approach to
mesoscopic physics that is absolutely inevitable in particular
when dealing with complex systems arising in biophysics and
nanotechnology.

Besides the physical reasons in favor of the stringent
GENERIC structure, there is also an obvious mathematical
reason. The right-hand side of the abstract GENERIC equation
is a sum of two terms. Is such a split unique? If we relax
the requirements on the two terms, the answer is certainly
negative. Indeed, for example, in the linearized GENERIC,
one would not be able to reconstruct the L and M matrices
from the K matrix if the requirement of symmetry of M
and antisymmetry of L were dropped. Also the possibility to
formulate the stringent GENERIC time evolution as a contact
structure preserving dynamics with a deep thermodynamic
meaning [9] supports our approach.

G. Conceptual map

For the reader’s convenience we have included a conceptual
map of this paper (Fig. 1).

III. ILLUSTRATIONS

The preceding results and in particular Theorem 2 are
demonstrated in Hamiltonian dynamics, classical hydrody-
namics, the theory of mixtures within CIT, the quantum master
equation, and the Boltzmann equation.

A. Hamiltonian mechanics

Hamiltonian mechanics is easily formulated within
GENERIC if we choose the following building blocks:

(i) state variables: positions and momenta of all particles
(qi ,pi)

(ii) Poisson bracket: the canonical Poisson bracket

L =
(

0 1
−1 0

)
(3.1)

(iii) Dissipative bracket: zero.
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Evolution of the state variables then can be written as

dqi

dt
= ∂E

∂pi

, (3.2a)

dpi

dt
= − ∂E

∂qi

, (3.2b)

which are just the standard Hamilton’s equations.
Since the matrix L is constant (and thus even with respect

to TRT), Theorem 2 applies also out of the near-equilibrium
regime. In other words, coupling between qi and pi is always
antisymmetric (since both the state variables have opposite
parities). This is obviously correct for Hamilton’s equations.
In summary, OCRR imply that coupling between positions and
momenta of particles is antisymmetric, which is compatible
with the structure Hamilton’s canonical equations.

Let us now reformulate the notion of reversibility geometri-
cally. Evolution equation (3.2) is generated by the vector field

V = ∂E

∂p

∂

∂q
− ∂E

∂q

∂

∂p
. (3.3)

The push-forward acts on this vector field as follows:

I


(
∂E

∂p

∂

∂q
− ∂E

∂q

∂

∂p

)
= ∂E

∂p

∂

∂I(q)
+ ∂E

∂q

∂

∂I(p)

= −
[

∂E

∂I(p)

∂

∂I(q)
− ∂E

∂I(q)

∂

∂I(p)

]
,

(3.4)

which means that transforming state variables via TRT only
inverts the sign of the Hamiltonian vector field, which is
thus considered reversible in accordance with Definition 6.

Moreover, it is shown in Appendix A that any Poisson
bracket on the level of description of Hamiltonian dynamics,
which has to be obtained from the canonical bracket by
transformation of coordinates since it expresses the same
evolution, also generates only reversible evolution.

Having established the time reversibility of the particle
Hamiltonian dynamics we bring into attention another result
obtained in this dynamics that while the time evolution is,
strictly speaking, reversible, it is “practically” irreversible.
The result, obtained by Henri Poincaré [24], is the sensitive
dependence of the trajectories on the initial conditions.
According to this result, the separation among most trajectories
grows exponentially. This means that however small the initial
perturbation (due to, for instance, a numerical inaccuracy in
computing or an incomplete isolation from exterior influences
in experimental observations), the trajectory followed after
inversion of time will not retrace the trajectory followed before
the inversion. This result most certainly plays an important
role in the emergence of the explicit time irreversibility seen
in mesoscopic observations. A closer investigation of this
problem is beyond the scope of this paper.

B. Classical hydrodynamics

Theorem 2 can be also illustrated on classical hydrodynam-
ics [8], where state variables are [25] density field ρ(r), field
of momentum density u(r), and field of internal energy density
ε(r). The energy of the whole system is specified as

E =
∫

V

u(r)2

2ρ(r)
+ ε(r) dr. (3.5)

The entropy of the whole system is given by

S =
∫

V

s(ε(r),ρ(r)) dr. (3.6)

Poisson bivector is [8]

L(r,r′) =

⎡
⎢⎢⎣

0 ρ(r′) ∂δ
∂r′ 0

−ρ(r) ∂δ
∂r u(r′) ∂δ

∂r′ − ∂δ
∂r u(r) −ε(r) ∂δ

∂r + ∂δ
∂r′ p(r′)

0 ε(r′) ∂δ
∂r′ − ∂δ

∂r p(r) 0

⎤
⎥⎥⎦, (3.7)

where δ = δ(r − r′) and δ denotes Dirac distribution [26]. The dissipative bracket is specified as [8]

M(r,r′) =

⎡
⎢⎢⎣

0 0 0

0
(

∂
∂r′

∂
∂r + 1 ∂

∂r′ · ∂
∂r

)
ηT δ + 2 ∂

∂r
∂

∂r′ k̂T δ ∂
∂r · ηT γ̇ δ + ∂

∂r k̂T trγ̇ δ

0 ∂
∂r′ · ηT γ̇ δ + ∂

∂r′ k̂T trγ̇ δ 1
2ηT γ̇ : γ̇ δ + ∂

∂r · ∂
∂r′ λT 2δ + 1

2 k̂T trγ̇ 2δ

⎤
⎥⎥⎦, (3.8)

where γ̇ is the symmetric gradient of velocity field, η is the
shear viscosity, k̂ is the bulk viscosity, and λ is the thermal
conductivity.

The Poisson matrix (3.7) is obviously antisymmetric with
respect to simultaneous transposition and swapping arguments
r and r′. Hydrodynamic state variables have the following
parities:

P (ρ) = 1, P (u) = −1, P (ε) = 1. (3.9)

It can be easily checked that parities of the Poisson matrix are

P (L) =
⎛
⎝0 1 0

1 −1 1
0 1 0

⎞
⎠, (3.10)

which is in agreement with result (2.25a), and the Poisson
bracket generates reversible evolution, consequently.

Dissipative matrix is obviously symmetric with respect to
transposition and swapping arguments r and r′. The matrix has
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the following parities:

P (M) =
⎛
⎝0 0 0

0 1 −1
0 −1 1

⎞
⎠, (3.11)

which is in agreement with the result (2.25b) as well, and thus
the dissipative bracket generates irreversible evolution.

Hitherto, we have shown that classical hydrodynamics is
consistent with relations (2.25). Let us now show how the
results of the near-equilibrium treatment apply to classical
hydrodynamics. To do so we substitute equilibrium values of

state variables, (ρth,0,εth), into both matrices. Since the system
is considered isolated, the equilibrium value of momentum is
zero everywhere. This way the Poisson matrix simplifies to

L(xth)(r,r′) =

⎛
⎜⎝ 0 ρth

∂δ
∂r′ 0

−ρth
∂δ
∂r 0 −εth

∂δ
∂r + ∂δ

∂r′ pth

0 εth
∂δ
∂r′ − ∂δ

∂r pth 0

⎞
⎟⎠,

(3.12)

and the dissipative matrix simplifies to

M(xth)(r,r′) =

⎡
⎢⎣

0 0 0

0
(

∂
∂r′

∂
∂r + 1 ∂

∂r′ · ∂
∂r

)
ηT δ + 2 ∂

∂r
∂

∂r′ k̂T δ 0

0 0 ∂
∂r · ∂

∂r′ λT 2δ

⎤
⎥⎦. (3.13)

It can be easily checked that terms corresponding to state variables with the same parities have vanished in the Poisson matrix
while terms corresponding to state variables with different parities have vanished in the dissipative matrix. Therefore, OCRR are
fulfilled for near-equilibrium classical hydrodynamics, which is the result of Theorem 2, proof of which we have just retraced.
Near-equilibrium evolution equations are derived below in this section.

We have thus shown validity of OCRR near the global equilibrium. But classical hydrodynamics (and the whole CIT) is based
on the assumption of local equilibrium only. Are OCRR valid for local equilibrium as well? To answer the question one would
at first have to specify the meaning of OCRR in a regime not near the global equilibrium. If the meaning were that coupling of
state variables with the same parities is symmetric while coupling of state variables with different parities is antisymmetric, then
OCRR are clearly violated in the regime. Indeed, the dissipative matrix (3.8) provides symmetric coupling between momentum
and energy, which have opposite parities. On the other hand, if the coupling coefficients (e.g., coefficient of thermodiffusion in
CIT [6,27]) are constant, that is, the same as in equilibrium, coupling keeps its symmetricity or antisymmetricity also out of
the near-global-equilibrium regime. In summary, one should bear in mind that OCRR are valid near the global equilibrium and
that GENERIC is the far-from-equilibrium extension of OCRR, which may have the same symmetry or antisymmetry as the
near-global equilibrium also far from equilibrium.

Let us now introduce deviations of hydrodynamic state variables from their equilibrium values ρ̃, ũ and ε̃. Evolution equations
for these state variables can be inferred from the general near-equilibrium evolution equation (2.28). Second derivatives of
thermodynamic potential �, which is constructed according to formula (2.17), are

∂2�

∂ρ∂ρ

∣∣∣∣
th

=
(

∂μ/T

∂ρ

)
ε

∣∣∣∣
th

,
∂2�

∂ρ∂ui

∣∣∣∣
th

= 0,
∂2�

∂ρ∂ε

∣∣∣∣
th

=
(

∂μ/T

∂ε

)
ρ

∣∣∣∣
th

, (3.14a)

∂2�

∂ui∂ρ

∣∣∣∣
th

= 0,
∂2�

∂ui∂ui

∣∣∣∣
th

= δij

ρthTth
,

∂2�

∂ui∂ε

∣∣∣∣
th

= 0, (3.14b)

∂2�

∂ε∂ρ

∣∣∣∣
th

= −
(

∂T −1

∂ρ

)
ε

∣∣∣∣
th

,
∂2�

∂ε∂ui

∣∣∣∣
th

= 0,
∂2�

∂ε∂ε

∣∣∣∣
th

= −
(

∂T −1

∂ε

)
ρ

∣∣∣∣
th

. (3.14c)

Note that ∂2�
∂ε∂ρ

|th = ∂2�
∂ρ∂ε

|th due to Maxwell’s relations. Plugging relations (3.14) into (2.30), thermodynamic forces become

Xρ =
(

∂μ/T

∂ρ

)
ε

∣∣∣∣
th

ρ̃ +
(

∂μ/T

∂ε

)
ρ

∣∣∣∣
th

ε̃, (3.15a)

Xui
= ũi

ρthTth
, (3.15b)

Xε = −
(

∂T −1

∂ρ

)
ε

∣∣∣∣
th

ρ̃ −
(

∂T −1

∂ε

)
ρ

∣∣∣∣
th

ε̃. (3.15c)

The matrix Kij is constructed from equilibrium Poisson bracket (3.12) and dissipative bracket (3.13) according to (2.28). It can
be easily seen that the matrix becomes

K(r,r′) =

⎛
⎜⎜⎝

0 Tthρth
∂δ
∂r ′

i

0

−Tthρth
∂δ
δri

Kuiuj
(r,r′) −Tthεth

∂δ
∂ri

+ Tthpth
∂δ
∂r ′

i

0 Tthεth
∂δ
∂r ′

i

− ∂δ
∂ri

Tthpth − ∂
∂ri

∂
∂r ′

i

(
λthT

2
thδ
)

⎞
⎟⎟⎠, (3.16)
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where

Kuiuj
(r,r′) = −

(
∂

∂r ′
i

∂

∂rj

+ δij

∂

∂r ′
k

∂

∂rk

)
(ηthTthδ)

− 2
∂

∂ri

∂

∂r ′
j

(k̂thTthδ). (3.17)

Onsager-Casimir reciprocal relations can be now interpreted
as follows. Matrix Kij (r,r′) provides coupling between state
variables. Variables ρ̃ and ε̃ are not coupled since the
corresponding terms in the matrix are zero. On the other hand,
variables ρ̃(r) and ũi(r′) have opposite parities and are coupled
through the second term in the first row and the first term
in the second row. The terms are the same form except for
sign, which means that the coupling is antisymmetric. This is
in agreement with that P (ρ̃) = −P (ũi). Similarly, coupling
between ũi(r) and ε̃(r′), which also have opposite parities,
is antisymmetric as well. On the other hand, variables ui(r)
and uj (r′) have the same parity (they are both odd) and they
are coupled through the Kuiuj

(r,r′) term, which is symmetric.
In summary, coupling between variables with the same parity
is symmetric while coupling between variables with opposite
parities is antisymmetric. The symmetric coupling is given by
the dissipative bracket while the antisymmetric coupling is
given by the Poisson bracket. This is exactly the statement of
Theorem 2, which has hereby been demonstrated on classical
hydrodynamics.

Finally, evolution equations for the near equilibrium state
variables can be constructed as (2.28). The evolution equation
for ρ̃ is given by

∂ρ̃(r)

∂t
=
∫

V

∑
i

Kρui
(r,r′)Xui

(r′) dr′. (3.18)

Other evolution equations can be constructed analogically.
After some algebra we obtain

∂ρ̃

∂t
= −divũ, (3.19)

∂ũ
∂t

= −∇p̃ + ηth + 2K̂th

ρth
∇div ũ + ηth

ρth
�ũ, (3.20)

∂ε̃

∂t
= −εth + pth

ρth
div ũ + λth�T̃ , (3.21)

where

∇p̃
def=
(

∂p

∂ρ

)
ε

∣∣∣∣
th

∇ρ̃ +
(

∂p

∂ε

)
ρ

∣∣∣∣
th

∇ε̃ (3.22)

and

�T̃
def=
(

∂T

∂ρ

)
ε

∣∣∣∣
th

�ρ̃ +
(

∂T

∂ε

)
ρ

∣∣∣∣
th

�ε̃. (3.23)

Note that evolution equations (3.19)–(3.21) can be treated
within near-equilibrium statistical physics. Indeed, the stan-
dard statistical proof of OCRR [6] applies to the near-
equilibrium evolution. Moreover, these equations can be
directly used in the fluctuating hydrodynamics framework
[28] and the fluctuation-dissipation theorem can be applied,
consequently.

In summary, we have shown that Theorem 2 is valid within
classical hydrodynamics. We have also linearized classical
hydrodynamics so OCRR are revealed explicitly.

C. Theory of mixtures within CIT

Let us now analyze OCRR within the theory of mixtures
developed in CIT [6]. The theory has been reformulated within
GENERIC [27] without chemical reactions. At first we verify
that Theorem 2 holds also in this case and, consequently, we
try to extend formulation of the theory [27] so it contains
coupling between chemical reactions with isotropic viscous
stress [6]. Note that many details which can be found in the
original paper [27] are skipped to avoid repetition.

Let us at first analyze the Poisson bracket of CIT [27]. For
simplicity, we do not reproduce the Poisson bracket here but
it can be found in Eq. (32) of the original paper [27]. When
evaluating the Poisson bracket at equilibrium, only the term

−
∫

uα

(
∂A

∂uα

∂

∂rβ

∂B

∂uβ

− ∂B

∂uγ

∂

∂rβ

∂A

∂uβ

)
dr (3.24)

disappears since u = 0 at equilibrium. All the remaining terms
in the Poisson bracket provide coupling between even and odd
variables, and we can, therefore, conclude that the Poisson
bracket is responsible for coupling variables of different
parities near equilibrium. This is in agreement with Theorem 2.

Similarly, only the terms coupling internal energy and
momentum disappear from the dissipative bracket (44) of
the paper [27], and the dissipative bracket is responsible for
coupling variables with the same parity near equilibrium,
which is again in agreement with Theorem 2.

Let us now analyze the possibility of coupling between
the isotropic viscous stress and reaction rate. The energy (no
potential energy is considered) and entropy (in accordance
with Gibbs’ definition [29]) of the mixture are specified as

E =
∫

u2

2ρ
+ ε(r)dr, S =

∫
s(ρ1, . . . ,ρn,ρ,ε)dr,

(3.25)

where ρ1, . . . ,ρn are densities of species 1, . . . ,n, ρ =∑n
i=1 ρi is the total density, and ε is internal energy density.

The following relations will be needed in the subsequent
discussion:

δE

δρi

= 0,
δS

δρi

= −μi

T
, (3.26)

δE

δuγ

= uγ

ρ
,

δS

δuγ

= 0. (3.27)

Note that μi is the chemical potential of the i-th species and
T is temperature.

For divergence of velocity to affect evolution equation of
density ρi , the Poisson bracket needs to contain a term with
δA
δuγ

and δB
δρi

. Such a term is, however, already present in the
bracket. In order to provide some extra influence, one needs to
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add a term,

−
n∑

i=1

∫
Li(ρ1, . . . ,ρn,ρ,u,ε)

×
(

δA

δuγ

∂

∂rγ

δB

δρi

− δB

δuγ

∂

∂rγ

δA

δρi

)
dr, (3.28)

where Li is an unknown function of all state variables. Such
an extended Poisson bracket would indeed provide the addi-
tional effect of divergence of velocity to evolution equations
for ρ1, . . . ,ρn, as can be straightforwardly verified. But is
such coupling compatible with degeneracy conditions (2.16)?
Evaluating the term (3.28) with a general functional A and
entropy gives

−
n∑

i=1

∫
Li

δA

δuγ

∂

∂rγ

(
−μi

T

)
dr, (3.29)

which generally differs from zero. Therefore, the term cannot
be added to the Poisson bracket (without altering the well
established Gibbs-Duhem relation for pressure) because it
would violate the degeneracy condition. We can conclude that
the effect of the isotropic viscous stress on partial density
cannot be caused by the Poisson bracket within CIT since it
would violate degeneracy conditions [30] (2.16).

Can the effect be caused by the dissipative bracket? To
provide the coupling, one needs to add a term,

−
n∑

i=1

∫
Li(ρ1, . . . ,ρn,ρ,u,ε)

×
(

δA

δuγ

∂

∂rγ

δB

δρi

+ δB

δuγ

∂

∂rγ

δA

δρi

)
dr, (3.30)

to the dissipative bracket. Li is again an unknown function
of all state variables. Let us check the degeneracy con-
dition (2.16), taking into account the dissipative bracket.
Evaluating the term (3.30) with a general functional A and
energy gives

−
∑

i

∫
Li

uγ

ρ

∂

∂rγ

δA

δρi

dr, (3.31)

which again differs form zero generally. Therefore, such a
term cannot be added to the dissipative bracket because it
would violate the corresponding degeneracy condition.

In conclusion, the coupling between isotropic viscous stress
and chemical reactions within CIT is not consistent with the
GENERIC framework, and it should, therefore (as GENERIC
can successfully be considered as a generalization of CIT),
be regarded as an artifact of insufficient structure within the
standard treatment of CIT [6,31,32].

On the other hand, it has been shown recently that coupling
between mechanics and chemical reactions may successfully
explain many phenomena in physics and chemistry [33,34],
and this coupling is naturally formulated within GENERIC.
In these works, however, rate of chemical reactions is among
state variables. Such a new variable then can be coupled to
mechanics consistently. From the thermodynamic point of
view, these works use an idea similar to EIT when promoting
reaction rate (or its conjugate) into a new state variable.

Therefore, such thermodynamics is more general than CIT,
and it admits coupling between chemistry and mechanics.

D. Master equation

In this section we discuss the relation between the quantum
master equation and OCRR. There are many ways that the
master equation can be derived and understood. A rather
simple but physically transparent way was developed by van
Kampen [35], where phase space was divided into phase cells
and, instead of knowledge of probability of a system being in
an exact state in the phase space, only the probability that the
system is in a phase cell is available. Such coarse-graining is,
in fact, a realization of two levels of description, the finer being
the level where evolution is given by the Schrödinger equation
[36] while the coarser level is the level where the probability
that the system is in a particular phase cell is governed by a
master equation.

The Schrödinger equation is reversible with respect to the
TRT introduced in quantum theory [37]. This TRT, which
transforms wave functions into their complex conjugates, is
compatible with the notion of TRT from Sec. II A since it, for
example, inverts momenta of particles [37].

Now introducing the phase cells according to van Kampen
[35] and observing only probabilities that the system is in
a phase cell, we define a new, more macroscopic, level of
description. The probabilities are governed by the master
equation

dPi

dt
=
∑

j

Wi,jPj , (3.32)

where an explicit expression for the matrix Wi,j is available
[35]. Note that the matrix Wi,j is supposed to be constant and
that it does not need to be symmetric. For the probabilities to
sum up to 1 for any set of probabilities, it holds that∑

i

Wi,j = 0. (3.33)

Detailed balance can be expressed as [35]

Wi,j (H)Gj = W−j,−i(−H)G−i Gi = G−i ∀i,j, (3.34)

where the number of states in phase cell i was denoted by
Gi . Phase cell −i is defined so any observable dependent on
velocities, i.e., represented by an imaginary operator, has a sign
opposite that in cell i. On the other hand, even observables,
which do not depend on velocities, i.e., are represented by real
operators, have the same value within both cells i and −i. The
intensity of the magnetic field was denoted by H but let us
suppose for simplicity that it is zero hereafter.

Combining (3.33) and (3.34), it can be obtained that also∑
j

Wi,jGj = 0. (3.35)

The stationary (or equilibrium) probability distribution is
obtained for the right-hand side of Eq. (3.32) equal to zero.
Equation (3.35) then implies that the equilibrium distribution
is given by a standard microcanonical probability distribution,

Pi = Gi

G
, (3.36)

where G = ∑
j Gj .
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Let us now introduce deviations of probabilities from their
equilibrium values,

πi = Pi − Gi

G
. (3.37)

The master equation (3.32) can be reformulated equivalently
as

dπi

dt
=
∑

j

Wij

Gj

G︸ ︷︷ ︸
Kij

· G

Gj

πj︸ ︷︷ ︸
Xj

, (3.38)

where matrix K and vector of thermodynamic forces X were
introduced. Property (3.34) translates into

Ki,j = K−j,−i . (3.39)

This form of master equation can be identified with the
general near-equilibrium evolution equation (2.28). Thermo-
dynamic potential can be introduced naturally as

� = −S + E

kBT
(3.40)

with entropy and energy specified as

S = −
∑

i

Pi ln
Pi

Gi

and E = E
∑

i

Pi, (3.41)

where E is the energy of the energy shell which contains
all the phase cells. The definition of thermodynamic forces
from Eq. (3.38) is then compatible with (2.30), as can be
verified straightforwardly. We have thus formulated the master
equation within GENERIC.

Note that in the original work [35] it was entropy rather
than thermodynamic potential that governed the evolution. But
since entropy (3.41) was approximated by a quadratic function,
difference between thermodynamic potential and entropy
smears out. Replacing entropy with thermodynamic potential
makes the master equation compatible with GENERIC.

Let us now analyze how TRT acts on the master equation.
TRT inverts velocities and since cell −i corresponds to
cell i with inverted velocities of particles (see the original
paper [35] for more details and proper quantum-mechanical
interpretation), we have that I(Pj ) = P−j and hence (using the
fact that Wij are constant)

I(Gj ) = G−j = Gj, I(Kij ) = I
(

Wij

Gj

G

)
= Kij ,

I(πj ) = I
(

Pi − Gi

G

)
= π−j , I(Xj ) = I

(
G

Gj

πj

)
= X−j .

Therefore Eq. (3.38) is converted by the action of TRT into

dπ−i

dτ

(3.38)=
∑

j

−Ki,jX−j
(3.39)=

∑
j

−K−j,−iX−j

=
∑
−j

K[−i,−j ]X−j −
∑

j

K(−i,−j )X−j . (3.42)

Since TRT converts πi into π−i , state variables πi do not
have definite parity. But state variables with definite parity Aα

and Bβ may be introduced as

Aα =
∑

i

Aα,iπi, Aα,i = Aα,−i , (3.43)

Bβ =
∑

i

Bβ,iπi, Bβ,i = −Bβ,−i . (3.44)

Note that constants Aα and Bβ are not affected by TRT. These
state variables are closer to experimental measurements than
probabilities πi , which are not usually available experimen-
tally. Transformations (3.43) and (3.44) also affect thermo-
dynamic forces, which are always given by definition (2.30).
Thermodynamic forces in the new variables are, therefore,
defined as

X̃α′ =
∑

α

∂2�

∂Aα′∂Aα

∣∣∣∣
eth

Aα +
∑

β

∂2�

∂Aα′∂Bβ

∣∣∣∣
eth

Bβ, (3.45)

X̃β ′ =
∑

α

∂2�

∂Bβ ′∂Aα

∣∣∣∣
eth

Aα +
∑

β

∂2�

∂Bβ ′∂Bβ

∣∣∣∣
eth

Bβ. (3.46)

These new forces are related to the old forces through

Xj =
∑

α

Aα,j X̃α +
∑

β

Bβ,j X̃β, (3.47)

which follows easily from (3.43) and (3.44).
Master equation (3.38) can be also transformed into the new

variables easily. For example, even variable Aα′ is governed
by

dAα′

dt
=
∑
i,j

Aα′,iKijXj

=
∑

α

∑
i,j

Aα′,iKijAα,j

︸ ︷︷ ︸
K̃α′ ,α

X̃α +
∑

β

∑
i,j

Aα′,iKijBβ,j

︸ ︷︷ ︸
K̃α′ ,β

X̃β .

(3.48)

The evolution equation for Bβ ′ and the definitions of K̃α,β ,
K̃β,α , and K̃β ′,β are analogous.

Let us now find out what property (3.39) tells about the new
matrix K̃ . From the definition of the new matrix it follows that

K̃α′,α =
∑
i,j

Aα′,iKi,jAα,j =
∑
i,j

Aα′,iK−j,−iAα,j = K̃α,α′ ,

(3.49)

K̃α,β =
∑
i,j

Aα,iKi,jBβ,j =
∑
i,j

Aα,iK−j,−iBβ,j = −K̃β,α.

(3.50)

In other words, matrix K̃α′,α , which provides coupling between
two even variables, is symmetric while matrix K̃α,β , which
provides coupling between an even and an odd variable, is
antisymmetric. Analogously, matrix K̃β ′,β is also symmetric.

The antisymmetric part of matrix K̃ can be, according
to (2.29), regarded as a Poisson bivector which generates a
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Poisson bracket, while the symmetric part represents the dis-
sipative bracket. Moreover, the condition of detailed balance
derived from quantum-mechanical considerations (3.39) then
implies that state variables with the same parity are coupled
via the symmetric dissipative matrix while state variables with
opposite parities are coupled via the antisymmetric Poisson
matrix near equilibrium, i.e., OCRR are fulfilled.

This is, in fact, the statement of Theorem 2. It can be
also easily checked that all assumptions of Theorem 2 except
for the fourth are fulfilled. The fourth assumption brings
validity of relations (2.25). Therefore, we can invert meaning
of the theorem [38] and conclude that we have proven that
relations (2.25) are fulfilled at least at equilibrium. In summary,
we have obtained full agreement between Theorem 2 and
finite-dimensional dynamics [35], and we have shown that
relations (2.25) are valid at least at equilibrium. To study
validity of these relations in the far-from-equilibrium regime
one would have to use a more general treatment than the
near-equilibrium master equation presented here.

Is the evolution generated by the antisymmetric part of
matrix K̃ really reversible as it should if interpreted as a
Poisson bivector? TRT applied on Eq. (3.48) gives

−dAα′

dτ
=
∑

α

K̃α′,αX̃α +
∑

β

K̃α′,β(−X̃β), (3.51)

where constantness of K, Aα,i , and Bβ,i was used. The part of
the right-hand side with antisymmetric matrix K̃α′,β transforms
in the same way as the left-hand side and so it represents
reversible evolution. In other words, the antisymmetric part of
matrix K̃ generates reversible evolution while the symmetric
part generates irreversible evolution. This is in accordance with
that the antisymmetric part represents a Poisson bracket while
the symmetric part represents a symmetric dissipation bracket
(or dissipation potential).

Note also that passage to the more coarse level, where state
variables are given by Pi instead of the full density matrix,
introduces some dissipation described by the symmetric part of
matrix K̃, which is just a transformation of the symmetric part
of matrix K. Indeed, the Schrödinger equation is completely
reversible while the master equation contains also irreversible
evolution.

In summary, Theorem 2 is compatible with finite-
dimensional dynamics governed by the quantum master
equation [35]. After introducing state variables with parities,
OCRR are revealed, and the transition matrix from the master
equation can be regarded as a sum of a Poisson bracket and
a dissipative bracket. Moreover, relations (2.25) are proven to
be generally valid, at least at equilibrium.

E. Boltzmann equation

Let us illustrate Theorem 2 on the Boltzmann equation.
State variables are given by the field of probability density
f (r,v). The Boltzmann equation [7] can be written as

∂f (r,v)

∂t
=
∫

dr′dv′L(r,v,r′,v′)
δE

δf (r′,v′)
+ δ�

δ δS
δf (r,v)

,

(3.52)

where the Poisson bivector field is

L(r,v,r′,v′) = 1

m

[
∂δv

∂v′
γ

∂δrf (r′,v′)
∂r ′

γ

− ∂δrf (r,v)

∂rγ

∂δv

∂vγ

]
,

(3.53)

where δv = δ(v − v′) and δr = δ(r − r′). This corresponds to
the following Poisson bracket [7]:

{A,B} =
∫

dr
∫

dv
∫

dr′
∫

dv′ δA

δf (r,v)
L(r,v,r′,v′)

δB

δf (r′,v′)

=
∫

dr
∫

dv
f

m

(
∂Af

∂rγ

∂Bf

∂vγ

− ∂Bf

∂rγ

∂Af

∂vγ

)
. (3.54)

The irreversible part of the Boltzmann equation (3.52) is
generated by the following dissipation potential [7]:

� =
∫

d1
∫

d2
∫

d1′
∫

d2′W (f ; 1,2,1′,2′)

× (
e

X
2 + e− X

2 − 2
)
, (3.55)

where

X = 1

kB

(Sf (1) + Sf (2) − Sf (1′) − Sf (2′)). (3.56)

Numbers 1, 2, 1′, and 2′ denote coordinates (r1,v1), (r2,v2),
and so on. Energy is specified as

E =
∫

dr
∫

dv (1/2mv2 + mφ(r))f (r,v)

where φ(r) is a constant external potential field. Entropy is
specified as the standard Boltzmann entropy [7],

S = −kB

∫
dr
∫

dvf (r,v) log f (r,v), (3.57)

which is obviously even with respect to TRT.
TRT applied on probability distribution inverts velocities,

i.e.,

If (r,v) = f (r, − v). (3.58)

Let us now formulate the notion of reversibility or irreversibil-
ity geometrically. The manifold M is given by probability
density at each place of phase space f (r,v). TRT is given
by (3.58) and the Jacobi matrix of the transformation is thus
given by

∂I(f (r,v))

∂f (r′,v′)
= ∂

∫
dr
∫

dvδ(v + v′)δ(r − r′)f (r′,v′)
∂f (r′,v′)

= δ(r − r′)δ(v + v′). (3.59)

The vector field generating reversible evolution in Boltzmann
equation is equal to

V =
∫

dr
∫

dv
∫

dr′
∫

dv′L(r,v,r′,v′)
δE

δf (r′,v′)
∂

∂f (r,v)
,

(3.60)

where L(r,v,r′,v′) is specified by formula (3.53). After
some algebra, the push-forward induced by TRT transforms
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MICHAL PAVELKA, VÁCLAV KLIKA, AND MIROSLAV GRMELA PHYSICAL REVIEW E 90, 062131 (2014)

the field to

I
V = −
∫

dr
∫

dv
1

m

[
∂δ(v′ − v)

∂v′
γ

∂δ(r′ − r)f (r′, − v′)
∂r ′

γ

− ∂δ(v′ − v)

∂vγ

∂δ(r′ − r)f (r, − v)

∂rγ

]
δE

δf (r′, − v′)
∂

∂f (r, − v)
,

(3.61)

which indeed has only a different sign compared with the
original field, and one can conclude that the Poisson bracket
indeed generates reversible evolution.

Applying TRT onto the dissipation potential means apply-
ing the push-forward I
 as

I
� = �(I(f )) = �(f ), (3.62)

where the last equality follows from simple substitution −v →
v, etc., in the expression for �(I(f )). The dissipation potential
is thus even with respect to TRT and, according to Lemma 3,
it only generates irreversible evolution. In summary, we have
shown that the Poisson bracket generates reversible evolution
while the dissipation potential generates irreversible evolution.

As well as in the case of the master equation in Sec. III D,
in the case of the Boltzmann equation we also can introduce
new state variables which already have particular parities. For
example, the distribution function f (r,v) is fully characterized
by its moments with respect to velocity, and the moments have
a clear physical interpretation. The zeroth moment

ρ(r) = m

∫
f (r,v)dr (3.63)

is just density, which is even under TRT. The first moment,

u(r) = m

∫
f (r,v)vdr, (3.64)

is momentum of the fluid (an odd variable), and higher
moments may be constructed. Evolution equations for the mo-
ments follow from the Boltzmann equation straightforwardly.
In particular, for the two first moments we obtain evolution
equations of classical hydrodynamics from Sec. III B, where it
already has been shown that Theorem 2 applies. Hence, OCRR
appear when parity can be assigned to the state variables.

In summary, Theorem 2 does not apply to the Boltzmann
equation directly since distribution function itself has no parity.
OCRR can be revealed, however, when considering moments
of the distribution function, which already have parities, as
state variables instead of the distribution function itself. The
assumption that relations (2.25) are valid is fulfilled since the
Poisson bivector from Boltzmann equation has already been
shown to generate only reversible evolution, see Appendix A
for independence of reversibility on change of variables.
Theorem 2 then applies to these new variables, and its
statement, that variables of the same parity are coupled through
the dissipative bracket while variables with opposite parities
are coupled through the Poisson bracket near equilibrium, is
valid for the Boltzmann equation as well.

Before leaving the example of the Boltzmann kinetic
equation we emphasize that we regard this historically earliest
example of mesoscopic time evolution that manifestly displays
the entropic approach to thermodynamic equilibrium states as
a time evolution that motivated the formulation of GENERIC.

Indeed, it appears (formulated in terms of the dissipation
potential) already in Ref. [39]. We also note that since binary
collisions can be regarded as chemical reactions in species
labeled by the particle momentum v, the formulation shown
above can easily be extended to general chemical kinetics
[33,40]. A formulation of the Boltzmann equation in terms
of nonsymmetric irreversible brackets has been introduced by
Öttinger [41].

IV. DISCUSSION

The Onsager-Casimir reciprocal relations were originally
formulated by Onsager [1,2] and Casimir [3]. Later they were
derived within quantum mechanics by van Kampen [35], and
a very detailed derivation was given by de Groot and Mazur
[6]. These reciprocity relations have been typically derived
from the microscopic time reversibility and the hypothesis that
equilibrium fluctuations and macroscopic state variables close
to equilibrium follow the same time evolution. On the other
hand, Sharipov [42] showed that for OCRR the microscopic re-
versibility is necessary and sufficient, while other assumptions,
e.g., local equilibrium or hypothesis of fluctuation regression,
are not. However, he proposes a different relation for OCRR
because in a provided example of the velocity slip problem
it is shown that a coupled coefficient neither changes nor
maintains its own sign (has no parity). Hence OCRR in their
standard form (Jk and Xk being a flux-force pair from linear
nonequilibrium thermodynamics)

�kn = P (Xk)P (Xn) �nk, Jk =
∑

n

�knXn (4.1)

cannot be used. He suggests a generalized version of OCRR
that is independent of parity of coefficient,

�t
kn = �t

nk, (4.2)

with superscript t denoting the time-reversed kinetic coeffi-
cient. This work was further developed for mixture of gases
with similar findings [43]. In this paper, we offer an alternative
approach to transform to variables with definite parities and
to couple evolution equations instead of fluxes and forces, see
Secs. III E and IV B.

Pavelka et al. [44] showed that TRT also can be used to
introduce partial pressures for nonideal mixtures and that the
reciprocal relations can depend on the level of description as
physical quantities may have different parities on different
levels of description.

Geigenmuller et al. [45] studied the influence of the
presence of fast macroscopic variables on the validity of
OCRR. In their view, OCRR are obtained by comparing two
levels of description of the same phenomena. They consider a
two-step contraction: from the microscopic level to a relatively
large number of already-macroscopic variables (both fast and
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slow); in the second step of contraction, fast variables are
eliminated. OCRR are employed on the first contracted level
and when the relaxation matrix after the second contraction
is studied, it shows second-order deviations from Onsager-
Casimir symmetry in the ratio of time scales. Note that OCRR
are relations for coupling of evolution equations as in this
work.

Wigner [46] provides a discussion on the range of validity
of two groups of derivations (the first employs assumptions
on the macroscopic laws of motion, and the second assumes a
definite statistical law for the path in phase space) of Onsager’s
reciprocal relations.

Further, van Kampen [47] also used the TRT and parity
to study the time variation of probability as given by a
special form of the Fokker-Planck equation and identified
reversible and irreversible parts (reversibility was implicitly
considered as in our Definition 3 for reversibility based
on TRT). Interestingly, he shows that the symmetric part
of linearized phenomenological equations (derived from the
master equation) is a consequence of properties outside of
linear regime, whereas the antisymmetry has no counterpart in
the nonlinear case. This resembles our conclusions based on
the structure of GENERIC.

Additionally, Muschik [48] defines reverse-motion (rm)
parameters that change their signs under reversal of motion.
He argues that the reversal of motion does not exist macro-
scopically, whereas the rm parameter is an existing process.
Subsequently, OCRR are derived via studying the entropy
production under rm-parameter transformation and hence
the phenomenological foundations of OCRR are provided.
However, Muschik assumes identification of fluxes and forces
from the onset, which may be problematic; see Sec. IV B.

An important result in this paper is the relation of antisym-
metric coupling to Poisson brackets. Edwards and Beris say
that they consider OCRR for dissipative brackets but likely
they consider Onsager reciprocity relations only (and which
indeed appear through dissipative brackets). OCRR within
CIT have also been formulated by Öttinger [15] in terms of
so-called bare and dressed symmetries, where relation (2.25b)
was derived by use of Green-Kubo’s formula. However, the
role of Poisson brackets in OCRR was not recognized.

Further, an interesting insight into OCRR has been brought
by Mario Liu [49]. His ideas that the behavior of entropy
production with respect to TRT should provide OCRR are
similar to ideas presented in this paper although presented for
the evolution of two state variables only. The results can be
extended to an infinite number of variables by mathematical
induction straightforwardly. However, the role of Poisson
brackets has not been recognized.

A. Nonlinear generalizations

All of the above derivations and treatments of OCRR share
that they are only valid near equilibrium although they usually
are applied in local equilibrium, which does not need to be
near the global equilibrium. Additionally, OCRR are applied
in continuum thermodynamics although usually derived only
for scalar state variables explicitly. Hence there has been
effort to identify an appropriate generalization of OCRR into
a nonlinear regime.

Hurley and Garrod [50] used a statistical-mechanics con-
sideration to obtain conditions on a correlation matrix of
macroscopic observables. Then, under the assumption of a
general linear evolution around an equilibrium and when
the dynamics of a point in microscopic phase space is time
invariant, a generalization of the OCRR is obtained. If the
matrix of the linear evolution is constant, then the standard
OCRR are acquired. However, they used a microcanonical
ensemble in their derivation that restricts the validity to close
proximity of equilibrium similarly to Onsager’s regression
hypothesis.

Further, Verhás [51] proposed a generalization via a
straightforward approach using Taylor’s expansion and an
assumption on continuity of constitutive relations, ∂Ji/∂Xj =
∂Jj/∂Xk . Similarly, Astumian [52] considered a higher-order
relations among thermodynamic forces and fluxes when
analyzing coupled transport, suggesting a generalization of
Onsager linear reciprocal relations beyond linear regime.
Finally, Ciancio and Verhás showed that some of the nonlinear
generalizations of the OCRR are not of general validity as
they are not compatible with the law of mass action [53].
The here-proposed approach is compatible with the Guldberg-
Waage equations as they have been already formulated within
GENERIC [10,40] with an even dissipation potential.

Related work to this manuscript can be identified in the
work [54] of Miroslav Grmela in 2002. He also studied OCRR
and provided an extension to contact geometry formulation of
GENERIC. Further, he also introduced TRT and parity (using
projector operators), and coupling was not considered among
forces and fluxes but rather among evolution equations. In
addition, the thermodynamic potential � and energy E were
taken as invariant with respect to TRT (even functionals). In
our current study, we are focusing on a careful discussion of
(ir)reversibility in its various forms and reveal the implications
of OCRR on structure of evolution equations including
GENERIC. In particular, we show that antisymmetric coupling
is exclusively mediated by Poisson bracket and symmetric
coupling by dissipation potentials or brackets. Further, we shed
light on some problems related to OCRR within classical linear
irreversible thermodynamics; see Sec. IV B.

B. Problems related to OCRR and relevance of this work

Apart from some controversies mentioned above, we shall
elaborate on one related to the appropriate choice of fluxes and
forces for OCRR. Coleman and Truesdell provide a careful
discussion of implications of OCRR on flux-force relations
[55]. They argue that if entropy production is considered
as bilinear and, in addition, linear flux-force relations are
taken into account, one cannot employ OCRR. The reason
is that regular linear transformation (where fluxes and forces
are combined together) can lead to losing (anti)symmetry in
the force-flux relations. Hence, it is required to have some
independent identification of relevant fluxes and forces in
order to employ OCRR and closures as a result. Additionally,
Meixner showed that if forces and fluxes exist such that
satisfy linear flux-force relations and form the bilinear form
of entropy production, then, in fact, infinitely many choices
of fluxes and forces are possible that have the same properties
and, moreover, satisfy the symmetry condition of the linear
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phenomenological matrix [6,56,57]. Andrews [58] comes to a
similar conclusion and suggests that no amount of macroscopic
analysis can yield the reciprocal relations. Note that he was
aware that the antisymmetric part does not produce entropy
and, hence, in a sense, corresponds to reversible processes
(including the example of the coupling between rate of a
chemical reaction and the divergence of the local velocity).

In summary, the problem with selection of thermodynamic
fluxes and forces results in uncertainty of applicability of
OCRR in particular cases. In this paper OCRR are re-
garded as a consequence of the structure of the GENERIC
framework. If this structure is not recognized, OCRR are
usually applied to force-flux relations inferred from a formula
for entropy production [6]. This brings up the question of
how thermodynamic fluxes and forces should be identified.
In this approach of classical irreversible thermodynamics,
independent (experimental or microscopic) insight is thus
required for symmetry or antisymmetry of phenomenological
matrix. If, on the other hand, OCRR are implied by the
structure of GENERIC as in this paper, the question regarding
how to identify the forces and fluxes is irrelevant since the
structure of GENERIC is invariant to the transformation of
state variables [15].

Now we are ready to state the relevance of this paper to
OCRR and the related problems as described above. This text
unifies various notions of (ir)reversibility, addresses the prob-
lem of flux-force identification, offers a plausible nonlinear
extension of OCRR valid in wide range on scenarios, and
assesses implications of OCRR on the structure of evolution
equations (GENERIC), including coupling phenomena.

V. CONCLUSION

The abstract GENERIC equation (2.11) collects some of
the features that are emerging in mesoscopic dynamics of
macroscopic systems (as, for instance, the time irreversibility
and dissipativity). In order to see their meaning and their
significance, we can attempt to relate them either to certain
features of the microscopic dynamics or, alternatively, to
thermodynamics and macroscopic multiscale dynamics. In
this paper we do the latter. Our objective has been in
particular to explore the interrelationships among the time
irreversibility, the dissipativity, and the thermodynamics. The
connection with thermodynamics has also been explored by
Grmela [54], and, more recently [9], GENERIC has been
lifted into a larger space in which the time evolution appears
to be a continuous sequence of contact-structure preserving
transformations extending in a direct way, with the Legendre
transformations playing an important role in the classical
thermodynamics.

As for making contacts with the microscopic dynamics,
we recall in particular the work of Onsager [1,2] and Casimir
[3]. In the Onsager’s analysis, the Onsager symmetry of the
linearized mesoscopic dynamics arises from an assumption
about the microscopic dynamics, namely from the assumption
that microscopic fluctuations of mesoscopic state variables
follow, in states that are not far from the thermodynamic
equilibrium, the mesoscopic time evolution. Various aspects
of Onsager’s work have been then explored and further
developed, see Sec. IV.

We note that not all of the extensions of the Onsager’s work
that have been attempted and that can be found in the literature
lead to dynamical systems that are particular realizations of
the abstract GENERIC equation [7,8]. As we have already
mentioned in Sec. II F, GENERIC (2.11) does not intend to be
all inclusive. Our principal objective has been to formulate a
mesoscopic dynamics that has the following features:

(a) the formulation is sufficiently abstract so it is usable on
any mesoscopic level of description,

(b) the dynamics has a rich structure with many clearly
verifiable consequences,

(c) the dynamics is inclusive in the sense that the meso-
scopic dynamical systems that have arisen in attempts to
record and understand results of mesoscopic experimental
observations are either particular realizations of Eq. (2.11)
or certain reductions of the equation (see Sec. II F), and

(d) the dynamics has the thermodynamic interpretation in
the sense that it describes the approach to a more macroscopic
level of description.

In Sec. II A we introduce the concept of TRT, which
is specified rigorously in Sec. II E. Reversible evolution is
identified as the part of evolution which is not altered by TRT
while irreversible evolution changes its sign after applying
TRT, see Definition 3. This concept of reversibility based on
TRT is equivalent to entropic definition of reversibility, Defi-
nition 4, where irreversible evolution is identified as the part of
evolution which raises entropy. Yet another definition comes
from GENERIC where reversible evolution is identified as the
evolution generated by a Poisson bracket while irreversible
evolution is generated by a dissipation potential or dissipative
bracket, see Definition 5. While it can be shown that, under
certain assumptions, all of these definitions of irreversible
evolution coincide, see Sec. II E, it is not clear how to prove the
analogical statement for the reversible evolution. To our best
knowledge this is an open problem although it is quite likely
that the definitions coincide as well as for the irreversible
evolution since we are not aware of any counterexample and
since it is supported by projection operator arguments, see
Sec. II E.

After introducing TRT properly, OCRR are shown to be
implied by the structure of GENERIC in the near-equilibrium
regime without limitations to finite-dimensional dynamics
or continuum thermodynamics. The symmetric part of the
relations is given by the dissipative bracket (or dissipation
potential) while the antisymmetric is given by the Poisson
bracket. This way, OCRR can be regarded as a near-
equilibrium consequence of the structure of GENERIC. In this
sense, OCRR are generalized into the far-from-equilibrium
regime since the far-from-equilibrium structure which implies
them is identified.

In addition, we shed light on the following problem related
to OCRR within classical linear irreversible thermodynamics.
OCRR in the classical sense require an independent identifica-
tion of thermodynamic fluxes and forces first, as linear trans-
formation may result in a change of structure (symmetricity)
of phenomenological coefficients. Hence the knowledge of
entropy production and linear flux-force constitutive relations
is not enough to utilize OCRR. In contrast, our approach
couples directly the evolution equations of the system at hand
by the means of identification of the GENERIC structure and,
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due to its invariance to transformation of variables, the problem
of coupling fluxes and forces disappears. GENERIC with
dissipation potential is thus a natural framework for OCRR
that is valid far from equilibrium and lacks the flux-force
identification problem.

Finally, both TRT and the generalized OCRR are illustrated
in Hamiltonian dynamics, classical hydrodynamics, the clas-
sical theory of mixtures, the quantum master equation, and the
Boltzmann equation.
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support and for revealing the world of thermodynamics
to M.P. and V.K. The work was developed within the
POLYMEM project, Reg. No CZ.1.07/2.3.00/20.0107, which
is cofunded from the European Social Fund (ESF) in the
Czech Republic (“Education for Competitiveness Operational
Programme”) and within the CENTEM project, Reg. No.
CZ.1.05/2.1.00/03.0088, cofunded by the ERDF as part of the
Ministry of Education, Youth and Sports OP RDI programme.
This project was partially supported by Natural Sciences and
Engineering Research Council of Canada (NSERC).

APPENDIX A: FURTHER GEOMETRICAL PROPERTIES

Is definition of reversibility (2.36) independent of the
particular choice of variables (keeping the level of descrip-
tion)? Suppose that there is a diffeomorphism φ converting
coordinates x into x′, i.e.,

x ′ = φ(x), (A1)

and that relation (2.36) holds true for the evolution. TRT acts
on x′ as I′ defined by

I′ = φ ◦ I ◦ φ−1. (A2)

Evolution of the new variables is clearly given by

dx ′i

dt
= ∂x ′i

∂xj
V j

∣∣∣∣
φ−1(x′)

. (A3)

Evolution of inverted variables then becomes

dI′i(x′)
dt

= ∂I′i

∂x ′j
∂x ′j

∂xk
V k

∣∣∣∣
φ−1(x′)

= ∂x ′i

∂xl

∂Il

∂xm

∂xm

∂x ′j
∂x ′j

∂xk︸ ︷︷ ︸
δm
k

V k

∣∣∣∣∣∣∣∣∣
φ−1(x′)

= ∂x ′i

∂xl

∂Il

∂xk
V k

∣∣∣∣
φ−1(x′)

= −∂x ′i

∂xl
V l

∣∣∣∣
I◦φ−1(x′)

= −∂x ′i

∂xl
V l

∣∣∣∣
φ−1(I′(x′))

, (A4)

which only differs in sign from (A3) and thus generates only
reversible evolution according to Definition 6. The minus sign
has appeared due to usage of relation (2.36). If, on the other
hand, the vector field were irreversible, i.e., relation (2.41)
would be used instead of (2.36), the minus sign would

not appear and the resulting right-hand side would generate
irreversible evolution according to Definition 7. Therefore, the
following theorem has been proven:

Theorem 3 (independence on choice of variables). Def-
initions of reversibility and irreversibility (6 and 7) are
independent of the choice of variables. In other words, after
a change of variables (by a diffeomorphism) the new Poisson
bracket still generates the reversible evolution while the new
dissipation potential (or dissipative bracket) still generates the
irreversible evolution.

This is also what one would expect since relations (2.36)
and (2.41) are written in a form invariant to coordinate
transformations.

Consequently, if a Poisson bracket is reversible, all Poisson
brackets obtained by simple change of variables (diffeomor-
phism) are reversible. In particular, on the level of Hamiltonian
dynamics, where the canonical Poisson bracket is of course
reversible as has been demonstrated in Sec. III A, any Poisson
bracket is reversible. Indeed, because it expresses the same
evolution as the canonical bracket, it has to be possible to
obtain it from the canonical bracket by change of variables.
We have thus come to the following lemma:

Lemma 4. Any Poisson bracket on the level of Hamiltonian
dynamics generates only reversible evolution, i.e., it fulfills
relation (2.36).

APPENDIX B: TIME EVOLUTION NEAR EQUILIBRIUM

An interesting question arises: What can one say about
the spectrum of the linear operator satisfying the Onsager-
Casimir symmetry? In other words, what are consequences of
the Onsager-Casimir relations on the solutions of the linear
equation, i.e., on the evolution to the equilibrium?

In the particular case, when the state space is finite
dimensional and the time-reversal transformation I is identity,
i.e., only even state variables are present, the linear operator
governing the linearized time evolution, M(xth), is symmetric
and positive definite. It is well known in linear algebra that
such an operator can be diagonalized, its eigenvalues are all
real and positive, and eigenspaces are orthogonal. As a result,
in an appropriate coordinate system (given by eigenvectors),
the time evolution is actually an uncoupled relaxation to the
thermodynamic equilibrium.

Let us now consider the case when all state variables have
parity (see Sec. III D for how to tackle a situation when state
variables do not posses any parity) and the state space is finite
dimensional. The linearized system is (2.28) with the matrix
K of the linearized system,

Kij = T Lij (xth) − Mij (xth),

consisting of both antisymmetric T L(xth) and symmetric part
M(xth).

Having the operator I, it is now natural to introduce an
indefinite inner product 〈•,I•〉. OCRR are then equivalent
to symmetry with respect to this product, and some spectral
consequences can be revealed; see Appendix C.

First, note that any matrix can be decomposed into its
antisymmetric and symmetric parts and that this decom-
position is unique, i.e., T L(xth) and −M(xth) is such a
unique decomposition of the linearized governing equations of
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time-evolution equations, the matrix K. Next, we shall show
that there is a relation between a spectrum of a matrix and its
symmetric part.

Lemma 5. Let A ∈ Rn,n be a n-dimensional real matrix and
S = 1/2

(
A + AT

)
its symmetric part. Then, for the spectrum

of these matrices, it holds that �(σ (A)) ⊂ σ (S).
Proof. Let λ ∈ σ (A), and thus λx = Ax and ‖x‖ = 1 =

〈x∗,x〉, where ∗ denotes complex conjugate(x) and transposi-
tion (xT ). Note that all eigenvectors for complex eigenvalues
are complex as can be seen by a contradiction from λx = Ax.

Hence we have λ = x∗Ax, λ = xT AT x, λ = xT Ax. As a
result,

�(λ) = 1/2(λ + λ) = 1/2(xT Ax + xT AT x)

= x∗(1/2(A + AT ))x = x∗Sx,

which concludes the proof as x∗Sx ⊂ σ (S).
Corollary 2. The identified Onsager-Casimir relations with

state variables with either parity guarantee relaxation to the
thermodynamic equilibrium, as the real part of the spectrum
of the linearized system is a subset of the minus (note the
minus sign in the K matrix) spectrum of the linearized operator
of the dissipation dynamics which is symmetric and positive
definite.

APPENDIX C: INDEFINITE INNER PRODUCT

In this section we show that a matrix K satisfies OCRR
if and only if it is symmetric with respect to the following
indefinite inner product:

〈•,I•〉. (C1)

Symmetry with respect to this product means that

〈Kx,Iy〉 = 〈x,IKy〉 ∀x,y (C2)

or, in terms of components,

Kij (xj I(yi) − xiI(yj )) = 0 ∀xi,xj ,yi,yj . (C3)

Equation (C3) for all the following cases: (i-even, j -even),
(i-even, j -odd), (i-odd, j -even), (i-odd, j -odd) gives that

(Kij − Kji)xjyi = 0 for i and j with the same parities,
(C4)

(Kij + Kji)xjyi = 0 for i and j with the opposite parities.
(C5)

In other words, the antisymmetric part of matrix K couples
variables with opposite parities while the symmetric part
couples variables with the same parities, which is exactly the
statement that the matrix satisfies OCRR. We have thus proven
the following lemma:

Lemma 6. A matrix satisfies OCRR if and only if it is
symmetric with respect to indefinite inner product 〈•,I•〉.

Having shown that the matrix K, which generates evolution
in the sense of linearized GENERIC, is symmetric with
respect to the indefinite scalar product constructed from TRT,
many mathematical properties of the evolution equations are
immediately revealed [59]. In particular, Grmela and Iscoe
[60] proved existence, uniqueness, and boundedness for initial
value problems as well as that evolution operators form
a strongly continuous semigroup of contractions and that
the linearized evolution equations are diagonalizable in the
finite-dimensional case. Moreover, Grmela et al. [61] showed
the consequences of the symmetry on the spectrum of the K
matrix. In summary, it is quite useful to realize that OCRR
imply symmetry of the matrix-generating near-equilibrium
evolution with respect to indefinite scalar product (C1) and,
consequently, many mathematical properties of the near-
equilibrium evolution equations can be derived.

[1] L. Onsager, Phys. Rev. 37, 405 (1931).
[2] L. Onsager, Phys. Rev. 38, 2265 (1931).
[3] H. B. G. Casimir, Rev. Mod. Phys. 17, 343 (1945).
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