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Localization in covariance matrices of coupled heterogeneous Ornstein-Uhlenbeck processes
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We define a random-matrix ensemble given by the infinite-time covariance matrices of Ornstein-Uhlenbeck
processes at different temperatures coupled by a Gaussian symmetric matrix. The spectral properties of this
ensemble are shown to be in qualitative agreement with some stylized facts of financial markets. Through the
presented model formulas are given for the analysis of heterogeneous time series. Furthermore evidence for a
localization transition in eigenvectors related to small and large eigenvalues in cross-correlations analysis of this
model is found, and a simple explanation of localization phenomena in financial time series is provided. Finally
we identify both in our model and in real financial data an inverted-bell effect in correlation between localized
components and their local temperature: high- and low-temperature components are the most localized ones.
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I. INTRODUCTION

Complex systems are hard to analyze since by definition the
interactions among their components are not easily connected
with their behaviors [1]. In these systems the absence of
a well-defined general model makes correlation analysis an
irreplaceable, if not unique, compass [2–4]. Furthermore in
these systems the presence of noise makes benchmarking
important, and random matrix theory (RMT) is fundamental
to check the statistical validity of pair correlations.

RMT has mainly focused on the effects of the finite lengths
of time series. In particular a careful analysis has been carried
out on the spectral properties of random matrices in the case
where the number of variables N is large and the length of the
signal M is comparable, i.e., with a finite ratio Q = M/N

[5–9]. In this case the total time is not enough large for
making the noise negligible [10]: one needs to disentangle
the properties induced by couplings from the ones brought by
randomness.

Nevertheless time series in complex systems are not only
noisy and finite but also heterogeneous, which means their
variances can be really different (i.e., the variance of one
time series can be very different from the variance of another
time series). More generally the marginal distribution of one
variable may be qualitatively and quantitatively different from
the one of another variable.

In finance, on which we will focus our considerations, the
volatilities of different assets, i.e., the index of the percentage
change in stock prices, have a very broad distribution; i.e.,
there is a strong heterogeneity between the returns of different
assets. In recent studies it has been shown that this distribution
is similar to a log-normal but with scale-free tails [11–13].
This feature has been included in models based on the random
matrix Wishart ensemble to improve the comparison with real
matrices [14–16].

Summarizing complex systems are heterogeneous, dis-
ordered, and noisy, and they have a nontrivial relation-
ship between interactions and correlations: carefully studied
benchmarks are needed to gain more detailed insight. In
the following we will see how these different features are
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interconnected, and we will point out how important it is to
consider them together in order to predict their effects on
cross-correlation analysis.

The aim of this article is to observe the consequences
of heterogeneity in a simple ad hoc model that allows us
to explicitly compute the relation between couplings and
correlations.

In Sec. II we start from the basic dynamical model given
by a set of independent Ornstein-Uhlenbeck (OU) processes
at different temperatures. Then we turn to the interacting case
where the OU processes are coupled through a given matrix.
The ensemble we consider is the one given by the infinite-time
covariance matrices of OU processes at different temperatures
coupled by a Gaussian symmetric matrix. We also consider
the stationary distribution of the time series induced and show
the relation with the known Wishart-Laguerre ensemble of
random matrices.

In Sec. III we show the results of numerical simulations
in the asymptotic limit. Varying heterogeneity we compute
the spectral density of eigenvalues, the inverse participation
ratio (IPR), a standard index of eigenvectors localization [17],
and the component participation ratio (CPR), that defines the
contribution of a given component on all the eigenvectors. We
check this ensemble properties both in averaged and in single-
sample eigenvectors. Moreover we identify a steep change in
eigenvector localization driven by heterogeneity that might be
an indicator for a transition from an extended phase towards
a localized phase in the eigenvectors of the cross-correlation
matrix of the model. Finally we discuss the results both with
respect to the known spectral properties of random matrix mod-
els and with the real localization properties widely observed
in financial data [18,19] and give theoretical perspectives.

II. COUPLED HETEROGENEOUS OU PROCESS

A. Independent OU processes

In the following we will consider signals extracted from
the equilibrium distribution of a continuous-time stochastic
dynamics. The interest of this model for applications relies
on the hypothesis that in complex systems observations are
samplings from a complicated noisy dynamics; for instance,
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in finance daily prices are the result of all the small price
adjustments given by all the transactions.

We would like to stress though that we do not want to model
a particular asset dynamics in detail: each class of assets may
require a different dynamics and more complicated nonlinear
interaction terms that would not allow us to give explicit
formulas for the direct, from couplings to correlations, and
inverse problem, from correlations to couplings.

The aim is to construct a null model including a specific
parametrization that separates couplings and temperatures in
order to explicitly distinguish their role on the covariance
matrix. We start our analysis from a limit case, the noisy
dynamics of N independent variables x = {x1,x2, . . . ,xN }
following a standard OU process with a set of N temperatures
T = {T1,T2, . . . ,TN }:

ẋi = −xi +
√

Tiηi(t), (1)

where ηi(t) is a delta-correlated Gaussian noise with
〈ηi(t)ηj (t ′)〉 = 2δij δ(t − t ′). In this case the marginal equi-
librium distribution for xi is Pi(xi):

Pi(xi) = e
− x2

i
2Ti√

2πTi

. (2)

If we know sample the values of all xi at M times we can
compute the empirical covariance coefficients, Cij = xixj −
xi xj , where · indicates the average over the M sampled times.

For an infinite value of the ratio Q = M/N the covariance
matrix converges towards a diagonal one, Cij = Tiδij . Mean-
while for a finite value of Q the off-diagonal elements of C are
N (N − 1)/2 Gaussian variables with zero mean and variance
TiTj

M
.

In this case the Pearson correlation matrix cij =
Cij/

√
CiiCjj has exactly the same statistics of a matrix

extracted from the widely used Wishart-Laguerre ensemble of
random matrices since its elements are the pair correlations of
N normally distributed signals of length M . The heterogeneity
we have put in the dynamics plays no role in the correlation
matrix in this case.

B. Coupled OU processes

The generalization to the coupled case is interesting. The
dynamics now verifies

ẋi = −
∑

j

Jij xj +
√

Tiηi(t), (3)

where Jij is symmetric and positive-definite in order to ensure
a finite limit to the process. In the following we will focus our
analysis on the asymptotic limit since in the present work we
are not interested in the consequences of the interplay of finite
Q and heterogeneity but solely on the consequences of the
latter. In this system there are two different methods [20] to
obtain a closed formula for the asymptotic covariance matrix,
Cij = 〈xixj 〉, as a function of couplings and temperatures (〈·〉
indicates the average over an infinite time). Starting from the
dynamics with a few standard steps it is possible to find the
implicit formula:

{C,J } = 2T̃ , (4)

where T̃ij = Tiδij , and {·,·} denotes the matrix anticommuta-
tor. From the spectral decomposition of J it is possible to find
a set of explicit formulas for the elements of Cij :

Cij = 2
∑
a,b

ua
i u

b
j

λa + λb

∑
k

ua
ku

b
kTk, (5)

where ua
i is the ith component ath eigenvector of J and λa is

the ath eigenvalue. In (4) C and J appear in a symmetric form,
and the same symmetry must hold also in (5). This fact implies
that (5) can be used to solve the inverse problem for this system,
that is, finding the couplings J given the covariances C. This
symmetry is not surprising since it holds also in the familiar
homogeneous case where C = J−1, an ostensibly symmetric
formula. In Appendix A we examine the consequences on the
Pearson correlation matrix c in the case of small couplings.

We have thus defined two different random-matrix en-
sembles: one, that we will examine in the next section, is
the set of infinite-time covariance matrices that are defined
by formula (5) for coupling matrices J sampled from a
given random-matrix ensemble (for instance, the Gaussian
ensemble) and for sets of temperatures T sampled from a
distribution chosen at will; the other (Appendix B) is the set
of finite-time empirical covariance matrices between signals
sampled from the stationary distribution of the OU dynamics
for a given infinite-time C.

III. SAMPLING MATRICES

Since we are interested in finding the consequences of
heterogeneity we use directly the infinite-time asymptotic
formula (5) so that we avoid simulating the whole stochastic
dynamics. Thus we generate a random coupling matrix J =
I + εK where I is the identity matrix, ε is the strength
of the coupling among signals, and K a random Gaussian
matrix whose elements have variance 1

N
. J must be positive-

definite for any N , so we eliminated samples with nonpositive
eigenvalues that have vanishing probability as N goes to
infinity. In principle it is possible to consider any kind of
probability measure for couplings and temperatures. The main
idea addressed here is to regard couplings as homogeneous so
that temperatures are the only source of heterogeneity. Since
in the financial context temperatures represent volatilities that
are typically log-normal distributed [12,21] we choose to draw
them from this kind of distribution:

p(T ) = 1

T

e
− (ln T −μ)2

2D2

√
2πD2

. (6)

Namely, we generate N normally distributed random numbers,
ξi , and define Ti = eμ+Dξi . Then we fix ε and draw the
coupling matrix J , diagonalize it, and use (5) to obtain C.
Varying D, ε, and N we observe some basic features of
the C matrix. First, we compute the eigenvalue distribution
changing N at fixed D = 1 and ε = 0.2/

√
N , and we notice

that, as N increases, the distribution rapidly converges towards
an infinite-size spectrum. Once this is verified we study the
eigenvalue distribution varying D alone. The spectrum spreads
on both edges as is often observed in real data analysis
(Fig. 1). Thus introducing heterogeneity we have new eigen-
values, both small and large, so we look at the related
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FIG. 1. (Color online) For fixed N = 100 and ε = 0.2/
√

N we
plot the spectral density of the correlation matrix C for D = 0.0,0.2,
and 0.5 obtained averaging over 103 samples. Increasing D we see
that the lower edge of the spectrum becomes smaller and smaller and
conversely that the higher edge increases.

eigenvectors and check whether they are statistically different
from the ones in the homogeneous bulk of the spectrum.
We characterize the eigenvectors of C, va

i , through the
IPR, a standard quantity in matrix analysis, defined by the
formula

IPRa =
∑

i

(
va

i

)4
. (7)

Obviously IPR values depend by the sample. Since we
want to characterize its typical behavior we take for each
sample the set of ordered eigenvalues and consider their
IPR, then average the IPRs over samples (Fig. 2). Real
data used are a set of 1017 daily asset returns from NYSE
from the June 1, 1987, to December 31, 1998. In order
to compare qualitatively with data we fix the values of the
log-normal distribution by evaluating the mean and standard
deviation of the logarithm of returns variances, namely, μ =

1
1017

∑1017
k=1 ln(σk) and D = 1

1017

∑1017
k=1 [ln(σk) − μ]2, where σi

are the empirical variances. The figure we obtain shows
localization at the edges, a common feature observed in real
data analysis. In particular the IPR shows agreement not only
in the typical flat region related to the bulk where its value
is fluctuating slightly over 3/N but also on the edges (see
IPR in Ref. [19]), where we observe the increasing of the
IPR.

We then evaluate level spacings, λn+1 − λn, where λn is
the nth eigenvalue of the covariance matrix, and we observe
a clear left-shift in the spacings distribution [22,23], meaning
that the skewness of spacings increases with heterogeneity
(Fig. 3) approaching real data.

To observe the heterogeneity effect we also need to consider
a matrix observable not depending on the eigenvector, such
as IPR, but depending on the component, so we study the
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FIG. 2. (Color online) For each ordered eigenvalue we plot the
mean value of the nth IPR versus the eigenvalue index averaged over
1000 samples for a system size N = 100 and a value of ε = 0.2/

√
N

for D = 0.74 and μ = 7.74 (as obtained from real data volatilities).
Crosses show the IPR averaged over 10 matrices of daily asset returns
from NYSE from June 1, 1987, to December 31, 1998. The J−1

line is the equal temperatures case (D = 0). We see that the largest
eigenvector, representing the market, is extended and falls exactly on
the D = 0 line.

component participation ratio that we define by the formula

CPRi =
∑

a

(
va

i

)4
(8)
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FIG. 3. (Color online) Distribution of level spacings normalized
by their mean value, sn = λn+1−λn

〈λn+1−λn〉 , where λn is the nth eigenvalue
of the covariance matrix. Data are presented in a ln-ln scale. Crosses
show level spacings averaged over 10 matrices of daily asset returns
from the NYSE from June 1, 1987, to December 31, 1998. The
J −1 line is the equal temperatures case, D = 0. Null-model data are
averaged over 103 samples for a system of size N = 100 with μ and
D parameters obtained from real data.
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FIG. 4. (Color online) Scatter plot of the components in the plane
( ln(Ti),CPRi). We can see an inverted-bell shape that is absent in
GOE matrices, i.e., with no heterogeneity. Real and null-model data
are over 10 matrices of size N = 100. For null-model data we used
the values for μ and D obtained from real data.

that is just the equivalent of the IPR for the change of basis ma-
trix transposed. We investigate the relation between CPR and
heterogeneity evaluating the correlations between CPR and
both T and 1/T by constructing the scatter plot ( ln(Ti),CPRi).
For real data we decided to approximate different temperatures
with the diffusion terms [24], so we plot ( ln(T (e)

i ),CPRi)
(Fig. 4), where T

(e)
i = 1

T

∑T −1
t=1 [ri(t + 1) − ri(t)]2, where ri(t)

is the return of asset i at time t . The effect holds also
considering variances versus CPR.

The inverted-bell shape indicates that high- and low-
temperature or volatility components are the most localized
ones. This result depends both on the presence of couplings and
heterogenous temperatures or volatilities: with no couplings
the covariance matrix would be diagonal, and so all the eigen-
vectors would be localized, and with too low heterogeneity the
differences between diffusion terms would be negligible and
would not affect localization so clearly.

An explanation for this effect can be achieved if we
consider the uncoupled case where every eigenvector is sharply
localized since the matrix is diagonal. If we now put a coupling
between the components, what happens is that the ones in
the bulk with closer eigenvalues are likely to interact and
spread while the ones on the edges are related to more isolated
eigenvalues so are less likely to mix with others and will stay
more localized. This picture should hold until the couplings
are large enough to contrast the differences in temperature.

IV. CONCLUSION

We have analyzed a simple model of complex systems that
provides a method for sampling random matrices. We have
shown how our method gives results which are in agreement
with eigenvector localization ubiquitous in real data. This
model suggests that heterogeneity among signals is likely to
cause localization, as indicated also by known random band

models [25,26]. The analysis showed the peculiar character-
istic that localization involves both the noisiest signals and
the most deterministic ones, the inverted-bell effect. Another
interesting aspect is the heterogeneity effect in localization
in the model proposed showing a nontrivial transition from a
coupling dominated phase, where spectral properties are the
same as those of Wishart matrices, towards an heterogeneity-
dominated phase, where localization on the edges of the
spectrum occurs. A theoretical perspective is to establish
whether the effect arises from a simple crossover or from a
real phase transition, valid also in the thermodynamical limit,
i.e., for infinite N , and possibly to characterize more in detail
the two phases by examining also other matrix properties.
To improve the comparison with real data, especially in
finance, another perspective is characterizing the case of finite
time samplings, e.g., finite ratio Q = M/N, and check how
the interplay of heterogeneities, couplings, and finite time
samplings change the properties of the covariance matrix in a
benchmark case.
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APPENDIX: A

We showed in the general case how couplings, covariances,
and heterogeneities are related. Here we show in a perturbative
limit of small couplings what happens passing from the
covariance to the correlation matrix.

We write J = I + εK
(1)

where I is the identity matrix, K
(1)

is a random symmetric gaussian matrix, and ε is an arbitrarily
small real number. At first order in ε the covariance matrix
must satisfy the perturbative expression C = T̃ + ε	

(1)
. Con-

sequently K
(1)

and 	
(1)

verify

K
(1)

ij (Ti + Tj ) = −2	
(1)

ij . (A1)

Furthermore Cii = Ti + ε	
(1)

ii so for the covariance matrix we
have

Cij = Ti − ε

2
K

(1)

ij (Ti + Tj ), (A2)

while the correlation matrix cij = Cij√
CiiCjj

satisfies

cij = I − ε

2

K
(1)

ij (Ti + Tj )√
Ti

√
Tj

. (A3)

First-order expansion reveals a symmetry between T and 1/T

in the correlation matrix, which can be easily verified. This
expansion allows us to consider a simplified random-matrix
ensemble for the covariance matrices of weakly coupled
heterogeneous time series for which analytical results can be
obtained [27]. Moreover in the case of strong heterogeneity,

i.e., Ti � Tj cij = cji = ε
2

√
Ti

Tj
K

(1)

ij , so if there is a low
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probability for a large value of |K (1)

ij |, the elements of the
correlation matrix on the rows or columns related to variables
with high or low temperature can be significantly bigger than
the others. From the theory of Levy matrices [28] we know
that large values of specific pair-correlation coefficients, i.e.,
a large cmn, implies the presence of eigenvectors concentrated
on the two components involved, e.g., m and n. Moreover if
the elements of a whole row are large compared to the rest of
matrix there will be an eigenvector localized on the related
component. A higher-order expansion shows the breaking
of this high- or low-temperature symmetry in favor of the
low-temperature components. At second order in ε we can
write C = T + ε	

(1) + ε2

2 	
(2)

and J = I + εK
(1) + ε2

2 K
(2)

.
This higher order expansion leads to the supplementary
equation for 	

(2)
:

2	
(2)

ij = (Ti + Tj )

(
−K

(2)

ij +
∑

k

K
(1)

ik K
(1)

kj

)
+ 2

∑
k

K
(1)

ik TkK
(1)

kj ,

(A4)

where we substituted 	
(1)

with the expression found at first
order (A1). If we now divide by

√
Ti

√
Tj we obtain the second

order correction to the correlation matrix c that reads

(Ti + Tj )√
Ti

√
Tj

(
−K

(2)

ij +
∑

k

K
(1)

ik K
(1)

kj

)
+

2
∑
k

K
(1)

ik TkK
(1)

kj

√
Ti

√
Tj

. (A5)

The first two terms remain unchanged if we substitute Ti with
1/Ti , but the third one does not, it breaks the symmetry in favor
of elements related to components with low temperatures. We
stress the fact that ε is small regardless of the value of the
system size N . If one performed the expansion for large N ,
then terms at all orders would have to be considered since at
higher orders matrix multiplication would involve sums on an
increasing number of elements.

APPENDIX: B

For a given coupling matrix J and set of temperatures T

the equilibrium distribution of the signals xi is a multivariate
Gaussian, namely:

P ({xi}|J,T ) = exp
( − xT C−1x

2

)
√

(2π )N det C
, (B1)

where C is the covariance matrix, solution of Eq. (5). The em-
pirical covariance matrix between signals extracted from this
distribution defines a correlated Wishart ensemble [15,29–31]
whose peculiarity is the separation of the quenched disorders
given by couplings and temperatures.
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