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Failure of steady-state thermodynamics in nonuniform driven lattice gases
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To be useful, steady-state thermodynamics (SST) must be self-consistent and have predictive value. Consistency
of SST was recently verified for driven lattice gases under global weak exchange. Here I verify consistency of
SST under local (pointwise) exchange, but only in the limit of a vanishing exchange rate; for a finite exchange
rate the coexisting systems have different chemical potentials. I consider the lattice gas with nearest-neighbor
exclusion on the square lattice, with nearest-neighbor hopping, and with hopping to both nearest and next-nearest
neighbors. I show that SST does not predict the coexisting densities under a nonuniform drive or in the presence of
a nonuniform density provoked by a hard wall or nonuniform transition rates. The steady-state chemical potential
profile is, moreover, nonuniform at coexistence, contrary to the basic principles of thermodynamics. Finally, I
discuss examples of a pair of systems possessing identical steady states but which do not coexist when placed
in contact. The results of these studies confirm the validity of SST for coexistence between spatially uniform
systems but cast serious doubt on its consistency and predictive value in systems with a finite rate of particle
exchange between coexisting regions exhibiting a nonuniform particle density.

DOI: 10.1103/PhysRevE.90.062123 PACS number(s): 05.70.Ln, 05.40.−a, 02.50.Ey

I. INTRODUCTION

A central issue in nonequilibrium physics is whether ther-
modynamics can be extended to systems far from equilibrium
[1–6]. Such a theory would be a macroscopic description
employing a small number of variables, capable of predicting
the final state of a system following removal of some constraint
[7]. Although the set of variables needed to describe a nonequi-
librium system would be somewhat larger than required for
equilibrium, it should not involve microscopic details. Near-
equilibrium thermodynamics, for example, includes the fluxes
of mass, energy, and other conserved quantities as relevant
variables [8,9].

In this context, a natural first step is to develop a ther-
modynamics of nonequilibrium steady states (NESS) and to
analyze the simplest possible examples exhibiting such states,
for example, driven stochastic lattice gases [10–13] or the
asymmetric exclusion process [14]. A detailed theory of hy-
drodynamics and fluctuations in driven diffusive systems was
developed by Eyink et al. [15]. Sasa and Tasaki [16], extending
the ideas of Ref. [1], proposed a general scheme of steady-state
thermodynamics (SST), including definitions of the chemical
potential and pressure in NESS, and developed a theoretical
analysis of the driven lattice gas; numerical implementations
in driven systems are discussed in Refs. [3,17]. More recently,
Chatterjee et al. [18] established that in driven systems with
particle number conservation and short-ranged correlations,
fluctuations in the particle number ns of a subsystem are
determined by the functional relation between the variance and
the mean of ns . They argued that this guarantees the existence
of a chemical potential.

A central notion in SST is that of coexistence. Consider
two systems, each in a steady state, and weakly coupled to one
another, so they may exchange particles and/or energy. We say
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that the systems coexist when the net flux of the quantity
or quantities they may exchange is zero. In equilibrium,
coexistence in this sense corresponds to chemical and/or
thermal equilibrium, marked by equality of μ/T and T ,
respectively (μ denotes chemical potential and T temperature).
To construct a SST, we need to define intensive parameters
for NESS, such that the value of the parameter associated
with particle exchange (a dimensionless chemical potential,
μ/T ) is the same when two systems coexist with respect
to such exchange and, similarly, an effective temperature, T ,
if the systems coexist with respect to energy exchange. The
definition of intensive parameters for nonequilibrium systems
(such as the zero-range process) possessing an asymptotic
factorization property has been discussed in considerable detail
by Bertin et al. [4]. Direct numerical tests of the consistency
of SST (that is, of the zeroth law) under particle exchange
were performed by Pradhan et al. [17] in the context of
the driven lattice gas with nearest-neighbor interactions (i.e.,
the Katz-Lebowitz-Spohn (KLS) model [10]). These authors
noted small but significant violations of the zeroth law. The
results of Ref. [19] suggest that such inconsistencies arise
because (1) one needs to define an effective temperature as
well as an effective chemical potential in the KLS model, (2)
one needs to use rates of the Sasa-Tasaki type for exchange
between systems [20], and (3) one needs to study the limit of
vanishing rate of particle exchange between the systems under
analysis. When these conditions are satisfied, the zeroth law
holds [19].

The results of Ref. [19] are restricted to spatially uniform
systems; here I take the first steps toward verifying SST in
nonuniform systems. A particularly simple testing ground for
SST is athermal lattice gases, in which the intensive variable
of interest is μ∗ ≡ μ/kBT , which I shall call the chemical
potential in what follows. In equilibrium, μ∗ = μ∗(ρ), with ρ

the particle density. In a system subject to a nonequilibrium
drive D, one might hope to define a function μ∗(ρ,D) using
coexistence between the driven system and an equilibrium

1539-3755/2014/90(6)/062123(10) 062123-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.062123


RONALD DICKMAN PHYSICAL REVIEW E 90, 062123 (2014)

reservoir of known chemical potential. A recent study [19]
confirmed that for driven athermal lattice gases with nearest-
neighbor (NN) exclusion, one may indeed define a function
μ∗(ρ,D) in this manner: Under global weak exchange, the
coexisting densities in a pair of systems with different values
of D are given by the condition of equal chemical potentials,
i.e., μ∗(ρ,D) = μ∗(ρ ′,D′), where μ∗ describes an isolated
system. Global exchange means that any particle in one system
may jump to any site in the other (provided, of course, that
the target site and its nearest neighbors are all vacant). Weak
exchange corresponds to the limit of the exchange rate pr

tending to zero. Important consequences of weak exchange
are (1) the systems in contact are statistically independent
and (2) particle exchange does not provoke spatial variations
within these systems.

Although the consistency observed in this rather restricted
and artificial situation is encouraging, for SST to be relevant
to laboratory conditions, it must be tested in more realistic
settings. In particular, the global exchange scheme mentioned
above would seem to be far from experimental reality. Here
I begin by studying the opposite case, in which exchange
is allowed only between a single pair of sites, mimicking
a situation in which two systems have a very small area
of contact. I then turn to the NNE lattice gas subject to a
nonuniform drive (corresponding to systems in contact along
a line) and to situations in which a nonuniform particle
density arises due to a hard wall or to reduced hopping
rates along a line parallel to the drive. In these cases the
predictions of SST are violated dramatically. Finally I consider
coexistence between systems with all transition rates having
the same ratios, differing only by an overall multiplicative
factor. Since stationary properties are invariant under rescaling
of time, these systems possess the same steady state. I find,
nevertheless, that when the systems make contact along a line
they do not coexist: particles migrate from one system to the
other.

I consider the lattice gas with NN exclusion on the square
lattice, with two kinds of dynamics: (i) nearest-neighbor
hopping (NNE dynamics) and (ii) hopping to both nearest
and next-nearest neighbors (NNE2 dynamics). Under a drive
D that favors hopping along one direction, the system attains
a NESS. When the drive is only applied to half the system
we have (in the steady state) coexistence between a pair
of subsystems, one in equilibrium and the other far from
equilibrium, able to exchange particles along the interfaces
separating them. Let the bulk particle densities in the driven
and undriven regions be ρD and ρ0, respectively. A key ques-
tion is whether the condition μ∗(ρD,D) = μ∗(ρ0,0) allows us
to predict the coexisting densities, in other words, whether
SST has predictive value for this system.

The balance of this paper is organized as follows. In Sec. II
I define the models and review the relevant properties of
the isolated systems. Section III presents simulation results
for exchange between single sites, followed, in Sec. IV, by
those for a system under a nonuniform drive, and in Sec. V,
for those involving walls or barriers. In Sec. VI I discuss
the results for contact between systems with transition rates
differing only by an overall factor; I close in Sec. VII with a
discussion of the implications of the results for steady-state
thermodynamics.

II. LATTICE GASES WITH NEAREST-NEIGHBOR
EXCLUSION

The lattice gas with NN exclusion is a particle model with
a pairwise interaction that is infinite for distances of zero and
unity (in units of the lattice constant) and zero otherwise.
Thus each particle excludes others from occupying its own
site or any of its first neighbors. Since there is no characteristic
energy scale, the relation between the density and the chemical
potential μ∗ = μ/kBT (and, similarly, between p/kBT and
ρ, where p is pressure) is independent of temperature. Such
models are termed athermal. The model has been studied
extensively as a discrete-space version of the hard-sphere fluid
[21–24] and is known to exhibit a continuous (Isinglike) phase
transition to sublattice ordering at a density of ρc � 0.36774
[25].

We define a stochastic, particle-conserving dynamics for
the lattice gas with NN exclusion via particle hopping. In
the simplest case [13], particles are allowed to hop only
to nearest-neighbor sites (the NNE model). In equilibrium
(drive D = 0), detailed balance implies that P (x) = P (−x),
where P (x) denotes the probability of attempting a particle
displacement x. In the presence of a drive, the displacement
probabilities on the square lattice are

P (±i) = 1 ± D

4
, w(±j) = 1

4
, (1)

which reduce to the symmetric case for D = 0. Evidently,
D > 0 favors displacements along the +x axis. Given pe-
riodic boundaries along this direction, D �= 0 represents a
nonequilibrium situation, corresponding to a force that cannot
be written as the gradient of a single-valued potential function.
In the continuous-time stochastic evolution, each particle
is equally likely to be the next to attempt to hop; the
hopping direction is chosen according to Eq. (2). Any particle
displacement satisfying the exclusion condition is accepted.

A defect of the hopping dynamics defined above is that it is
nonergodic, independent of the drive [19]. This is remedied by
allowing displacements to second- as well as first-neighbor
sites. For this dynamics, which we denote as NNE2, the
displacement probabilities are

P (σ i + ηj) = 1 + σD

8
, (2)

for σ ∈ {−1,0,1} and, similarly for η, excluding σ = η = 0.
The enhanced set of possible displacements eliminates con-
figurations inaccessible under NN hopping only. The phase
diagram of the driven NNE2 model was studied some years
ago by Szolnoki and Szabo [26], who showed that there is
a line of Ising-like phase transitions in the ρ-D plane, with
ρc � 0.35 for D = 1.

In the lattice gas with NN exclusion, a site is open if it and
all its NNs are vacant. (Particles can be inserted only at open
sites.) In Ref. [19] it is shown that the chemical potential is
given by

μ∗(ρ,D) = ln(ρ/ρop), (3)

where ρop is the average density of open sites over configura-
tions with n = ρLd particles. The above relation follows from
coexistence with a particle reservoir and holds independently
of the value of D and of the nature of the dynamics (NNE
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FIG. 1. (Color online) Chemical potential μ∗ versus particle den-
sity ρ in the lattice gas with NN exclusion for (upper to lower)
equilibrium, maximum drive (D = 1) under nearest- and next-nearest
neighbor hopping (NNE2 dynamics), and maximum drive under
nearest-neighbor hopping (NNE dynamics). Data are simulation
results for the square lattice, system size L = 80. Uncertainties are
smaller than the line width.

or NNE2). Our definition of μ∗ is equivalent to the general
definition proposed by Sasa and Tasaki [16]. It is also
consistent with the zeroth law, as verified in Ref. [19].

The dependence of μ∗ on the drive arises because, for a
given particle density ρ, the density of open sites depends on
D. The chemical potential is plotted versus particle density ρ in
Fig. 1 for equilibrium and maximum drive (D = 1) under NNE
and NNE2 dynamics. Evidently the drive causes a reduction
in μ∗; the reduction is greater in the NNE case. (Note that the
data are limited to densities smaller than the critical densities
of the respective models.)

Studies reported in Ref. [19] show that if a pair of lattice
gases, A and B, driven or not, are allowed to exchange
particles, then in the weak-exchange limit the coexisting
particle densities ρA and ρB are predicted by the condition
μ∗(ρA,DA) = μ∗(ρB,DB). This relation holds for both NNE
and NNE2 dynamics. It is important to emphasize that this
relation was verified in a highly idealized situation: The contact
between systems is global, in the sense that any site in A
can exchange a particle with any site in B. If one or both of
the systems is driven, the chemical potentials of the isolated
systems are useful in predicting the coexisting densities only
in the limit that the exchange rate pr tends to zero. (For finite
pr the chemical potentials of the coexisting systems are equal
but differ from the values found for the systems in isolation.)
In Ref. [19] global coupling is used to avoid any possible
complication arising from inhomogeneities, such as localized
exchange [17]. The weak-exchange limit is necessary because
the strength of the nonequilibrium perturbation varies with pr .

III. POINTWISE EXCHANGE

I study pointwise exchange between a driven and a
nondriven system, implemented as follows. In each system
(a lattice of L×L sites, with periodic boundaries), a fixed

FIG. 2. Chemical potential μ∗ versus exchange rate pr under
pointwise exchange (upper: driven system; lower: nondriven system)
in the lattice gas with NNE2 dynamics. System size L = 20, mean
density 0.3.

exchange site xe is chosen. A fraction pr of all attempted
transitions are exchange attempts; exchange occurs when the
exchange site of one system is occupied and the other vacant.
The remaining transitions are particle displacements within
each system, as described above. I consider the stationary
behavior of the coupled systems. In the limit pr → 0, we
expect the driven and nondriven systems to coexist, with equal
values of μ∗, since this is the condition for zero particle
flux, when the two systems can be treated as statistically
independent [19]. (In this limit, each system has ample time to
reestablish a translationally invariant state, uncorrelated to the
other system, prior to the next exchange event.) For nonzero
values of pr the situation is more complicated, because of
spatial nonuniformities and correlations between the two
systems.

Numerical investigation reveals that the values of μ∗ in the
driven and nondriven system approach a common limiting
value (that of coexistence) only as pr → 0; the stationary
chemical potentials clearly differ for nonzero exchange rates,
as shown in Fig. 2, for NNE2 dynamics. (The particle density
in the driven system is consistently greater than that of the
nondriven system.) In this study, for a global particle density
of 0.3, the chemical potentials, extrapolated to pr = 0, are
0.7847(2) and 0.7846(2) in the driven and nondriven systems,
respectively. This result is in contrast with that obtained under
global exchange [19], in which the chemical potentials are
equal, albeit dependent on pr ; it suggests that the difference
in μ∗ values is associated with spatial nonuniformities, which
are favored (disfavored) by pointwise (global) exchange. This
is verified in Fig. 3, which shows the mean stationary particle
density as a function of distance from the exchange site. (Since
the profiles along and perpendicular to the drive are essentially
identical, the average of the two profiles is shown in each
case.) For finite pr there are clear oscillations in the density
profile; the latter decrease in amplitude as we reduce pr . (The
simulation times in studies of pointwise exchange are 2×109

time units, with the first half discarded to allow time for the
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FIG. 3. Stationary particle density versus distance r from ex-
change site under pointwise exchange (upper: driven system; lower:
nondriven system) in the lattice gas with NNE2 dynamics. Open
symbols: pr = 0.05; filled symbols: pr = 0.005. Parameters as in
Fig. 2.

system to reach the steady state; a time unit corresponds to
one attempted move per particle. Although one would like to
study smaller values of pr and larger system sizes, this would
entail significantly longer simulation times.)

Summarizing the results for coexistence under pointwise
exchange, I verify that, as anticipated, stationary properties
are correctly predicted by SST for a vanishing exchange rate.
For finite pr , however, equating chemical potentials of the
driven and nondriven systems does not predict the coexisting
densities; the chemical potentials of the coexisting systems
are unequal. The discrepancy is associated with a nonuniform
particle density. In the following sections I study intrinsically
inhomogeneous systems.

IV. EXCHANGE ALONG AN EDGE

In this section I study a lattice of L×L sites divided into two
parts by applying a nonzero drive in half of the system, that
is, for sites (i,j ) with L

2 + 1 � j � L. Thus the boundaries
between the driven and undriven regions (between j = L

2
and L

2 + 1 and between j = L and j = 1) are parallel to the
drive. I report simulation results for the stationary density and
chemical potential profiles [ρ(j ) and μ∗(j ), respectively, the
latter obtained via Eq. (3), with the j -dependent values of ρ and
ρop]. If SST functions correctly, the coexisting bulk densities
ρ0 and ρD should be given by the equal chemical potential
condition (implying ρD > ρ0), and the chemical potential
profile should be flat, μ∗(j ) = μ∗(ρ0,0) = μ∗(ρD,D).

A. NNE dynamics

I study the NNE lattice gas on square lattices of L×L

sites (with periodic boundaries), with L ranging from 200
to 800. Initially, particles are distributed uniformly over the
lattice by inserting particles at randomly chosen open sites.
For the densities and system sizes considered here, the system
attains a stationary state well before 5×106 time units, the time

allowed for relaxation; averages are calculated over a period
of 5×106–107 time units, following relaxation.

The stationary properties of the half-driven system are
hardly what one would expect based on SST. Typical density
and chemical potential profiles are shown in Fig. 4. The
density is higher in the undriven region, contrary to the
prediction obtained equating the chemical potentials of driven
and undriven systems. The chemical potential profile is clearly
nonuniform; more so, in fact, than if the particle density
were uniform at the global density. Particles have migrated
to increase severalfold the difference in chemical potential
between the two regions, rather than diminish it. Varying
the global density, the bulk densities observed in simulation
consistently violate the expected tendency, that is, ρD < ρ0;
the difference grows with global density, as shown in Fig. 5.

The density and chemical potential profiles of Fig. 4
show well-defined bulk regions, justifying the interpretation
of coexisting phases. The bulk density and chemical potential
values, (ρ0,μ

∗
0) and (ρD,μ∗

D), fall on the corresponding curves,
μ∗(ρ,D = 0) and μ∗(ρ,D = 1), characterizing the isolated
systems. In other words, the driven and undriven regions retain
their respective bulk properties in the presence of a nonuniform
drive. I note that the chemical potential profile within the non-
driven region is essentially flat, despite significant variations in
density, as one would expect in an equilibrium system such as a
fluid confined between repulsive walls. In the driven region, by
contrast, the chemical potential profile varies over a substantial
region (∼10–20 lattice spacings) near the boundaries. In this
region the excess chemical potential is well approximated by
an exponential, �μ∗ ≡ μ∗(x) − μ∗

D ∼ e−x/λ, where x denotes
the distance from the boundary. The “healing length” λ grows
with density; for a global density of 0.25, I find λ � 5.5. The
density profiles follow a similar pattern: the excess density,
relative to the bulk values in the driven and nondriven regions,
is again well approximated by an exponential, �ρ ∼ e−x/λ,
with λ = 2.8(1) and 5.0(2) for overall densities 0.2 and 0.25,
respectively, in the nondriven region and λ = 2.55(2) and
6.30(2) for the same densities in the driven region. The
amplitude of the excess density is considerably larger in the
driven region (by a factor of ∼50 for ρ = 0.25).

Particles migrate to the undriven region, parallel to the
chemical potential gradient (i.e., contrary to Fick’s law), for
all system sizes examined, as well as for a smaller drive
(D = 0.5). Migration to regions of zero or weaker drive was
noted (for low densities) in Ref. [27], in which the NNE model
is subject to a drive which varies linearly with position j in
the direction perpendicular to the drive. In Ref. [28] a NNE
model on a two-lane ring (one driven, the other undriven)
was found to exhibit particle migration to the undriven region
for smaller global densities and migration in the opposite
sense for ρ > 0.3. Although a full explanation of the transport
mechanism is not available, it appears [28] that diagonal strings
of particles near the boundary between driven and undriven
regions favor the transfer of particles from the former to the
latter. Since the present study is concerned with macroscopic
behavior, we defer further analysis of this question to future
work.

From the macroscopic viewpoint, the driven and undriven
regions correspond to systems coexisting under particle ex-
change. One therefore expects the stationary properties to be
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FIG. 4. Density (upper) and chemical potential (lower) profiles in the half-driven NNE model. Drive D = 0 for x � 200; D = 1 for
x > 200. Global densities ρ = 0.2 (left) and 0.25 (right). In the upper panels the dashed lines show the coexisting densities predicted by
equating chemical potentials. In the lower panels the dashed lines show the expected uniform value of the chemical potential, and the dotted
lines show the chemical potentials for the isolated systems, each at density ρ.

predicted by SST, which it evidently does not. Is the failure
due to limited system size? Studies using L = 200, 300, 400,

FIG. 5. (Color online) Coexisting bulk particle densities ρD and
ρ0, in driven and undriven regions, respectively, in the NNE model,
as predicted by equating the chemical potentials in isolated systems
(upper curve) and observed in simulations of the half-driven system
(lower curve). Error are bars smaller than symbols. For purposes of
comparison, the dashed line represents ρD = ρ0.

and 800 yield essentially the same results, eliminating size as a
possible explanation. Another possibility is that the exchange
between the two regions must be weaker for SST to function,
since, as noted above for pointwise exchange, as well as in
Ref. [19], full agreement with the predictions of SST requires
that we take the weak-exchange limit. Studies in which the
acceptance probability for transfers between the two regions,
pr , is small, reveal essentially the same pattern as observed for
pr = 1. In the example shown in Fig. 6, for global density 0.22,
the departure from the expected behavior is in fact somewhat
greater for small values of pr .

B. NNE2 dynamics

I study the half-driven model with NNE2 hopping dynamics
using simulation parameters similar to those used in the NNE
case. Since the phase transition to sublattice ordering occurs for
ρ � 0.35 [26], the studies can be extended to higher densities
than for NNE dynamics. Studies with L = 200 and 400 yield
the same bulk values for ρ and μ∗ to within uncertainty.

In contrast to the NNE case, under NNE2 dynamics the
stationary density is higher in the driven region, as predicted by
SST. The density profiles follow �ρ ∼ e−x/λ, with λ ranging
from near unity to about 3.0 in the nondriven region, as the
bulk density varies from 0.25 to 0.34; in the driven region λ

ranges from unity to 16.0 over this range of densities.
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FIG. 6. (Color online) Density profiles in the half-driven NNE
model with global density 0.22; drive D = 0 for x � 100; D = 1 for
x > 100. Black: pr = 1; blue: pr = 0.005; red: pr = 0.002.

The observed density and chemical potential profiles are
again inconsistent with those expected on the basis of SST.
As shown in Fig. 7, the bulk densities do not take their
expected values, and the chemical potential profile is not
uniform. Once again, the principle of equal chemical potentials
in systems that coexist under particle exchange is violated.
The general lack of agreement is evident in the comparison
(Fig. 8) between predicted and observed densities in the
driven and undriven regions. At lower global densities, ρD

exceeds the value predicted using SST, while at higher global
densities (above about 0.29) the trend reverses. (The difference
ρD − ρ0 ∝ ρ2 as the global density ρ tends to zero.) As in
the NNE case, reducing the acceptance probability, pr , for
transfers between the driven and undriven regions only serves
to enhance (slightly) the discrepancy between simulation and
SST. Once again, the bulk values of ρ and μ∗ in the driven and
undriven regions agree with those found for the corresponding
isolated systems, as shown in Fig. 9.

C. Conditions for stationarity and for a uniform
chemical potential

It is worth contrasting the condition of (I) thermodynamic
coexistence (spatially uniform chemical potential) with that
(II) of a stationary density profile perpendicular to the drive.
On the square lattice, condition I implies that the ratio of the
probabilities of the two five-site clusters (a and b) shown in
Fig. 10 be independent of position, whereas condition II simply
requires that at each row j along the drive, the probabilities
of clusters c and d be the same. The condition of uniform μ∗
derives from the definition of chemical potential via exchange
with a particle reservoir [19]. But since the driven lattice gas
is not in contact with such a reservoir, there is no reason
for condition I to apply in the presence of a nonuniform
drive. Condition II does apply (else there would be a current
perpendicular to the drive); it can be satisfied in a multitude of
ways, depending on the details of particle fluxes in each row
along the drive.

FIG. 7. Density (upper) and chemical potential (lower) profiles
in the half-driven NNE2 model with global density ρ = 0.32. Drive
D = 0 for x � 200; D = 1 for x > 200. In the upper panel the dashed
lines show the coexisting densities predicted by equating chemical
potentials. In the lower panel the dashed line shows the expected
uniform value of the chemical potential.

FIG. 8. (Color online) Coexisting bulk particle densities ρD and
ρ0, in driven and undriven regions, respectively, of the NNE2 model,
as predicted by equating the chemical potentials in isolated systems
(lower curve at left) and observed in simulation (upper curve at left).
For purposes of comparison, the dashed line represents ρD = ρ0.
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FIG. 9. (Color online) Points: Bulk chemical potential versus
bulk density in driven (lower) and undriven (upper) regions of
half-driven NNE2 model. The curves show the corresponding values
for isolated systems. Error bars are smaller than symbols.

V. NONUNIFORM DENSITY, UNIFORM DRIVE

Having verified, in the preceding section, that the predic-
tions of SST are strongly violated under a nonuniform drive,
I turn in the present section to examples with a uniform drive,
but a nonuniform particle density.

A. NNE2 lattice gas between hard walls

An equilibrium fluid, on- or off-lattice, typically exhibits
a spatially varying density in the neighborhood of a hard
repulsive wall. The chemical potential is nevertheless uniform.

FIG. 10. Clusters on the square lattice. A uniform chemical
potential requires that the ratio of the probabilities of clusters a

and b be the same everywhere. A time-independent density profile
perpendicular to the drive D requires that at each row parallel to D,
the probabilities of clusters c and d be equal.

FIG. 11. (Color online) NNE2 lattice gas confined between hard
walls parallel to the drive direction. Density profiles (upper) and
chemical potential profiles (lower) in equilibrium (broken line) and
under maximum drive (solid lines), for overall density ρ = 0.26.

This observation motivates study of a uniformly driven lattice
gas between hard walls. I study the NNE2 model on systems
of L×L sites, with periodic boundaries (as always) along
the drive and hard walls parallel to it, i.e., at rows y = 0
and y = L + 1. (In practical terms, transitions from y = 1 to
y = 0, and from y = L to y = L + 1, are simply prohibited.)
As previously, sufficient time (in this case, 109 time units)
is allowed for the system to attain the stationary state.
Figure 11 compares typical density and chemical potential
profiles in the equilibrium and fully driven (D = 1) systems.
The density profiles are remarkably similar, exhibiting the
familiar density enhancement adjacent to the walls. Despite the
density variations, the equilibrium chemical potential profile
is perfectly flat. In the driven system, by contrast, μ∗ varies
considerably.

B. NNE lattice gas with a row of slow bonds

As a further example of a spatially nonuniform system,
I consider briefly the uniformly driven NNE model under
periodic boundaries, but with slow exchange (hopping prob-
ability pr = 0.01) between rows y = L/2 and y = L/2 + 1,
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FIG. 12. (Color online) NNE lattice gas with periodic bound-
aries, with slow bonds (hopping probability pr = 0.01) between rows
y = L/2 and y = L/2 + 1. Density profiles (upper) and chemical
potential profiles (lower) in equilibrium (flat profiles) and under
maximum drive (nonuniform profiles) for overall density ρ = 0.25.

parallel to the drive (the slow bonds connecting these rows are
oriented perpendicular to the drive). In equilibrium, such a
nonuniform kinetics cannot affect stationary properties, since
detailed balance is preserved. With or without a drive, each
row of constant y coexists with neighboring rows, implying
a uniform chemical potential. In the driven NNE system,
nevertheless, the slow bonds cause significant variation of the
density and chemical potential, as illustrated in Fig. 12.

VI. EXCHANGE BETWEEN SYSTEMS WITH IDENTICAL
STEADY STATES

Consider two isolated, driven systems, A and B, of identical
dimensions and having the same number of particles but with
all transition rates in B equal to the corresponding rates in
A multiplied by a common factor q < 1. Systems A and
B possess identical stationary probability distributions on
configuration space, since this distribution is invariant under
a rescaling of time. When placed in contact, they should
therefore coexist. This is verified (for both NNE and NNE2
dynamics) in the case of pointwise exchange for exchange rate
pr tending to zero.

FIG. 13. (Color online) NNE lattice gas with all hopping rates
reduced by q = 0.5 in the central region (see text). Density profiles
(upper) and chemical potential profiles (lower) in equilibrium (dashed
lines) and under maximum drive (solid lines) for overall density
ρ = 0.15.

Consider next systems A and B in contact along an edge,
as in previous examples. I study systems of L×L sites with
periodic boundaries, in which transition rates in half the system
are reduced by a factor q. Specifically, all rates of hopping
along the drive are reduced in rows y = L/4 + 1 to y = 3L/4.
Hopping rates perpendicular to the drive, from y to y + 1, are
reduced in rows y = L/4 + 1 to rows 3L/4 − 1, while for for
hopping in the opposite sense (from y to y − 1) the reduction
is imposed in rows y = L/4 + 2 to y = 3L/4. (In this way, the
hopping rate from y to y + 1 is always equal to that from y + 1
to y, eliminating any intrinsic bias.) Although the subsystems
in the inner and outer regions possess one and the same steady
state when in isolation, they do not coexist under edgewise
exchange in the presence of a drive: Under NNE dynamics,
particles migrate from the fast to the slow region; under NNE2
dynamics migration occurs in the opposite sense. (Analogous
migrations are observed in the half-driven systems described
in Sec. IV: from driven to nondriven under NNE dynamics and
vice versa.) Figure 13 shows typical stationary density and μ∗
profiles for the NNE case.

VII. CONCLUSIONS

I test the predictive value of steady-state thermodynamics
in athermal lattice gases subject to a nonuniform drive or other
perturbations that provoke a nonuniform particle density. In
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the case of pointwise exchange (Sec. III), the predictions of
SST are valid only in the limit of a vanishing exchange rate,
pr → 0. For finite pr the density profile is nonuniform and
SST predictions are violated.

In studies of half-driven systems (Sec. IV), SST is found
ineffective in predicting the coexisting particle densities of the
driven and nondriven systems when they exchange particles
across the interface, for both nearest-neighbor hopping (NNE
dynamics) and nearest- and next-nearest hopping (NNE2
dynamics), regardless of the transfer probability pr at the
boundary. Of course, if we take pr to zero in this situation,
we obtain a pair of isolated systems separated by hard walls.
As shown in Sec. V, the nondriven system then exhibits, as
expected, a uniform chemical potential, but this is not the case
under the drive.

The essential difference between the setup of Ref. [19],
in which coexistence is attended by equality of the chemical
potential, and the examples studied here, in which it is not,
is the mode of particle transfer (global versus local). The
global transfer scheme of Ref. [19], while useful in eliminating
complicating effects of inhomogeneities, is not realizable in
the laboratory. In the present study, by contrast, exchange is
restricted to the region of contact between the subsystems The
violation of SST is generally smaller under NNE2 dynamics,
which features a longer range of particle motion. This is
consistent with the observation that, extending the range of
motion to include all sites, one would have global exchange,
for which SST is in fact valid.

It is important to distinguish two classes of violations of
SST. One class corresponds to inequalities of (or nonuniformi-
ties in) the chemical potential μ∗ = ln(ρ/ρop) in systems that
coexist at stationarity. All of the violations of SST discussed
here exhibit this feature; all are associated with nonuniform
particle densities. Although there is no obvious candidate for a

revised chemical potential (adding, e.g., some contribution that
is identically zero in equilibrium), such an extended definition,
that might yield, for example, a constant μ∗ profile in a
driven system between hard walls, appears to remain a logical
possibility. This is a delicate question, since the definition of
μ∗, based on the elementary principle of coexistence with
a reservoir, functions perfectly for weak exchange between
spatially uniform systems. Its redefinition (if possible) might
therefore have to involve the local density gradient in the
presence of a drive. Here it is well to recall that such details
fall outside the usual notion of macroscopic thermodynamic
variables.

Another class of violations, highlighted in Secs. IV and
VI, involves pairs of systems that coexist in some situations
(i.e., under global or pointwise weak exchange), but not in
others, such as exchange along an edge. These inconsistencies
arise regardless of whether, or how, we define a chemical
potential and cannot be eliminated by its redefinition. They
rather suggest the far more sweeping conclusion that SST
only describes coexistence under vanishing exchange rates,
between spatially uniform systems, and cannot be applied
outside this limit. This would exclude, in particular, application
of SST to nonuniform systems with a finite rate of particle
exchange between distinct coexisting regions, as occurs, for
example, in phase separation. The failure of SST in the
simple context of driven lattice gases strongly suggests that
the thermodynamics of nonequilibrium steady states has rather
limited utility. Tests of SST in other model systems are planned
for future work.
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