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The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with
soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG
lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature
dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed
numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend
in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the
temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same
framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law
dependence of the thermal conductivities as a function of temperature are only determined by the exponents of
the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive
numerical simulations.
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I. INTRODUCTION

Since the first discovery of anomalous heat conduction in
one-dimensional (1D) Fermi-Pasta-Ulam β (FPU-β) lattices
where thermal conductivity diverges with lattice size [1], enor-
mous efforts have been applied to the study of heat transport
in 1D nonintegrable lattices, trying to unravel the underlying
physical mechanism [2–45]. The consensus reached in this
community is that the total momentum conservation plays an
important role in determining the system’s heat conduction be-
havior. For momentum-nonconserving nonintegrable lattices
with on-site potentials, there is no dispute that they should have
normal heat conduction. However, for momentum-conserving
nonintegrable lattices, the issue whether they should neces-
sarily give rise to anomalous heat conduction is still under
intense debate. The hydrodynamic theory has predicted that
momentum conservation will naturally induce anomalous heat
conduction in 1D nonintegrable lattices [18]. But this theory
fails to explain the normal heat conduction numerically found
for the rotor model, which is also a momentum-conserving
lattice [46–48]. There are some arguments that the 1D rotor
model should exhibit anomalous heat conduction in the
thermodynamical limit where proof or disproof is very hard to
obtain by numerical simulations due to the huge computation
cost [49]. Most recently, normal or anomalous heat transport
in asymmetrical momentum-conserving lattices has attracted
much attention [50–52], but more studies of this new topic must
be done before a final conclusion can be drawn. For a thorough
explanation of the heat transport problems in low-dimensional
systems, please refer to some excellent review articles for
further reading [53–55].
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Even though the study of normal/anomalous heat conduc-
tion or size-dependent thermal conductivities still causes much
debate in this community, the exploration of the temperature
dependence of thermal conductivities in 1D nonintegrable
lattices turns out to be more successful. The difficulty of
studying size dependence arises from the fact that numerical
simulations on extremely long lattices need to be calculated
in order to reach asymptotic behavior. In contrast, a very
short lattice, usually in the hundreds or thousands of atoms,
is enough to obtain stable temperature dependence of thermal
conductivities [12,15,56–62]. The most important thing is that
the diversity of the temperature dependence for various lattice
models can provide a perfect testbed for any heat conduction
theory, especially a phenomenological theory. According
to numerical simulations, the thermal conductivities of the
FPU-β lattice depend on the temperature as κ(T ) ∝ 1/T

in the low-temperature limit and κ(T ) ∝ T 1/4 in the high-
temperature limit [15,56,61]. Hn models have a monotonically
ascending temperature dependence for thermal conductivities
as κ(T ) ∝ T 1/2−1/n [61], while hard-KG lattices exhibit
monotonically descending temperature dependence as κ(T ) ∝
T − 4(n−2)

n+2 , where n > 2 is the exponent of the on-site potential
[62]. Interesting enough, all these temperature dependences
can be quantitatively and consistently interpreted by the same
phenomenological effective phonon theory [56,61,62], which
is based on renormalized phonons [4,63–69] occurring in
nonlinear lattices.

In this work, we would like to extend the analytical
and numerical investigations of the temperature dependence
of thermal conductivities to several soft-KG lattices with
1 < n < 2. The spectra of renormalized phonons are nu-
merically calculated in comparison to the predictions from
classical field theory. The temperature-dependent thermal
conductivities are systematically studied via nonequilibrium
molecular dynamics. Consistent and quantitative comparisons
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between numerical simulations and theoretical predictions
from effective phonon theory are performed. The paper is
organized as follows: in Sec. II soft-KG lattice models are
introduced and the properties of renormalized phonons are
presented. Section III reports the results of temperature-
dependent thermal conductivities and compares them with the
theoretical predictions from effective phonon theory. We give
conclusions and summarize in Sec. IV.

II. SOFT-KG LATTICES AND THEIR RENORMALIZED
PHONONS

Symmetrical nonlinear KG lattices have the Hamiltonian

H =
N∑

i=1

[
1

2
p2

i + 1

2
(xi − xi−1)2 + 1

n
|xi |n

]
, (1)

where xi and pi denote the dimensionless displacement
and momentum for the ith atom and n is the exponent
of the nonlinear on-site potential. For n > 2, the on-site
potentials are hard types which are harder than the referenced
quadratic potential with n = 2. The Hamiltonian, Eq. (1),
with 1 < n < 2 is then called soft-KG lattices. In contrast to
hard-KG lattices, soft-KG lattices approach a harmonic system
in the high-temperature limit. In order to gain a consistent
understanding of the thermal properties of soft-KG lattices,
three soft-KG lattices, with n = 1.25, 1.50, and 1.75, are
investigated systematically. Dimensionless units have been
applied. For simplicity, periodic boundary conditions with
xi = xN+i are used for theoretical analysis, while fixed bound-
ary conditions with x0 = xN+1 = 0 are used for molecular
dynamics simulations. In principle, the different boundary
conditions will not cause any difference in their thermal
properties in the thermodynamical limit.

The dispersion relation of renormalized phonons for the
Hamiltonian, Eq. (1), can be generally expressed as [62,65]

ω̂k =
√

ω2
k + γ , ωk = 2 sin

πk

N
, γ =

∑
i〈|xi |n〉∑
i

〈
x2

i

〉 , (2)

where k,i = 1, . . . ,N and 〈·〉 denotes the ensemble average
at thermal equilibrium. The renormalization coefficient γ

contains the information on nonlinearity and depends on the
temperature or the strength of the nonlinearity. It is very
interesting that γ depends on the temperature with a power-law
behavior which can be predicted by the classical field theory
approach [62,65].

According to Ref. [62], the scaling of components 〈x2
i 〉 and

〈|xi |n〉 of γ can be derived as a function of temperature as

〈
x2

i

〉 ∝ T σ2 , σ2 = 4

n + 2
,

(3)〈|xi |n
〉 ∝ T σn, σn = 2n

n + 2
,

where 〈x2
i 〉 and 〈|xi |n〉 are independent of the atom index i. For

a soft-KG lattice with n = 1.25, the power-law dependence can
be expressed as 〈x2

i 〉 ∝ T 16/13 and 〈|xi |n〉 ∝ T 10/13. Similarly,
the expressions are 〈x2

i 〉 ∝ T 8/7 and 〈|xi |n〉 ∝ T 6/7 for n =
1.5 and 〈x2

i 〉 ∝ T 16/15 and 〈|xi |n〉 ∝ T 14/15 for n = 1.75. To
verify these theoretical predictions from classical field theory,

(a) Soft-KG lattice with n = 1.25

(b) Soft-KG lattice with n = 1.50

(c) Soft-KG lattice with n = 1.75

FIG. 1. (Color online) Time averages of 〈x2
i 〉 and 〈|xi |n〉 as a

function of temperature T for three soft-KG lattices with (a) n = 1.25,
(b) n = 1.5, and (c) n = 1.75. Lines are predictions from Eq. (3),
while their prefactors are chosen so as to fit the numerical data.
All numerical simulations were performed at thermal equilibrium
for a lattice with N = 200, where the two ends were coupled to the
Langevin heat baths. The averages of 〈x2

i 〉 and 〈|xi |n〉 are independent
of the atom index i.

we have numerically calculated the time average of 〈x2
i 〉 and

〈|xi |n〉 as a function of temperature for three soft-KG lattices
with exponents n = 1.25, 1.5, and 1.75 as plotted in Fig. 1.
It can be seen clearly that all the 〈x2

i 〉 and 〈|xi |n〉 follow the
predicted power-law dependence as a function of temperature
over two order of magnitudes. In Fig. 2, the fitting exponents
σ2 and σn extracted from Fig. 1 are plotted compared with the
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FIG. 2. (Color online) Exponents σ2 and σn as a function of n.
Symbols are numerical data and lines are predictions of Eq. (3).

theoretical predictions of Eq. (3). The good agreement between
numerical simulations and theoretical predictions can be easily
seen.

In order to confirm the existence of renormalized phonons
predicted by Eq. (2), we should investigate the power spectrum
of atom vibrations in different soft-KG lattices at different
temperatures. From the above discussion of Eqs. (2) and
(3), we know that the renormalization coefficient γ can be
expressed as

γ = ξ · T σn−σ2 , (4)

where the prefactor ξ is a temperature-independent constant.
In the absence of theoretical predictions, the prefactor ξ should
be obtained from numerical simulations for each soft-KG
lattice. For n = 1.25, 1.5, and 1.75, the numerical values of ξ

have been calculated as 1.102,1.045, and 1.014, respectively.
According to Eq. (2), the renormalized phonon spectra are
bounded as

ω̂k ∈ [
√

ξ · T σn−σ2 ,
√

4 + ξ · T σn−σ2 ], (5)

where the upper and lower boundaries are both temperature
dependent. The spectra of predicted renormalized phonons
are therefore located within [1.232,2.349] at T = 0.5 and
[0.617,2.093] at T = 10 for a lattice with n = 1.25. For
n = 1.5, the predicted region is [1.129,2.297] at T = 0.5
and [0.736,2.131] at T = 10. For n = 1.75, the region should
be [1.055,2.261] and [0.864,2.179] for T = 0.5 and T = 10,
respectively.

The phonon spectra can be obtained by calculating the
power spectra of the atom velocity ẋi(t) for each soft-KG
lattice at a specified temperature [70]. In Fig. 3, the power
spectra for soft-KG lattices at different temperatures are
plotted. Vertical lines are the predictions from Eq. (5), which
exactly match the numerical boundaries. The good agreement
between numerical results and theoretical predictions confirms
the existence of renormalized phonons in these nonlinear
soft-KG lattices.

(a) Soft-KG lattice with n = 1.25

(b) Soft-KG lattice with n = 1.50

(c) Soft-KG lattice with n = 1.75

FIG. 3. (Color online) Power spectra of the atom velocity ẋi(t)
at two temperatures, T = 0.5 and T = 10, for three soft-KG
lattices with (a) n = 1.25, (b) n = 1.5, and (c) n = 1.75. Predicted
boundaries of power spectra are shown by vertical dotted (blue) lines
for T = 0.5 and dashed (red) lines for T = 10, respectively. All
numerical simulations were performed at thermal equilibrium for a
lattice with N = 60.

III. TEMPERATURE-DEPENDENT THERMAL
CONDUCTIVITIES AND EFFECTIVE PHONON THEORY

In dealing with temperature-dependent thermal conductiv-
ities, the effective phonon theory [56,61,62,67] has proven to
be very successful. In the framework of renormalized phonons,
the effective phonon theory is able to predict the temperature
dependence of thermal conductivities. The derivation of the
thermal conductivities for 1D soft-KG lattices is the same
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as that for 1D hard-KG lattices. In particular, the thermal
conductivities of 1D soft-KG can be expressed as [62]

κ(T ) ∝ 1

εγ 3/2
, (6)

where γ is the renormalization coefficient and the nonlinearity
strength ε is defined as the ratio of the nonlinear potential
energy to the total potential energy, ε = 〈En〉/〈Et 〉, with En

and Et denoting the nonlinear and total potential energy,
respectively.

The temperature dependence of γ has been derived in
Eq. (4). Next we briefly introduce the derivation of the
temperature dependence of the nonlinearity strength ε. By
definition, the nonlinearity strength ε can be expressed as

ε =
∑

i〈|xi |n〉/n∑
i〈(xi − xi−1)2〉/2 + ∑

i〈|xi |n〉/n

≈
∑

i〈|xi |n〉/n∑
i〈(xi − xi−1)2〉/2

∝ T σn−1. (7)

Since we only consider the high-temperature region where the
quadratic interaction potential

∑
i〈(xi − xi−1)2〉 dominates,

the on-site potential term
∑

i〈|xi |n〉 in the denominator can
be ignored. From Eq. (3) we know that 〈|xi |n〉 ∝ T σn . And the
property of 〈(xi − xi−1)2〉 ∝ T can be obtained due to equipar-
tition theorem [62] in the high-temperature limit. This explains
the ε ∝ T σn−1 behavior in the high-temperature region. On
the other hand, the quadratic term can be ignored in the
low-temperature region, which gives rise to the ε ≈ 1 behavior.
In Fig. 4(a), the nonlinear strength ε is plotted as a function
of the temperature for each soft-KG lattice. The intersection
points between the line of ε = 1 and the asymptotic line ε ∝
T σn−1 approximately describe the crossover points between
the low- and the high-temperature region. For n = 1.25, it
can be seen the crossover point is at about T = 0.25. The
temperature at the crossover points for n = 1.5 and 1.75 is
even lower. Therefore a temperature higher than T = 0.25 can
be approximately viewed as a high temperature for soft-KG
lattices with n � 1.25. However, for hard-KG lattices, the
nonlinear strength ε approaches 1 in the high-temperature
limit and ε ∝ T σn−1 in the low-temperature limit. As shown
in Fig. 4(b), the temperature at the crossover point for n = 4
is about T = 30. A temperature lower than this value can
be approximately viewed as a low temperature for hard-KG
lattices with n � 4.

Therefore, from Eqs. (4), (6), and (7), the thermal conduc-
tivities for 1D soft-KG lattices can be derived as

κ(T ) ∝ T rn , rn = 4(2 − n)

n + 2
. (8)

This power-law dependence is exactly the same as that for
hard-KG lattices [62]. In both soft- and hard-KG lattices,
the considered temperature regions are all close to the
harmonic limit. One should note that this region refers to
the low-temperature region for hard-KG lattices and the
high-temperature region for soft-KG lattices. Our theory
predicts that the thermal conductivities increase monotonically
with temperature as rn > 0 for soft-KG lattices with n < 2,
which is totally different from hard-KG lattices, where rn < 0
for n > 2. To verify these predictions, intensive numerical

(a) Soft-KG lattices with n = 1.25, 1.5 and 1.75

(b) Hard-KG lattices with n = 2.5, 3, 3.5 and 4

FIG. 4. (Color online) Nonlinear strength ε as a function of
temperature for (a) soft-KG and (b) hard-KG lattices. Intersection
points between the line of ε = 1 and the asymptotic lines of
ε ∝ T σn−1 approximately separate the low-temperature region from
the high-temperature region for each lattice model. All numerical
simulations were performed at thermal equilibrium for a lattice with
N = 50.

simulations of temperature-dependent thermal conductivities
for soft-KG lattices need to be performed.

In Fig. 5, we numerically calculated the thermal con-
ductivities as a function of temperature for soft-KG lattices
with n = 1.25, 1.5, and 1.75 from nonequilibrium molecular
dynamics simulations. For each thermal conductivity at a
specific temperature, we have eliminated the size effect by
using long enough lattices that the saturation of thermal
conductivity has been confirmed. The power-law dependence
of thermal conductivities as a function of temperature is clearly
shown by the straight lines in the log-log scaled plot. Contrary
to hard-KG lattices, the thermal conductivities of all soft-KG
lattices increase monotonically with temperature. These are
consistent with the prediction of effective phonon theory where
n = 2 in Eq. (8) is the crossover point, r2 = 0. The thermal
conductivities of harmonic KG lattices with n = 2 must be
independent of temperature as we would expect.

Soft-KG and hard-KG lattices display opposite temperature
dependences of their thermal conductivities. The physical
interpretation behind this scenario is that nonlinear lattices
should possess higher thermal conductivities when they ap-
proach the harmonic limit. For hard-KG lattices, the harmonic
limit is approached for the low-temperature limit. Therefore
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FIG. 5. (Color online) Thermal conductivities κ(T ) as a function
of temperature T for different nonlinear KG lattices with n = 1.25,
1.5, and 1.75. Dotted, dashed, and solid lines are numerical fittings
of the form κ = AnT

rn , where An and rn are the fitting parameters.
The system size to obtain the thermal conductivities is usually taken
as N = 800. But for high-temperature cases, the longer system size
of N = 3200 is usually chosen to avoid a finite-size effect.

hard-KG lattices have higher thermal conductivities in the low-
temperature region. However, soft-KG lattices approach the
harmonic limit in the high-temperature region. Their thermal
conductivities thus have higher values in the high-temperature
region.

For each soft-KG lattice, the numerical value of the
exponent rn can be extracted with a standard fitting procedure.
The resulting exponents rn are plotted in Fig. 6 in comparison
with the theoretical prediction of Eq. (8). It can be seen that
the numerical data are in full agreement with the prediction of
effective phonon theory. Therefore the effective phonon theory,
developed from the assumption of renormalized phonons, can
also explain quantitatively and consistently the temperature
dependence of the thermal conductivities for soft-KG lattices.

IV. DISCUSSION

In summary, we have systematically studied the thermal
properties of soft-KG lattices with nonlinear exponent n < 2.
Renormalized phonons have been confirmed for these soft-KG
lattices, as the temperature dependence of renormalization
coefficients can be well explained by a classical field theory
approach. The thermal conductivities have been calculated
numerically and a power-law dependence as a function of

FIG. 6. (Color online) Exponents rn as a function of n for n =
1.25, 1.5, and 1.75 for soft-KG lattices and n = 2.5, 3, 3.5, and 4
for hard-KG lattices. Open circles are numerical data of rn extracted
from Fig. 5 within the temperature range [0.15,10]. Filled circles are
numerical data referenced from [62]. The dotted line is the theoretical
prediction of Eq. (8) from effective phonon theory.

temperature has been found. In contrary to hard-KG lattices,
all the thermal conductivities of soft-KG lattices increase
monotonically with temperature. All these numerical results
are in good agreement with the prediction of effective
phonon theory. In particular, the exponents of the temperature
dependence of thermal conductivities have been found to be
quantitatively consistent with the theoretical predictions of
effective phonon theory.

There are other collective excitations in nonlinear lattices
such as solitons [71–75] and breathers [76,77]. For a Toda
lattice, the only excitations are solitons and the heat can only
be conducted by solitons. It is also believed that solitons
and breathers can influence the transport of phonons in some
nonlinear lattices [7,38,42,49]. This kind of influence might
depend on different lattice models, and further investigations
are needed to obtain a full and clear picture of this issue.
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