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Quantum-mechanical particles in a confining potential interfere with each other while undergoing thermody-
namic processes far from thermal equilibrium. By evaluating the corresponding transition probabilities between
many-particle eigenstates we obtain the quantum work distribution function for identical bosons and fermions,
which we compare with the case of distinguishable particles. We find that the quantum work distributions for
bosons and fermions significantly differ at low temperatures, while, as expected, at high temperatures the work
distributions converge to the classical expression. These findings are illustrated with two analytically solvable
examples, namely the time-dependent infinite square well and the parametric harmonic oscillator.
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I. INTRODUCTION

In the past two decades, nonequilibrium work rela-
tions [1], including the Jarzynski equality [2,3] and the
Crooks fluctuation theorem [4,5], have attracted a lot of
attention. These two nonequilibrium work theorems together
with other exact relations concerning entropy production in
arbitrary far-from-equilibrium processes, collectively known
as fluctuation theorems [6–15], have shed new light on our
understanding of nonequilibrium thermodynamics beyond the
close-to-equilibrium regime. The validity of the classical
version of these relations has been tested experimentally
in various systems [16–25]. In recent years, the quantum
version [26–29] of these relations has also been proposed
and studied extensively [30–34]. In the quantum regime,
the so-called two-time energy measurement approach has
proven to be effective. Within this approach quantum work
performed by a thermally isolated system is determined by
two projective energy measurements. On the other hand,
the analysis of the characteristic function, i.e., the Fourier
transform of the work density [29], has opened new, alterna-
tive avenues to experimentally test quantum work theorems
[35–37].

Previous studies of quantum work relations have been
mostly focused on single-particle quantum systems, such as
dragged harmonic oscillators [38,39], parametric harmonic
oscillators [40–43], a single particle in a time-dependent
piston [44], two-level systems [45], and the parametric Morse
oscillator [46]. However, the interplay of quantum work and
quantum statistical properties, e.g., the Fermi-Dirac statistics
or the Bose-Einstein statistics, have not been fully explored yet
(but see Refs. [47–50]). Interference [51,52] of identical parti-
cles will undoubtedly influence the thermodynamic properties
of many-particle systems.

The difference between the Bose-Einstein distribution and
the Fermi-Dirac distribution for identical particles in single-
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particle eigenstates can be interpreted as a manifestation
of the “static” effect of the interference. Furthermore, in
nonequilibrium processes, the transition probabilities between
many-particle eigenstates for bosons and fermions exhibit
interference as well. This effect can be regarded as the
“dynamic” effect of interference, which profoundly influences
the work distribution in nonequilibrium processes.

In this article, we extend our previous stud-
ies [40,42,44,53,54] to multiparticle systems. We will show
that for noninteracting particles, the transition amplitudes
between many-particle eigenstates can be constructed from
the transition amplitudes between single-particle eigenstates.
From these we obtain the work distribution for arbitrary
far-from-equilibrium processes. In practice, however, we will
see that for fermions the work distribution function is relatively
easy to compute, whereas for bosons, the work distribution
function is mathematically more involved.

Our findings will be illustrated by two exactly solvable
examples—identical particles confined by a quantum piston
and by a harmonic potential. For these model systems we
will highlight the significant difference between bosons and
fermions at low temperatures. On the other hand, in the limit
of high temperatures and slow driving we will rediscover the
work distribution function for classical particles [55].

Only recently, a “correspondence principle” for work
distributions [56] has been proposed, which indicates that
the quantum distribution converges towards the classical
distribution in the semiclassical limit � → 0. Motivated by
this result we demonstrate analogously that in the high-
temperature limit β → 0, the work distribution functions for
both bosons and fermions converge towards that of classical
distinguishable particles, which has been previously seen
in the single-particle case [40,42,44,57,58]. In other words,
we demonstrate that in the limit of high temperature, β →
0, the quantum work distribution obeys a “correspondence
principle” in the quantum statistical sense independent of the
nature of the particles (in contrast to the “correspondence
principle” in the quantum mechanical sense, where � → 0 is
required).
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Finally, we emphasize that we restrict ourselves to non-
interacting, spinless identical particles and the nonrelativistic
regime. In particular, the particle number is conserved, which
corresponds to a canonical ensemble. Similar systems have
also been studied by Nakamura and his collaborators in
Refs. [59,60], but for grand-canonical ensembles, and their fo-
cus has been on averaged quantities rather than on fluctuations.

The paper is organized as follows: In Sec. II, we construct
the work distribution for multiparticle systems undergoing
nonequilibrium processes. Our findings are illustrated with
a 1D box system and a 1D harmonic oscillator, and we
numerically compute the work distribution. Section III is
dedicated to the convergence of the quantum work distribution
for noninteracting bosons and fermions in the limit of high
temperature. Finally, Sec. IV concludes the discussion with
remarks on various properties of the work distribution.

II. QUANTUM WORK DISTRIBUTION FOR IDENTICAL
PARTICLES

In the study of quantum processes operating far from
thermal equilibrium one of the key quantities is the work
distribution. To the best of our knowledge, previous analyses
of multi-particle systems have been restricted to quasistatic
processes [55], classical distinguishable particles [61], com-
pression of an infinitely large piston [62], or sudden quenches
of spin chains [63–65]. In particular, analytical results for
the work distribution are only known for classical parti-
cles [55,61,62], whereas the effect of quantum interference
is yet to be explored.

In the following we will explicitly construct the quantum
work distribution, P(W ), for systems of many noninteracting
particles (identical or distinguishable), while special focus
will be put on the effect of interference on P(W ). To this
end, we have to evaluate the transition probabilities between
many-particle eigenstates first [51,66,67]. In a second step we
will illustrate our findings numerically for two simple model
systems, namely a one-dimensional (1D) piston system and a
1D harmonic oscillator.

A. General expression

Consider a system of N noninteracting identical particles
(either bosons or fermions) in a 1D potential. Let us denote
the multiparticle eigenstates at the initial and the final instants
of a process by |{iλ0

k : nik }〉 and |{f λτ

l : nfl
}〉. Here λ0 and λτ

denote the initial and the final value of a work parameter with
λ(0) = λ0 and λ(τ ) = λτ ; i

λ0
k (f λτ

l ) is the quantum number of
the single-particle state and nik (nfl

) is the occupation number
of the particles in the ikth (fl th) eigenstate.

Commonly [2–5], the system under study is initially
prepared in a thermal state at inverse temperature β, which
corresponds here to a canonical ensemble. Then the initial
probability to find the system in state |{iλ0

k : nik }〉 is given by

P
(∣∣{iλ0

k : nik

}〉) = 1

Zλ0
exp

[
− β

( ∑
k

nikE
λ0
ik

)]
, (1)

where the partition function Zλ0 reads

Zλ0 =
∑

{ik :nik
}
exp

[
− β

( ∑
k

nikE
λ0
ik

)]
. (2)

Here we observe the first effect of the quantum statistics.
For fermions we have nik ≡ 1, ∀k, due to the Pauli exclusion
principle, whereas for bosons nik can be an arbitrary positive
integer with nik � N . The total number of particles, however,
is conserved in either case, and we have

∑
k nik = N . Finally,

E
λ0
ik

denotes the ikth initial eigenenergy.
After the preparation of the system a projective energy

measurement is performed. Then, the external control param-
eter λt is varied according to some protocol with λt=0 = λ0

and λt=τ = λτ , and the total system evolves under unitary
dynamics. At t = τ a second projective energy measure-
ment is performed, which induces the system to “collapse”
into a final multiparticle eigenstate |{f λτ

l : nfl
}〉 [68]. The

work performed during one realization of this protocol is
given by

W
(∣∣{iλ0

k : nik

}〉→∣∣{f λτ

l : nfl

}〉) =
∑

l

nfl
E

λτ

fl
−

∑
k

nikE
λ0
ik

,

(3)

and we denote by P (|{iλ0
k : nik }〉 → |{f λτ

l : nfl
}〉) the transition

probabilities between many-particle eigenstates. Thus, the
work distribution,

P(W ) = 〈
δ
[
W − W

(∣∣{iλ0
k : nik

}〉 → ∣∣{f λτ

l : nfl

}〉)]〉
(4)

can be written as [26,27,29]

P(W ) =
∑

{ik :nik
}

∑
{fl :nfl

}
P

(∣∣{iλ0
k : nik

}〉)

×P
(∣∣{iλ0

k : nik

}〉 → ∣∣{f λτ

l : nfl

}〉)
× δ

[
W −

(∑
l

nfl
E

λτ

fl
−

∑
k

nikE
λ0
ik

)]
. (5)

The latter expression clearly indicates that to calculate the
quantum work distribution expressions for the transition
probabilities are necessary. Luckily this quantity has been
studied extensively in recent years [51,66,67], and we will
here briefly review how to construct the transition probabilities
for distinguishable particles, PD(|{iλ0

k }〉 → |{f λτ

k }〉) (iλ0
k and

f
λτ

k denote the quantum numbers of the initial and the
final states of the kth particle, respectively), as well as for
bosons and for fermions, PB/F (|{iλ0

k : nik }〉 → |{f λτ

l : nfl
}〉),

[51,66,67].
If the transition amplitude between single-particle eigen-

states can be expressed as 〈f λτ

l |Û |iλ0
k 〉, where Û is the

unitary evolution operator corresponding to the Schrödinger
equation i� ∂t Û = H (t)Û , the transition probabilities between
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multiparticle eigenstates can be written as [51,66,67]

PD

(∣∣{iλ0
k

}〉 → ∣∣{f λτ

k

}〉) =
N∏

k=1

∣∣〈f λτ

k

∣∣Û ∣∣iλ0
k

〉∣∣2
, (k = 1,2, . . . ,N ),

PB/F

(∣∣{iλ0
k : nik

}〉 → ∣∣{f λτ

l : nfl

}〉) =
L∏

l=1

1

nfl
!

K∏
k=1

1

nik !

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
f

λτ

1

∣∣Û ∣∣iλ0
1

〉 · · · 〈
f

λτ

1

∣∣Û ∣∣iλ0
1

〉 〈
f

λτ

1

∣∣Û ∣∣iλ0
2

〉 · · · 〈
f

λτ

1

∣∣Û ∣∣iλ0
2

〉 · · · 〈
f

λτ

1

∣∣Û ∣∣iλ0
K

〉
· · · · · · · · · · · · · · · · · · · · · · · ·〈

f
λτ

1

∣∣Û ∣∣iλ0
1

〉 · · · 〈
f

λτ

1

∣∣Û ∣∣iλ0
1

〉 〈
f

λτ

1

∣∣Û ∣∣iλ0
2

〉 · · · 〈
f

λτ

1

∣∣Û ∣∣iλ0
2

〉 · · · 〈
f

λτ

1

∣∣Û ∣∣iλ0
K

〉
〈
f

λτ

2

∣∣Û ∣∣iλ0
1

〉 · · · 〈
f

λτ

2

∣∣Û ∣∣iλ0
1

〉 〈
f

λτ

2

∣∣Û ∣∣iλ0
2

〉 · · · 〈
f

λτ

2

∣∣Û ∣∣iλ0
2

〉 · · · 〈
f

λτ

2

∣∣Û ∣∣iλ0
K

〉
· · · · · · · · · · · · · · · · · · · · · · · ·〈

f
λτ

2

∣∣Û ∣∣iλ0
1

〉 · · · 〈
f

λτ

2

∣∣Û ∣∣iλ0
1

〉 〈
f

λτ

2

∣∣Û ∣∣iλ0
2

〉 · · · 〈
f

λτ

2

∣∣Û ∣∣iλ0
2

〉 · · · 〈
f

λτ

2

∣∣Û ∣∣iλ0
K

〉
· · · · · · · · · · · · · · · · · · · · · · · ·〈

f
λτ

L

∣∣Û ∣∣iλ0
1

〉 · · · 〈
f

λτ

L

∣∣Û ∣∣iλ0
1

〉 〈
f

λτ

L

∣∣Û ∣∣iλ0
2

〉 · · · 〈
f

λτ

L

∣∣Û ∣∣iλ0
2

〉 · · · 〈
f

λτ

L

∣∣Û ∣∣iλ0
K

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

, (6)

where the matrix element 〈f λτ

l |Û |iλ0
k 〉 occupies a block of size

nfl
× nik . Due to the conservation of the particle number we

have as before, N = ∑L
l=1 nfl

= ∑K
k=1 nik . Furthermore, ζ =

−1 and ζ = 1 in Eq. (6) correspond to fermions and bosons,
respectively. For fermions the transition amplitude is equal
to the determinant of the matrix (6), whereas for bosons, the
transition amplitude is given by the permanent [51,66,67].

Generally, to compute the transition probabilities merely
the transition amplitudes between single-particle eigenstates
〈f λτ

l |Û |iλ0
k 〉 are necessary. However, we will see shortly that, in

practice, the calculation of the permanent, the case of bosons,
is much more involved than the calculation of the determinant
for fermions.

We now can proceed to compute the quantum work
distribution for specific many-particle systems. For the sake of
simplicity we will continue our discussion for two analytically
solvable examples. For single-particle systems analogous stud-
ies include the 1D piston system with a moving wall [44,69]
and the 1D harmonic oscillator with a time-dependent angular
frequency [40,42,70].

B. Case one: Particles in a one-dimensional piston

The paradigm system in statistical mechanics is undoubt-
edly the classical ideal gas confined by a quantum piston.
Quantum particles in an infinite square well can be considered
a quantum analog. The dynamics of a single particle in this
“quantum piston” has been studied extensively in various con-
texts, see, for instance, Refs. [44,69,71] and references therein.
When the piston is pulled or compressed at a constant velocity,
analytical solutions to the transition amplitudes between the
initial and the final energy eigenstates 〈f λτ

l |Û |iλ0
k 〉 can be

obtained analytically [44,69]. Specifically, for a quantum
piston expanding at a constant velocity v from an initial length
λ(0) = λ0, λ(t) = λ0 + vt , a set of independent solutions
to the time-dependent Schrödinger equation can be written

as [69]

�j (x,t) = exp

[
i

�λ(t)

(
1

2
Mvx2 − E

λ0
j λ0t

)]
φj (x,λ(t)),

(7)

where j = 1,2,3, · · · and M is the mass of the particle,
E

λ0
j = j 2π2

�
2/2Mλ2

0 is the j th eigenenergy, and φj (x,λ) is
the j th energy eigenstate of a particle in an infinite square-well
potential,

φj (x,λ) =
√

2

λ
sin

(
jπx

λ

)
. (8)

A general solution of the time-dependent Schrödinger equation
takes the form

�(x,t) =
∞∑
j

cj�j (x,t), (9)

where the time-independent coefficients cj are set by the initial
wave function

cj =
∫ λ0

0
dx �∗

j (x,0)�(x,0). (10)

For initial conditions �(x,0) = φik (x,λ0) ≡ 〈x|iλ0
k 〉 these co-

efficients are (setting � = 1 and M = 1)

cj (ik) = 2

λ0

∫ λ0

0
dx exp

(
− i

vx2

2λ0

)

× sin

(
jπx

λ0

)
sin

(
ikπx

λ0

)
, (11)

and the time evolution matrix elements to the state |f λτ

l 〉 at the
final instant t = τ become〈

f
λτ

l

∣∣Û ∣∣iλ0
k

〉 =
∞∑

j=1

cj (ik)
∫ λτ

0
dx �j (x,τ )φ∗

fl
(x,λτ ). (12)

Substituting the transition amplitude (12) into Eq. (6) we
obtain the transition probabilities between the multiparticle
eigenstates in the piston.
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We plot numerical results of the work distribution for the
case of two or three identical particles in Figs. 1–5. For the
sake of clarity we plot the cumulative distributions,

ρ(W ) =
∫ W

dW ′ P(W ′) (13)

rather than the quantum work distributions P(W ). In all
figures we compare the results for distinguishable (Boltzmann)
particles (red lines) with those for fermions (black lines) and
for bosons (blue lines).

We start with the case of slow expansion in Fig. 1 with
v = 0.1. We observe that in the limit of low temperature the
work distributions for bosons and for distinguishable particles
are identical. This can be understood by noting that (i) at
T = 0 both bosons and distinguishable particles occupy only
the single-particle ground state and (ii) at T = 0 the transition
probabilities between many-particle states for bosons and
for distinguishable particles are identical (all the transition
probabilities for distinguishable particles, which correspond
to the same state for bosons, should be summed up). We
also observe that in the limit of low temperature, the work
distributions for bosons and for fermions differ significantly
due to the static interference of identical particles.

At intermediate temperatures, e.g., from β−1 = 10 to
β−1 = 20, the work distribution function for distinguishable
particles locates between that for bosons and that for fermions.
In contrast to distinguishable particles, there is an effective
“attractive” interaction among bosons, while there is an
effective “repelling” interaction among fermions. As a result,
fermions perform more work than distinguishable particles
on the piston during an expanding process, while bosons
perform less. By further increasing the initial temperature,
the cumulative work distribution functions become smoother
and smoother, and the work distribution functions for bosons
and for fermions show a tendency of convergence.

In the limit of high temperature [e.g., in Fig. 1 β−1 = 100
can already be regarded as the limit of high temperature], the
work distribution functions for the three kinds of particles
collapse onto the same curve. In Figs. 2 and 3 all parameters
are the same as those in Fig. 1 except that the speed of the
expansion of the piston is higher. We observe that the faster
the speed of the expansion the faster, i.e., at lower temperature,
the convergence of the work distribution functions for the three
kinds of particles. Notice that the convergence depends on
both the work protocol and the initial temperature and that the
convergence is generally not uniform. In Fig. 3 (fast protocol)
for the “typical” values of work, the convergence is faster
than that for the work values in the tails of the distribution.
However, in Fig. 2 (intermediate protocol) this is not the case.
In Fig. 2 β−1 = 100 we can see that for the “typical” values
of work, the convergence is slower. In Fig. 1 (slow protocol)
the convergence is approximately uniform.

In Figs. 4 and 5 we plot the cumulative work distribu-
tion (13) for the case of three identical particles at low
temperatures. The difference of the work distribution functions
between bosons and fermions for three particles are more
prominent than those for two particles. It can be inferred that,
with the increase of the particle number, the distinguishability
of the work distributions of bosons and fermions at low
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FIG. 1. (Color online) Cumulative work distribution (13) for
two bosons (blue dotted line), fermions (black dashed line), and
distinguishable particles (red solid line) in an expanding piston with
λ0 = 1, λτ = 2, and v = 0.1. Temperatures are, from top to bottom,
β−1 = 0, β−1 = 10, β−1 = 20, and β−1 = 100.
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FIG. 2. (Color online) Cumulative work distribution (13) for
two bosons (blue dotted line), fermions (black dashed line), and
distinguishable particles (red solid line) in an expanding piston with
λ0 = 1, λτ = 2, and v = 8. Temperatures are, from top to bottom,
β−1 = 0, β−1 = 10, β−1 = 20, and β−1 = 100.
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FIG. 3. (Color online) Cumulative work distribution (13) for
two bosons (blue dotted line), fermions (black dashed line), and
distinguishable particles (red solid line) in an expanding piston with
λ0 = 1, λτ = 2, and v = 100. Temperatures are, from top to bottom,
β−1 = 0, β−1 = 10, β−1 = 20, and β−1 = 100.
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FIG. 4. (Color online) Cumulative work distribution (13) for
three bosons (blue dotted line), fermions (black dashed line), and
distinguishable particles (red solid line) in an expanding piston with
λ0 = 1, λτ = 2, and v = 8. Temperatures are, from top to bottom,
β−1 = 0, β−1 = 10, and β−1 = 20.

temperature will become even more significant. This can be
understood by considering that, at low temperature, the system
will stay in a state close to the many-particle ground state. For
bosons and fermions the ground states are a Bose condensate
and a Fermi sea, respectively.

By further increasing the particle number, the complexity of
the calculation of the transition probabilities between many-
particle eigenstates increases exponentially with the particle
number. Also, with increase of the temperature, the number of
eigenstates, which will be visited during the work process,
increases dramatically. Therefore, we restricted ourselves
to two and three particles and to rather low temperatures.
However, from the work distribution functions for three
particles at β−1 = 0, β−1 = 10, and β−1 = 20 (see Figs. 4

100 50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

W

C
um
ul
at
iv
e
D
is
tri
bu
tio
n
Fu
nc
tio
n

100 50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

W

C
um
ul
at
iv
e
D
is
tri
bu
tio
n
Fu
nc
tio
n

FIG. 5. (Color online) Cumulative work distribution (13) for
three bosons (blue dotted line), fermions (black dashed line), and
distinguishable particles (red solid line) in an expanding piston with
λ0 = 1, λτ = 2, and v = 100. Temperatures are, from top to bottom,
β−1 = 0 and β−1 = 10.

and 5), one already observes the tendency to converge by
raising the temperature.

C. Case two: Particles in a one-dimensional harmonic potential

As a second case study of pedagogical value we analyze
the 1D harmonic oscillator. Specifically, we consider the
Hamiltonian

Hs(x,t) = 1

2M

d2

dx2
+ 1

2
Mω2

t x2, (14)

where M = 1 is again the single-particle mass and we
identify the work parameter with the angular frequency,
λt = ωt . This system can be solved analytically, see,
for instance, Refs. [70,72], and has been developed as
the prototypical example in quantum thermodynamics
[30,39,40,42,43,54,73–82].

It has been shown that the single-particle time evolution
operator can be written in position space as

Ut (x; x0) =
√

M

2πi� Xt

exp

(
iM

2�Xt

(
Ẋt x

2 − 2xx0 + Ytx
2
0

))

(15)

where Xt and Yt are solutions of the classical, force-free
equation of motion,

ξ̈t + ω2
t ξt = 0, (16)
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FIG. 6. (Color online) Cumulative work distribution (13) for
two bosons (blue dotted line), fermions (black dashed line), and
distinguishable particles (red solid line) in a quenched harmonic
potential (14) with ω0 = 1, ωτ = √

2, and 1/τ = 0.1. Temperatures
are, from top to bottom, β−1 = 0, β−1 = 0.5, β−1 = 1, and β−1 = 5.

FIG. 7. (Color online) Cumulative work distribution (13) for
two bosons (blue dotted line), fermions (black dashed line), and
distinguishable particles (red solid line) in a quenched harmonic
potential (14) with ω0 = 1, ωτ = √

2, and 1/τ = 100. Temperatures
are, from top to bottom, β−1 = 0, β−1 = 0.5, and β−1 = 1.

with Xt=0 = 0, Ẋt=0 = 1 and Yt=0 = 1, Ẏt=0 = 0. From the
latter the single-particle propagator can be obtained in energy
representation by evaluating

〈f λτ |Û |iλ0〉 =
∫

dx

∫
dx0 ψf (x) Ut (x; x0)ψi(x0) , (17)

where ψν(x), (ν = i,f ) are the instantaneous eigenstates of
the time-dependent Hamiltonian Hs(x,t) (14). The result is
a rather lengthy expression [42], which we summarize in
Appendix A.

In Figs. 6–9 we plot the cumulative work distribution (13)
for the linear quench,

ω2
t = ω2

0 + (
ω2

τ − ω2
0

)
t/τ . (18)
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FIG. 8. (Color online) Cumulative work distribution (13) for
three bosons (blue dotted line), fermions (black dashed line), and
distinguishable particles (red solid line) in a quenched harmonic
potential (14) with ω0 = 1, ωτ = √

2, and 1/τ = 0.1. Temperatures
are, from top to bottom, β−1 = 0 and β−1 = 0.5.

Generally, the same features as those in the case of the
1D piston system can be observed: In the limit of low
temperature, the work distribution functions for bosons and
fermions differ significantly, while for high temperatures the
three distributions converge. Also, one may notice that in the
1D piston system the cumulative work as contributions in
both negative and positive values [see, e.g., Figs. 2 and 3].
The negative (positive) value of work corresponds to the
“trajectory” of jumping from a higher (lower) energy state
to a lower (higher) energy state. In the harmonic oscillator,
we also see that the cumulative work has a tiny tail for the
negative value (see third line of Fig. 7), but it is much less
prominent than those in the piston system. This is due to
the present choice of the quench protocol (see also Fig. 3 of
Ref. [42]). One can expect that if we properly choose the initial
temperature and the quench speed, the tail for negative values
will become more prominent (see Figs. 1 and 2 of Ref. [42]).

An interesting feature to note is that the interference seems
to play much less of a role for the harmonic oscillator than for
the piston. In particular, the work distributions for bosons,
fermions, and distinguishable particles start converging at
much lower temperatures. This can be understood by noticing
that the energy levels of the harmonic oscillator are much
denser than the ones of the square-well potential. Thus,
interference effects are “smeared out” already at finite but
low temperatures.

FIG. 9. (Color online) Cumulative work distribution (13) for
three bosons (blue dotted line), fermions (black dashed line), and
distinguishable particles (red solid line) in a quenched harmonic
potential (14) with ω0 = 1, ωτ = √

2, and 1/τ = 100. Temperatures
are, from top to bottom, β−1 = 0 and β−1 = 0.5.

III. QUANTUM WORK AT HIGH TEMPERATURE

At low temperatures the thermal distributions for bosons
and for fermions significantly differ. This is due to “static
interference” expressed by the fact that the many-particle
eigenstates can be expressed in terms of a determinant
(for fermions) and a permanent (for bosons) in the second
quantization formalism [83]. Note that the Pauli exclusion
principle states that two identical fermions cannot occupy
the same single-particle state, while for bosons there is no
such a constraint. At high temperatures, however, the thermal
states for bosons and for fermions become indistinguishable,
which can be interpreted as a consequence of the static
“correspondence principle” in quantum statistical sense for
β → 0.

As we discussed in Sec. II the transition probabili-
ties between many-particle eigenstates for bosons and for
fermions (6) can also be expressed in terms of determinants
(for fermions) and permanents (for bosons) [51,66,67]. This
effect can be interpreted as a “dynamic effect” of interference,
which is independent of the initial temperature. It is thus
neither obvious nor ad hoc clear whether the work distribution
functions for many bosons will converge towards that of many
fermions at high temperatures.

In the previous section, we discussed the numerical results
for the quantum work distribution in two simple model
systems. Our numerical results strongly suggest that at high
temperatures the work distribution functions for both bosons
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and fermions do converge to that of distinguishable particles.
In the following, we propose semiheuristic arguments to show
that this numerical evidence holds true for arbitrary potentials.
To this end, we will make use of the representation of the work
distribution in terms of its characteristic function [29].

The characteristic function of the work distribution for
a many-boson system GB(μ) and a many-fermion system
GF (μ) can be expressed as [29]

GB/F (μ) = trHλ0
B/F

{
Dλ0

B/F exp
(
iμH

λτ

H

)
exp (−iμHλ0 )

}
,

(19)

where

Dλ0
B/F = exp (−βHλ0 )

Z
λ0
B/F

(20)

is the initial thermal equilibrium distribution with the partition
function

Z
λ0
B/F = trHλ0

B/F
{exp (−βHλ0 )} . (21)

Furthermore, Hλ0
B/F describes the Hilbert space of the many-

boson or -fermion system with the work parameter equal to λ0;
H

λτ

H describes the Hamiltonian of the many-particle system
in Heisenberg picture with the work parameter equal to λτ ,
and Hλ0 is the Hamiltonian of the many-particle system in
Schrödinger picture with the work parameter equal to λ0.

After a straightforward calculation the characteristic func-
tion of the work distribution for a system consisting of many
bosons or many fermions can be expressed as the characteristic
functions of a single-particle system (see Appendix B) [84],

GB/F (μ) =
∑

(1ν1 ,2ν2 ,...,NνN )
N!

1ν1 2ν2 ···NνN ν1!ν2!···νN !

∏N
k=1

[ ± trHλ0
s

{[
Gλ0 (μ) exp

( − βHλ0
s

)]k}]νk∑
(1ν1 ,2ν2 ,...,NνN )

N!
1ν1 2ν2 ···NνN ν1!ν2!···νN !

∏N
k=1

[ ± trHλ0
s

{
exp

( − kβH
λ0
s

)}]νk
. (22)

Here

Gλ0 (μ) = exp
(
iμH

λτ

H,s

)
exp

( − iμHλ0
s

)
, (23)

and H
λτ

H,s represents the Hamiltonian for a single particle in Heisenberg’s picture; analogously, Hλ0
s is the Hamiltonian for a

single particle in Schrödinger’s picture; Hλ0
s denotes the Hilbert space of a single-particle system when the work parameter is

equal to λ0; (1ν1 ,2ν2 , . . . ,NνN ) describes a cycle notation, which corresponds uniquely to a permutation [84] (kνk means that there
are νk k-cycles, νk � 0, and

∑N
k=1 k × νk = N . The definition of k-cycles can be found in Sec. 1.1 of Ref. [84]).

Equation (22) constitutes one of our main results. It is further tested and verified for the ideal quantum gas in Appendix C.
For convenience, we rewrite Eq. (22) in the following form as a weighted average of some characteristic functionlike terms:

GB/F (μ) =
∑

(1ν1 ,2ν2 ,...,NνN ) M
B/F

(1ν1 ,2ν2 ,...,NνN )R(1ν1 ,2ν2 ,...,NνN )(β)G(1ν1 ,2ν2 ,...,NνN )(μ)∑
(1ν1 ,2ν2 ,...,NνN ) M

B/F

(1ν1 ,2ν2 ,...,NνN )R(1ν1 ,2ν2 ,...,NνN )(β)
, (24)

where MB/F

(1ν1 ,2ν2 ,··· ,NνN ) are temperature-independent values
(see Appendix B for details) and

R(1ν1 ,2ν2 ,...,NνN )(β) =
∏N

k=1

[
trHλ0

s

{
exp

( − kβHλ0
s

)}]νk

[
trHλ0

s

{
exp

( − βH
λ0
s

)}]N
,

(25)

G(1ν1 ,2ν2 ,...,NνN )(μ)

=
N∏

k=1

⎡
⎣ trHλ0

s

{[
Gλ0 (μ) exp

( − βHλ0
s

)]k}
trHλ0

s

{
exp

( − kβH
λ0
s

)}
⎤
⎦

νk

. (26)

In the high-temperature limit, the dominant contribution in
both the numerator and the denominator of GB/F (μ) [see
Eq. (24)] stems from the trivial identity permutation, which
is (1N,20, . . . ,N0) in cycle notation. If we keep only the
leading term in both the denominator and the numerator,
the characteristic function (24) can be simplified to read (for
details see Appendix D)

GB/F (μ) ≈
[

trHλ0
s

{
Gλ0 (μ) exp

( − βHλ0
s

)}
trHλ0

s

{
exp

( − βH
λ0
s

)}
]N

. (27)

The latter expression is exactly the characteristic function
of the work distribution for distinguishable particles. Thus,
we have demonstrated that, in the high-temperature limit, the
characteristic function of work distribution functions for both
bosons and fermions converge towards that of distinguishable
particles and hence to each other. Since there is a one-to-one
map between the work distribution and its corresponding
characteristic function [29], we conclude that in the high-
temperature limit, the work distributions for bosons and
fermions converge.

This conclusion can be understood intuitively: First, in
the limit of high temperatures, for most of the many-particle
eigenstates, usually a single-particle state is occupied by at
most one particle, and the occupations of bosons, fermions, and
distinguishable particles in the single-particle states become
similar. Accordingly, the distributions of the multiparticle
eigenenergies (1) for three kinds of particles become similar.
This is the so-called “static” correspondence principle in the
quantum statistical sense. Second, for a given finite-speed
work protocol, if the average velocity of the particles in a
high-lying multiparticle eigenstate is much higher than the
speed of varying the parameter, the process can be roughly
regarded as a “quasistatic” process. In the thermal state
of infinite temperature, all energy eigenstates have equal
probability. That means for a given finite-speed protocol, for
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most of the initial eigenstates (sampled from the thermal state
at the infinite temperature), the processes can be regarded
as quasistatic processes. Third, if the dynamic process is a
quasistatic process, the work value usually can be assumed to
be proportional to the initial eigenenergy [at least it is true for
the 1D piston and the 1D harmonic oscillator (30)], and thus
the work distributions will share the same properties as the
distributions of the multiparticle eigenenergies (1). Based on
these observations, one can infer that for an arbitrary finite-
speed protocol and in the limit of infinite temperature the work
distribution functions for three kinds of particles converge.

It is worth emphasizing that this result does not depend on
the specifics of the model and, hence, holds for any system of
many noninteracting, identical particles.

IV. DISCUSSION AND CONCLUSION

In this paper we have studied the effect of indistinguishabil-
ity (quantum interference of identical, noninteracting particles)
on the quantum work distribution. We have found that the work
distribution can be computed from the time evolution matrix
for single particles. Then the transition amplitudes between
multiparticle states are given by the Slater determinant (for
fermions) or the permanent (for bosons).

A. Determinants and permanents

Generally, the computation of the permanent of a ma-
trix is much more involved than the computation of the
determinant—despite the apparent similarity of the defi-
nitions [51]: In particular, the determinant obeys several
algebraic rules and symmetries, e.g., the product rule det AB =
det A det B and the invariance under unitary transformation,
which allow the determinant to be evaluated in polynomial
time. For a N × N matrix, for example, the elementary

Gaussian algorithm needs O(N3) operations [51]. Although
the permanent has a similar structure the omission of the
alternating sign makes all the difference, and all known
strategies for an efficient evaluation of the determinant fail
for the permanent. In general, a permanent can only be
computed in exponential time, even when applying Ryser’s
algorithm [51]—the most efficient algorithm known to date.
Therefore, the development of both exact and approximate
algorithms for computing the permanent of a matrix is an
active area of research.

For our problem this means that the computation of the work
density for fermions is much more feasible than for bosons.
The exponential increase of the complexity of computing the
permanent limits the study of the work distribution to at most
25 bosons [51].

This restriction might be lifted by a novel development in
the field of quantum information known as boson sampling—a
shortcut to quantum computing [85]. In this technique the
bosonic distribution is obtained from interfering photons in
a random optical network. However, practical applications of
boson sampling are still under active research [86].

B. Quasistatic limit

Our expression for the characteristic function (22) is valid
for both quasistatic and nonquasistatic processes. To the best
of our knowledge, previous studies have been restricted to clas-
sical distinguishable particles [61], quasistatic changes [55],
and the infinite piston system [62].

For the sake of completeness we, thus, briefly show how
the expression for quasistatic processes [55] can be obtained
from our general formula (22). For very slow driving one can
assume that the energy levels remain almost constant. Thus
the characteristic function for bosons or fermions, GB/F (μ),
can be written as

GB/F (μ) =
∑

(1ν1 ,2ν2 ,...,NνN )
N!

1ν1 2ν2 ···NνN ν1!ν2!···νN !

∏N
k=1

[ ± ∑∞
i=1 exp

(
ikμE

λτ

i

)
exp

( − k(iμ + β)Eλ0
i

)]νk∑
(1ν1 ,2ν2 ,...,NνN )

N!
1ν1 2ν2 ···NνN ν1!ν2!···νN !

∏N
k=1

[ ± ∑∞
i=1 exp

( − kβE
λ0
i

)]νk
, (28)

and, analogously for distinguishable particles,

G(μ) =
[∑∞

i=1 exp
(
iμE

λτ

i

)
exp

( − (iμ + β)Eλ0
i

)
∑∞

i=1 exp
( − βE

λ0
i

)
]N

. (29)

We further assume the quasistatic work to be proportional to
the initial eigenenergies,

W = E
λτ

i − E
λ0
i = α E

λ0
i , ∀i, (30)

which is justified, for instance, for a particle in a 1D piston or
in a 1D harmonic potential. For this kind of system we also
can assume that each eigenenergy can be written as a power
of the quantum number, and we have

E
λ0
i = E0 × ip . (31)

Under these assumptions the numerator of the character-
istic function for a single particle can be approximately

expressed as

∞∑
i=1

exp
(
iμαE

λ0
i

)
exp

( − βE
λ0
i

)

≈
∫ ∞

−∞
dW

exp (−βW/α) exp (iμW )

p|W |
(

W

αE0

)1/p

�(αW ),

(32)

where �(·) is the Heaviside step function.
Specifically, if the system is a particle in a 1D piston, the

quasistatic work distribution becomes

Ps(W ) =
exp (−βW/α)

2|W |
(

W
αE0

)1/2
�(αW )∫ ∞

−∞ dW
exp (−βW/α)

2|W |
(

W
αE0

)1/2
�(αW )

= β

|α|�(1/2)

(
βW

α

) 1
2 −1

exp (−βW/α) �(αW ). (33)
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For N distinguishable particles, the work distribution function
can be obtained by replacing the 1/2 with N/2 and, due to the
additivity of the Gamma distribution, we obtain

P(W ) = β

|α|�(N/2)

(
βW

α

) N
2 −1

exp (−βW/α) �(αW ).

(34)

The latter result coincides with the expression for quasistat-
ically compressing (or expanding) N -particle gas inside a
piston, which was previously derived in Ref. [55].

The discussion of the convergence in Sec. III can be gen-
eralized to the high-temperature limit for any given protocol.
In particular, in the high-temperature limit, for an arbitrary
finite-speed protocol, most initial preparations of the system
will undergo approximately quasistatic evolution, which can
be recognized as a special realization of the quasistatic limit.

C. Fluctuation theorems

We have seen in the above discussion that quantum
interference effects the structure of the work distribution. It
is worth emphasizing, however, that the quantum Jarzynski
equality [2,33] and the quantum Crooks fluctuation theo-
rem [5,33,87] remain valid as the validity of these two
nonequilibrium work relations does not depend on the details
of the model or the quench protocol, cf. Appendix C. Also
note that even if the initial N -particle states occupy many
different single-particle states (as is allowed for both bosons
and fermions) the average work will be identical, and only
the distribution differs. This is due to the particles being
noninteracting but interfering [51].

D. Concluding remarks

In summary, we have studied the interference of identical
particles and its influence on the quantum work distribution
function in nonequilibrium processes. To this end, we have
applied the results for the transition amplitudes between
many-particle eigenstates [51]. At low temperatures, the work
distributions for bosons and for fermions significantly differ
due to the interference of identical particles, and the larger the
particle number, the more prominent is the distinction between
the work distributions for bosons and for fermions. In principle,
the work distribution function for many bosons or many
fermions can be evaluated as long as the transition amplitudes
between single-particle eigenstates can be calculated. In
practice, however, the work distribution function for bosons
is computationally much more involved than fermions due
to the complexity of the computation of the permanent of a
matrix.

As a case study we have numerically calculated the work
distribution function for two and three identical particles in the
1D piston and 1D harmonic potential and have demonstrated
our theoretical findings.

In the limit of high temperature, the work distribution
functions for bosons and fermions converge, and we have
given a heuristic analysis for this observation by utilizing
the representation theory of the symmetric group as well as
a qualitative argument based on the static “correspondence
principle” and the quantum adiabaticity. Therefore, our study

suggests a dynamic “correspondence principle” of work
distribution functions in the quantum statistical sense.
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APPENDIX A: SINGLE-PARTICLE TRANSITION MATRIX
FOR THE HARMONIC OSCILLATOR

The parametric harmonic oscillator with Hamiltonian (14)
has been extensively studied in the literature. For the sake
of completeness we summarize in this appendix several
expressions that were used to compute the plots in Fig. 6–9,
and we also correct a minor typographical error that appeared
in a previous publication [42].

The single-particle transition matrix has been derived in
Ref. [42],

Uτ
m,n = 4

√
ω0ωτ

√
n! m! ζ nζ ∗m

2n+m−1iσ n+m+1

×
min (m,n)∑

l=0

[−2i
√

2/(Q∗ − 1)]l

l! [(n − l)/2]! [(m − l)/2]!
. (A1)

According to the selection rule m = n ± 2k, l runs over even
numbers only if m, n are even and over odd numbers only if
m, n are odd.

The explicit expression for the matrix elements Uτ
m,n then

reads, for even elements,

Uτ
2μ,2ν =

√
2ν!2μ!

22ν+2μ−1i

√
ζ 2νζ ∗2μ

σ 2ν+2μ+1

4
√

ω0ωτ

�(μ + 1) �(ν + 1)

×2F1

(
− μ, − ν;

1

2
;

2

1 − Q∗

)
(A2)

and, for odd elements,

Uτ
2μ+1,2ν+1 = −

√
8i (2ν + 1)!(2μ + 1)!

(Q∗ − 1) 22ν+2μ+1

√
ζ 2ν+1ζ ∗2μ+1

σ 2ν+2μ+1

×
4
√

ω0ωτ

�(μ + 1) �(ν + 1)

×2F1

(
− μ, − ν;

3

2
;

2

1 − Q∗

)
. (A3)

We have here introduced the hypergeometric function 2F1 [88]
in order to simplify the sums and write the matrix elements
Uτ

m,n in closed form. �(x) denotes the Gamma function.
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We further introduced the complex parameters,

ζ = ωτω0Xτ − ω0iẊτ + ωτ iYτ + Ẏτ

(A4)
|ζ |2 = 2ω0ωτ (Q∗ − 1),

σ = ωτω0Xτ − ω0iẊτ − ωτ iYτ − Ẏτ

(A5)
|σ |2 = 2ω0ωτ (Q∗ + 1),

with

Q∗ = 1

2ω0ωτ

[
ω2

0

(
ω2

τX
2
τ + Ẋ2

τ

)(
ω2

τ Y
2
τ + Ẏ 2

τ

)]
(A6)

and where Xt and Yt are solutions of the classical, force-free
equation of motion,

ξ̈t + ω2
t ξt = 0, (A7)

with Xt=0 = 0, Ẋt=0 = 1 and Yt=0 = 1, Ẏt=0 = 0.

APPENDIX B: DERIVATION OF THE CHARACTERISTIC
FUNCTION OF WORK DISTRIBUTION FUNCTIONS (22)

The characteristic function of the work distribution can be
obtained by using the representation theory of the symmetric
group (see Sec. 4.4 of Ref. [84]).

From Eq. (19) it follows that the characteristic function for
a many-particle system can be expressed as

GB/F (μ)

=
trHλ0

B/F

{
exp

(
iμH

λτ

H

)
exp (−iμHλ0 ) exp (−βHλ0 )

}
trHλ0

B/F
{exp (−βHλ0 )} .

(B1)

Using the representation theory of the symmetric group, we
further have

GB/F (μ) =
1

N!

∑
P∈SN

(±)p(P)trHλ0

{
exp

(
iμH

λτ

H

)
exp (−iμHλ0 ) exp (−βHλ0 )P

}
1

N!

∑
P∈SN

(±)p(P)trHλ0 {exp (−βHλ0 )P}

=
∑

(1ν1 ,2ν2 ,...,NνN ) M
B/F

(1ν1 ,2ν2 ,...,NνN )

∏N
k=1

[
trHλ0

s

{[
Gλ0 (μ) exp

( − βHλ0
s

)]k}]νk

∑
(1ν1 ,2ν2 ,...,NνN ) M

B/F

(1ν1 ,2ν2 ,...,NνN )

∏N
k=1

[
trHλ0

s

{
exp

( − kβH
λ0
s

)}]νk
, (B2)

where the equality sign holds only for noninteracting many-
particle systems, and SN is a group composed of all per-
mutation operators on Hλ0 = Hλ0

s ⊗ Hλ0
s ⊗ · · · ⊗ Hλ0

s . The
elements of the group are denoted by P , and p(P) is the
transposition number of P; MB/F

(1ν1 ,2ν2 ,··· ,NνN ) is the number of
permutations belonging to (1ν1 ,2ν2 , · · · ,NνN ) type, which has
been studied in combinational mathematics and satisfies

MF
(1ν1 ,2ν2 ,...,NνN ) = (−)p(P)MB

(1ν1 ,2ν2 ,...,NνN )

= (−)N−∑N
k=1 νkMB

(1ν1 ,2ν2 ,...,NνN ) (B3)

and

MB
(1ν1 ,2ν2 ,...,NνN ) = N !

1ν1 2ν2 · · ·NνN ν1!ν2! · · · νN !
. (B4)

Substituting Eqs. (B3) and (B4) into Eq. (B2) we finally obtain
the characteristic function (22).

Before concluding this section, we would like to point out
that the relation

trHλ0
B/F

(Â) = 1

N !

∑
P∈SN

(±)p(P)trHλ0 (ÂP) (B5)

holds true even when the particles are interacting. Here Â is
an operator of multiparticle system.

APPENDIX C: DERIVATION OF THE EQUATION OF
STATE OF THE IDEAL QUANTUM GAS FROM THE

CHARACTERISTIC FUNCTION (22)

In this Appendix we derive the equation of state of the
ideal quantum gas inside a piston from the characteristic

function (22). This derivation is used as a self-consistent check
to support the validity of Eq. (22). For a 1D piston system we
define αF = λ2

0/λ
2
τ − 1 and αR = λ2

τ /λ
2
0 − 1 as the ratio of

the work over the initial eigenenergy of the system for the
forward (λ0 → λτ ) and the reverse (λτ → λ0) process. By
making use of Eqs. (28) and following the procedure from
Eq. (29) to Eq. (34) we can obtain the work distribution for
bosons or fermions undergoing the quasistatic process, and it
can be checked that the work distribution function satisfies the
Crooks fluctuation theorem [4,5],

PF
B/F (W ) =

∑
(1ν1 ,2ν2 ,...,NνN )

N!∏N
k=1 k3νk/2

∏N
k=1 νk!

[ ± λτ

λT

]∑N
k=1 νk

∑
(1ν1 ,2ν2 ,...,NνN )

N!∏N
k=1 k3νk/2

∏N
k=1 νk!

[ ± λ0
λT

]∑N
k=1 νk

×PR
B/F (−W ) exp (βW ), (C1)

where λT is the thermal wavelength,

λT =
√

2πβ�2

M
. (C2)

From Eq. (C1) we obtain the difference of the free energy
(the Jarzynski equality [2]) of the quantum gas by utilizing the
Crooks fluctuation theorem [4],

exp (−β�FB/F )

=
∑

(1ν1 ,2ν2 ,...,NνN )
N!∏N

k=1 k3νk/2
∏N

k=1 νk!

[ ± λτ

λT

]∑N
k=1 νk

∑
(1ν1 ,2ν2 ,...,NνN )

N!∏N
k=1 k3νk/2

∏N
k=1 νk!

[ ± λ0
λT

]∑N
k=1 νk

. (C3)

Since λT is very small in the limit of high temperature
β → 0, the second leading term should come from the
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(1N−2,21, . . . ,N0)-type permutation, thus exp (−β�F ) can be
approximated as

exp (−β�FB/F ) ≈ λN
τ ± N(N−1)

23/2 λN−1
τ λT

λN
0 ± N(N−1)

23/2 λN−1
0 λT

. (C4)

Now we fix λ0 and replace λτ with λ. When the system is
in the thermodynamic limit, the free-energy difference can be
evaluated with the Bernoulli approximation,

�FB/F (T ,λ) ≈ −β−1N ln

[
λ
(
1 ± 1

23/2 mλT

)
λ0

(
1 ± 1

23/2 m0λT

)]
, (C5)

where m = N/λ (m0 = N/λ0) is the particle density. In the
following we calculate the pressure of this system by utilizing
the thermodynamic relation p = −(∂F/∂λ)T ,

pB/F = −
(

∂�FB/F

∂λ

)
T

≈ Nβ−1

λ ± NλT /23/2
≈ mβ−1

(
1 ∓ mλT

23/2

)
. (C6)

For a d-dimensional system, the equation of state of the
quantum gas inside a piston can be obtained in a similar way,

pB/F ≈ mβ−1

(
1 ∓ mλd

T

21+d/2

)
. (C7)

This equation of state (C7) agrees with the result derived from
the grand-canonical ensemble formulation [89]. The derivation
of the equation of state of ideal quantum gases is evidence
supporting the validity of the characteristic function of the
work distribution function (22). In fact, we have also checked
that the first three virial coefficients of the quantum gas are
exactly the same as those obtained from the grand-canonical
ensemble formulation in the thermodynamic limit, which
further convinces us the validity of Eq. (22).

APPENDIX D: HEURISTIC ANALYSIS OF THE
CONVERGENCE OF EQ. (24) TO EQ. (27) IN THE

HIGH-TEMPERATURE LIMIT

First, we write the expression of R(1ν1 ,2ν2 ,...,NνN )(β),

R(1ν1 ,2ν2 ,...,NνN )(β)

=
∏N

k=1

[
trHλ0

s

{
exp

( − kβHλ0
s

)}]νk

[
trHλ0

s

{
exp

( − βH
λ0
s

)}]N
. (D1)

A special case for Eq. (D1) is R(1N ,20,...,N0)(β) = 1. Also, we
know that

N∑
k=1

k × νk = N. (D2)

As long as the Hamiltonian has a minimum eigenvalue
E0 (ground-state energy), we can introduce a non-negative
definite Hamiltonian H̃ λ0

s = Hλ0
s − E0. By using Eq. (D2),

Eq. (D1) can be written as

R(1ν1 ,2ν2 ,...,NνN )(β)

=
∏N

k=1

[
trHλ0

s

{
exp

( − kβH̃ λ0
s

)}]νk

[
trHλ0

s

{
exp

( − βH̃
λ0
s

)}]N
. (D3)

For any permutation (1ν1 ,2ν2 , . . . ,NνN ) �= (1N,20, . . . ,N0),
from Eq. (D2) we can easily get

∑N
k=1 νk < N . Since all

eigenvalues of H̃ λ0
s are non-negative we also have

0 < trHλ0
s

{
exp

( − kβH̃ λ0
s

)}
� trHλ0

s

{
exp

( − βH̃ λ0
s

)}
. (D4)

Combining these facts, for any permutation
(1ν1 ,2ν2 , . . . ,NνN ) �= (1N,20, . . . ,N0), we have

0 < R(1ν1 ,2ν2 ,...,NνN )(β)

�
[
trHλ0

s

{
exp

( − βH̃ λ0
s

)}]∑N
k=1 νk−N

�
[
trHλ0

s

{
exp

( − βH̃ λ0
s

)}]−1
. (D5)

As long as the system contains infinitely many energy
levels, [trHλ0

s
{exp (−βH̃ λ0

s )}]−1 will approach zero in the
high-temperature limit (β → 0). Recalling the fact that
R(1N ,20,...,N0)(β) = 1, we finally prove that

lim
β→0

R(1ν1 ,2ν2 ,...,NνN )(β) = δν1,N . (D6)

in addition we can prove that R(1ν1 ,2ν2 ,...,NνN )(β) is a mono-
tonically nondecreasing function with respect to β by directly
analyzing the sign of d ln R(1ν1 ,2ν2 ,...,NνN )(β)/dβ

d

dβ
ln R(1ν1 ,2ν2 ,...,NνN )(β)

= N〈E(β−1,λ0)〉 −
N∑

k=1

kνk〈E(k−1β−1,λ0)〉. (D7)

Here

〈E(β−1,λ0)〉 ≡
trHλ0

s

{
Hλ0

s exp
( − βHλ0

s

)}
trHλ0

s

{
exp

( − βH
λ0
s

)} . (D8)

From Eq. (D2) and the fact that 〈E(β−1,λ0)〉 must be a
nondecreasing function of T , we conclude that the right-hand
side of Eq. (D7) is non-negative.

So far we have shown that in the high-temperature
limit the only nonvanishing term in Eq. (24) is the
term containing R(1N ,20,...,N0)(β). We can further prove
that |G(1ν1 ,2ν2 ,...,NνN )(μ)| � 1, which is equivalent to |λk

1 +
λk

2 + λk
3 + · · · | � |λ1|k + |λ2|k + |λ3|k + · · · (|λi | � 1 and∑∞

i=1 |λi | � ∞) in the representation of the operator
Gλ0 (μ) exp (−βH̃ λ0

s ), with {λi} being the complete set of
eigenvalues. It seems that we prove the convergence of Eq. (24)
to Eq. (27) since the dominant term in the numerator in the
high-temperature limit is the term containing G(1N ,20,...,N0)(μ).
There is, however, one problem in the above derivation. In
the high-temperature limit, G(1ν1 ,2ν2 ,...,NνN )(μ) is probably zero
for any nonzero value of μ, from which we can extract
no information, despite the fact that we know the conver-
gence relation in the sense of absolute value. For example,
in the limit β → 0, the function g(μ) = (1 + αμ/β)−1/2

is trivially zero for any nonzero μ. Thus, we suggest to
use G̃(1ν1 ,2ν2 ,...,NνN )(x) ≡ G(1ν1 ,2ν2 ,...,NνN )(βx) as a function to
demonstrate the convergence of work distributions of three
kinds of particles, because it is probably nonvanishing for
almost any value of x in the high-temperature limit, and this
is the reason why we proportionally enlarge the range of the
horizontal axis in all the diagrams as the temperature increases.

062121-13



ZONGPING GONG, SEBASTIAN DEFFNER, AND H. T. QUAN PHYSICAL REVIEW E 90, 062121 (2014)

[1] C. Jarzynski, Annu. Rev. Cond. Matt. Phys. 2, 329 (2011).
[2] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[3] C. Jarzynski, Phys. Rev. E 56, 5018 (1997).
[4] G. E. Crooks, J. Stat. Phys. 90, 1481 (1998).
[5] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
[6] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. Lett.

71, 2401 (1993).
[7] D. J. Evans and D. J. Searles, Phys. Rev. E 50, 1645 (1994).
[8] G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694

(1995).
[9] G. Gallavotti and E. G. D. Cohen, J. Stat. Phys. 80, 931 (1995).

[10] J. Kurchan, J. Phys. A: Math. Gen. 31, 3719 (1998).
[11] J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333 (1999).
[12] G. Hummer and A. Szabo, Proc. Roy. Acad. Sci. 98, 3658 (2001).
[13] T. Hatano and S. I. Sasa, Phys. Rev. Lett. 86, 3463 (2001).
[14] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[15] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[16] G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, and D. J.

Evans, Phys. Rev. Lett. 89, 050601 (2002).
[17] J. Liphardt, S. Dumont, S. P. Smith, I. Tinoco, Jr, and C.

Bustamante, Science 296, 1832 (2002).
[18] D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco, Jr, and

C. Bustamante, Nature 437, 231 (2005).
[19] C. Bustamante, J. Liphardt, and F. Ritort, Phys. Today 58, 43

(2005).
[20] F. Douarche, S. Ciliberto, and A. Petrosyan, J. Stat. Mech.:

Theory Exp. (2005) P09011.
[21] F. Douarche, S. Ciliberto, A. Petrosyan, and I. Rabbiosi,

Europhys. Lett. 70, 593 (2005).
[22] V. Blickle, T. Speck, L. Helden, U. Seifert, and C. Bechinger,

Phys. Rev. Lett. 96, 070603 (2006).
[23] F. Douarche, S. Joubaud, N. B. Garnier, A. Petrosyan, and S.

Ciliberto, Phys. Rev. Lett. 97, 140603 (2006).
[24] O. P. Saira, Y. Yoon, T. Tanttu, M. Mottonen, D. V. Averin, and

J. P. Pekola, Phys. Rev. Lett. 109, 180601 (2012).
[25] S. Ciliberto, R. Gomez-Solano, and A. Petrosyan, Annu. Rev.

Cond. Matt. Phys. 4, 235 (2013).
[26] H. Tasaki, arXiv:cond-mat/0009244v2.
[27] J. Kurchan, arXiv:cond-mat/0007360v2.
[28] S. Mukamel, Phys. Rev. Lett. 90, 170604 (2003).
[29] P. Talkner, E. Lutz, and P. Hänggi, Phys. Rev. E 75, 050102(R)

(2007).
[30] G. Huber, F. Schmidt-Kaler, S. Deffner, and E. Lutz, Phys. Rev.

Lett. 101, 070403 (2008).
[31] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81,

1665 (2009).
[32] M. Campisi, P. Talkner, and P. Hänggi, Phys. Rev. Lett. 102,

210401 (2009).
[33] M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys. 83, 771

(2011).
[34] S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z. Q. Yin,

H. T. Quan, and K. Kim, arXiv:1409.4885 (2014).
[35] R. Dorner, S. R. Clark, L. Heaney, R. Fazio, J. Goold, and V.

Vedral, Phys. Rev. Lett. 110, 230601 (2013).
[36] L. Mazzola, G. De Chiara, and M. Paternostro, Phys. Rev. Lett.

110, 230602 (2013).
[37] T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S.

Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro,
and R. M. Serra, Phys. Rev. Lett. 113, 140601 (2014).

[38] O. Mazonka and C. Jarzynski, arXiv:cond-mat/9912121.

[39] P. Talkner, P. S. Burada, and P. Hänggi, Phys. Rev. E 78, 011115
(2008).

[40] S. Deffner and E. Lutz, Phys. Rev. E 77, 021128 (2008).
[41] R. van Zon, L. Hernández de la Peña, G. H. Peslherbe, and J.

Schofield, Phys. Rev. E 78, 041104 (2008).
[42] S. Deffner, O. Abah, and E. Lutz, Chem. Phys. 375, 200 (2010).
[43] A. del Campo, J. Goold, and M. Paternostro, Sci. Rep. 4, 6208

(2014).
[44] H. T. Quan and C. Jarzynski, Phys. Rev. E 85, 031102 (2012).
[45] H. T. Quan, S. Yang, and C. P. Sun, Phys. Rev. E 78, 021116

(2008).
[46] A. Leonard and S. Deffner, Chem. Phys 446, 18 (2015).
[47] S. W. Kim, T. Sagawa, S. De Liberato, and M. Ueda, Phys. Rev.

Lett. 106, 070401 (2011).
[48] J. Yi, P. Talkner, and M. Campisi, Phys. Rev. E 84, 011138

(2011).
[49] J. Yi and P. Talkner, Phys. Rev. E 83, 041119 (2011).
[50] J. Yi, Y. W. Kim, and P. Talkner, Phys. Rev. E 85, 051107 (2012).
[51] M. C. Tichy, J. Phys. B: At. Mol. Opt. Phys. 47, 103001 (2014).
[52] J. Urbina, J. Kuipers, Q. Hummel, and K. Richter,

arXiv:1409.1558.
[53] S. Deffner and E. Lutz, Phys. Rev. Lett. 105, 170402 (2010).
[54] S. Deffner and E. Lutz, Phys. Rev. E 87, 022143 (2013).
[55] G. E. Crooks and C. Jarzynski, Phys. Rev. E 75, 021116 (2007).
[56] C. Jarzynski, H. T. Quan, and S. Rahav (unpublished).
[57] S. Deffner, M. Brunner, and E. Lutz, Europhys. Lett. 94, 30001

(2011).
[58] S. Deffner, Europhys. Lett. 103, 30001 (2013).
[59] K. Nakamura, S. K. Avazbaev, Z. A. Sobirov, D. U. Matrasulov,

and T. Monnai, Phys. Rev. E 83, 041133 (2011).
[60] K. Nakamura, Z. A. Sobirov, D. U. Matrasulov, and S. K.

Avazbaev, Phys. Rev. E 86, 061128 (2012).
[61] R. C. Lua and A. Y. Grosberg, J. Phys. Chem. B 109, 6805

(2005).
[62] I. Bena, C. Van Den Broeck, and R. Kawai, Europhys. Lett. 71,

879 (2005).
[63] A. Silva, Phys. Rev. Lett. 101, 120603 (2008).
[64] P. Smacchia and A. Silva, Phys. Rev. E 88, 042109 (2013).
[65] L. Fusco, S. Pigeon, T. J. G. Apollaro, A. Xuereb, L. Mazzola,

M. Campisi, A. Ferraro, M. Paternostro, and G. De Chiara, Phys.
Rev. X 4, 031029 (2014).

[66] S. Scheel, arXiv:quant-ph/0406127.
[67] M. C. Tichy, M. Tiersch, F. Mintert, and A. Buchleitner, New J.

Phys. 14, 093015 (2012).
[68] D. Kafri and S. Deffner, Phys. Rev. A 86, 044302 (2012).
[69] S. W. Doescher and M. H. Rice, Am. J. Phys. 37, 1246 (1969).
[70] K. Husimi, Prog. Theor. Phys. 9, 381 (1953).
[71] A. del Campo and M. G. Boshier, Sci. Rep. 2, 648 (2012).
[72] J. M. Cervero and J. D. Lejarrete, Europhys. Lett. 45, 6

(1999).
[73] J. He, J. Chen, and B. Hua, Phys. Rev. E 65, 036145 (2002).
[74] B. Lin and J. Chen, Phys. Rev. E 67, 046105 (2003).
[75] H. T. Quan, Y.-X. Liu, C. P. Sun, and F. Nori, Phys. Rev. E 76,

031105 (2007).
[76] H. T. Quan, Phys. Rev. E 79, 041129 (2009).
[77] H. Wang, S. Liu, and J. He, Phys. Rev. E 79, 041113 (2009).
[78] J. Wang, J. He, and X. He, Phys. Rev. E 84, 041127 (2011).
[79] J. Wang, J. He, and Z. Wu, Phys. Rev. E 85, 031145 (2012).
[80] O. Abah, J. Rossnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler,

K. Singer, and E. Lutz, Phys. Rev. Lett. 109, 203006 (2012).

062121-14

http://dx.doi.org/10.1146/annurev-conmatphys-062910-140506
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140506
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140506
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140506
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevE.50.1645
http://dx.doi.org/10.1103/PhysRevE.50.1645
http://dx.doi.org/10.1103/PhysRevE.50.1645
http://dx.doi.org/10.1103/PhysRevE.50.1645
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1007/BF02179860
http://dx.doi.org/10.1007/BF02179860
http://dx.doi.org/10.1007/BF02179860
http://dx.doi.org/10.1007/BF02179860
http://dx.doi.org/10.1088/0305-4470/31/16/003
http://dx.doi.org/10.1088/0305-4470/31/16/003
http://dx.doi.org/10.1088/0305-4470/31/16/003
http://dx.doi.org/10.1088/0305-4470/31/16/003
http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1103/PhysRevLett.89.050601
http://dx.doi.org/10.1103/PhysRevLett.89.050601
http://dx.doi.org/10.1103/PhysRevLett.89.050601
http://dx.doi.org/10.1103/PhysRevLett.89.050601
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1063/1.2012462
http://dx.doi.org/10.1063/1.2012462
http://dx.doi.org/10.1063/1.2012462
http://dx.doi.org/10.1063/1.2012462
http://dx.doi.org/10.1088/1742-5468/2005/09/P09011
http://dx.doi.org/10.1088/1742-5468/2005/09/P09011
http://dx.doi.org/10.1088/1742-5468/2005/09/P09011
http://dx.doi.org/10.1209/epl/i2005-10024-4
http://dx.doi.org/10.1209/epl/i2005-10024-4
http://dx.doi.org/10.1209/epl/i2005-10024-4
http://dx.doi.org/10.1209/epl/i2005-10024-4
http://dx.doi.org/10.1103/PhysRevLett.96.070603
http://dx.doi.org/10.1103/PhysRevLett.96.070603
http://dx.doi.org/10.1103/PhysRevLett.96.070603
http://dx.doi.org/10.1103/PhysRevLett.96.070603
http://dx.doi.org/10.1103/PhysRevLett.97.140603
http://dx.doi.org/10.1103/PhysRevLett.97.140603
http://dx.doi.org/10.1103/PhysRevLett.97.140603
http://dx.doi.org/10.1103/PhysRevLett.97.140603
http://dx.doi.org/10.1103/PhysRevLett.109.180601
http://dx.doi.org/10.1103/PhysRevLett.109.180601
http://dx.doi.org/10.1103/PhysRevLett.109.180601
http://dx.doi.org/10.1103/PhysRevLett.109.180601
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184240
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184240
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184240
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184240
http://arxiv.org/abs/arXiv:cond-mat/0009244
http://arxiv.org/abs/arXiv:cond-mat/0007360
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevLett.101.070403
http://dx.doi.org/10.1103/PhysRevLett.101.070403
http://dx.doi.org/10.1103/PhysRevLett.101.070403
http://dx.doi.org/10.1103/PhysRevLett.101.070403
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/PhysRevLett.102.210401
http://dx.doi.org/10.1103/PhysRevLett.102.210401
http://dx.doi.org/10.1103/PhysRevLett.102.210401
http://dx.doi.org/10.1103/PhysRevLett.102.210401
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://arxiv.org/abs/arXiv:1409.4885
http://dx.doi.org/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.110.230602
http://dx.doi.org/10.1103/PhysRevLett.110.230602
http://dx.doi.org/10.1103/PhysRevLett.110.230602
http://dx.doi.org/10.1103/PhysRevLett.110.230602
http://dx.doi.org/10.1103/PhysRevLett.113.140601
http://dx.doi.org/10.1103/PhysRevLett.113.140601
http://dx.doi.org/10.1103/PhysRevLett.113.140601
http://dx.doi.org/10.1103/PhysRevLett.113.140601
http://arxiv.org/abs/arXiv:cond-mat/9912121
http://dx.doi.org/10.1103/PhysRevE.78.011115
http://dx.doi.org/10.1103/PhysRevE.78.011115
http://dx.doi.org/10.1103/PhysRevE.78.011115
http://dx.doi.org/10.1103/PhysRevE.78.011115
http://dx.doi.org/10.1103/PhysRevE.77.021128
http://dx.doi.org/10.1103/PhysRevE.77.021128
http://dx.doi.org/10.1103/PhysRevE.77.021128
http://dx.doi.org/10.1103/PhysRevE.77.021128
http://dx.doi.org/10.1103/PhysRevE.78.041104
http://dx.doi.org/10.1103/PhysRevE.78.041104
http://dx.doi.org/10.1103/PhysRevE.78.041104
http://dx.doi.org/10.1103/PhysRevE.78.041104
http://dx.doi.org/10.1016/j.chemphys.2010.04.042
http://dx.doi.org/10.1016/j.chemphys.2010.04.042
http://dx.doi.org/10.1016/j.chemphys.2010.04.042
http://dx.doi.org/10.1016/j.chemphys.2010.04.042
http://dx.doi.org/10.1038/srep06208
http://dx.doi.org/10.1038/srep06208
http://dx.doi.org/10.1038/srep06208
http://dx.doi.org/10.1038/srep06208
http://dx.doi.org/10.1103/PhysRevE.85.031102
http://dx.doi.org/10.1103/PhysRevE.85.031102
http://dx.doi.org/10.1103/PhysRevE.85.031102
http://dx.doi.org/10.1103/PhysRevE.85.031102
http://dx.doi.org/10.1103/PhysRevE.78.021116
http://dx.doi.org/10.1103/PhysRevE.78.021116
http://dx.doi.org/10.1103/PhysRevE.78.021116
http://dx.doi.org/10.1103/PhysRevE.78.021116
http://dx.doi.org/10.1016/j.chemphys.2014.10.020
http://dx.doi.org/10.1016/j.chemphys.2014.10.020
http://dx.doi.org/10.1016/j.chemphys.2014.10.020
http://dx.doi.org/10.1016/j.chemphys.2014.10.020
http://dx.doi.org/10.1103/PhysRevLett.106.070401
http://dx.doi.org/10.1103/PhysRevLett.106.070401
http://dx.doi.org/10.1103/PhysRevLett.106.070401
http://dx.doi.org/10.1103/PhysRevLett.106.070401
http://dx.doi.org/10.1103/PhysRevE.84.011138
http://dx.doi.org/10.1103/PhysRevE.84.011138
http://dx.doi.org/10.1103/PhysRevE.84.011138
http://dx.doi.org/10.1103/PhysRevE.84.011138
http://dx.doi.org/10.1103/PhysRevE.83.041119
http://dx.doi.org/10.1103/PhysRevE.83.041119
http://dx.doi.org/10.1103/PhysRevE.83.041119
http://dx.doi.org/10.1103/PhysRevE.83.041119
http://dx.doi.org/10.1103/PhysRevE.85.051107
http://dx.doi.org/10.1103/PhysRevE.85.051107
http://dx.doi.org/10.1103/PhysRevE.85.051107
http://dx.doi.org/10.1103/PhysRevE.85.051107
http://dx.doi.org/10.1088/0953-4075/47/10/103001
http://dx.doi.org/10.1088/0953-4075/47/10/103001
http://dx.doi.org/10.1088/0953-4075/47/10/103001
http://dx.doi.org/10.1088/0953-4075/47/10/103001
http://arxiv.org/abs/arXiv:1409.1558
http://dx.doi.org/10.1103/PhysRevLett.105.170402
http://dx.doi.org/10.1103/PhysRevLett.105.170402
http://dx.doi.org/10.1103/PhysRevLett.105.170402
http://dx.doi.org/10.1103/PhysRevLett.105.170402
http://dx.doi.org/10.1103/PhysRevE.87.022143
http://dx.doi.org/10.1103/PhysRevE.87.022143
http://dx.doi.org/10.1103/PhysRevE.87.022143
http://dx.doi.org/10.1103/PhysRevE.87.022143
http://dx.doi.org/10.1103/PhysRevE.75.021116
http://dx.doi.org/10.1103/PhysRevE.75.021116
http://dx.doi.org/10.1103/PhysRevE.75.021116
http://dx.doi.org/10.1103/PhysRevE.75.021116
http://dx.doi.org/10.1209/0295-5075/94/30001
http://dx.doi.org/10.1209/0295-5075/94/30001
http://dx.doi.org/10.1209/0295-5075/94/30001
http://dx.doi.org/10.1209/0295-5075/94/30001
http://dx.doi.org/10.1209/0295-5075/103/30001
http://dx.doi.org/10.1209/0295-5075/103/30001
http://dx.doi.org/10.1209/0295-5075/103/30001
http://dx.doi.org/10.1209/0295-5075/103/30001
http://dx.doi.org/10.1103/PhysRevE.83.041133
http://dx.doi.org/10.1103/PhysRevE.83.041133
http://dx.doi.org/10.1103/PhysRevE.83.041133
http://dx.doi.org/10.1103/PhysRevE.83.041133
http://dx.doi.org/10.1103/PhysRevE.86.061128
http://dx.doi.org/10.1103/PhysRevE.86.061128
http://dx.doi.org/10.1103/PhysRevE.86.061128
http://dx.doi.org/10.1103/PhysRevE.86.061128
http://dx.doi.org/10.1021/jp0455428
http://dx.doi.org/10.1021/jp0455428
http://dx.doi.org/10.1021/jp0455428
http://dx.doi.org/10.1021/jp0455428
http://dx.doi.org/10.1209/epl/i2005-10177-0
http://dx.doi.org/10.1209/epl/i2005-10177-0
http://dx.doi.org/10.1209/epl/i2005-10177-0
http://dx.doi.org/10.1209/epl/i2005-10177-0
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevE.88.042109
http://dx.doi.org/10.1103/PhysRevE.88.042109
http://dx.doi.org/10.1103/PhysRevE.88.042109
http://dx.doi.org/10.1103/PhysRevE.88.042109
http://dx.doi.org/10.1103/PhysRevX.4.031029
http://dx.doi.org/10.1103/PhysRevX.4.031029
http://dx.doi.org/10.1103/PhysRevX.4.031029
http://dx.doi.org/10.1103/PhysRevX.4.031029
http://arxiv.org/abs/arXiv:quant-ph/0406127
http://dx.doi.org/10.1088/1367-2630/14/9/093015
http://dx.doi.org/10.1088/1367-2630/14/9/093015
http://dx.doi.org/10.1088/1367-2630/14/9/093015
http://dx.doi.org/10.1088/1367-2630/14/9/093015
http://dx.doi.org/10.1103/PhysRevA.86.044302
http://dx.doi.org/10.1103/PhysRevA.86.044302
http://dx.doi.org/10.1103/PhysRevA.86.044302
http://dx.doi.org/10.1103/PhysRevA.86.044302
http://dx.doi.org/10.1119/1.1975291
http://dx.doi.org/10.1119/1.1975291
http://dx.doi.org/10.1119/1.1975291
http://dx.doi.org/10.1119/1.1975291
http://dx.doi.org/10.1143/ptp/9.4.381
http://dx.doi.org/10.1143/ptp/9.4.381
http://dx.doi.org/10.1143/ptp/9.4.381
http://dx.doi.org/10.1143/ptp/9.4.381
http://dx.doi.org/10.1038/srep00648
http://dx.doi.org/10.1038/srep00648
http://dx.doi.org/10.1038/srep00648
http://dx.doi.org/10.1038/srep00648
http://dx.doi.org/10.1209/epl/i1999-00123-2
http://dx.doi.org/10.1209/epl/i1999-00123-2
http://dx.doi.org/10.1209/epl/i1999-00123-2
http://dx.doi.org/10.1209/epl/i1999-00123-2
http://dx.doi.org/10.1103/PhysRevE.65.036145
http://dx.doi.org/10.1103/PhysRevE.65.036145
http://dx.doi.org/10.1103/PhysRevE.65.036145
http://dx.doi.org/10.1103/PhysRevE.65.036145
http://dx.doi.org/10.1103/PhysRevE.67.046105
http://dx.doi.org/10.1103/PhysRevE.67.046105
http://dx.doi.org/10.1103/PhysRevE.67.046105
http://dx.doi.org/10.1103/PhysRevE.67.046105
http://dx.doi.org/10.1103/PhysRevE.76.031105
http://dx.doi.org/10.1103/PhysRevE.76.031105
http://dx.doi.org/10.1103/PhysRevE.76.031105
http://dx.doi.org/10.1103/PhysRevE.76.031105
http://dx.doi.org/10.1103/PhysRevE.79.041129
http://dx.doi.org/10.1103/PhysRevE.79.041129
http://dx.doi.org/10.1103/PhysRevE.79.041129
http://dx.doi.org/10.1103/PhysRevE.79.041129
http://dx.doi.org/10.1103/PhysRevE.79.041113
http://dx.doi.org/10.1103/PhysRevE.79.041113
http://dx.doi.org/10.1103/PhysRevE.79.041113
http://dx.doi.org/10.1103/PhysRevE.79.041113
http://dx.doi.org/10.1103/PhysRevE.84.041127
http://dx.doi.org/10.1103/PhysRevE.84.041127
http://dx.doi.org/10.1103/PhysRevE.84.041127
http://dx.doi.org/10.1103/PhysRevE.84.041127
http://dx.doi.org/10.1103/PhysRevE.85.031145
http://dx.doi.org/10.1103/PhysRevE.85.031145
http://dx.doi.org/10.1103/PhysRevE.85.031145
http://dx.doi.org/10.1103/PhysRevE.85.031145
http://dx.doi.org/10.1103/PhysRevLett.109.203006
http://dx.doi.org/10.1103/PhysRevLett.109.203006
http://dx.doi.org/10.1103/PhysRevLett.109.203006
http://dx.doi.org/10.1103/PhysRevLett.109.203006


INTERFERENCE OF IDENTICAL PARTICLES AND THE . . . PHYSICAL REVIEW E 90, 062121 (2014)

[81] O. Abah and E. Lutz, Europhys. Lett. 106, 20001 (2014).
[82] J. Rossnagel, O. Abah, F. Schmidt-Kaler, K. Singer, and E. Lutz,

Phys. Rev. Lett. 112, 030602 (2014).
[83] L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company,

New York, 1968).
[84] W. J. Miller, Symmetry Groups and Their Applications

(Academic Press, New York, 1972).
[85] S. Aaronson and A. Arkhipov, Theor. Comput. 9, 143 (2013).

[86] M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and
P. Walther, Nat. Photon. 7, 540 (2013).

[87] H. Quan and H. Dong, arXiv:0812.4955.
[88] M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables,
Vol. 55 (Dover, New York, 1964).

[89] K. Huang, Statistical Mechanics (John Wiley & Sons, New York,
1987).

062121-15

http://dx.doi.org/10.1209/0295-5075/106/20001
http://dx.doi.org/10.1209/0295-5075/106/20001
http://dx.doi.org/10.1209/0295-5075/106/20001
http://dx.doi.org/10.1209/0295-5075/106/20001
http://dx.doi.org/10.1103/PhysRevLett.112.030602
http://dx.doi.org/10.1103/PhysRevLett.112.030602
http://dx.doi.org/10.1103/PhysRevLett.112.030602
http://dx.doi.org/10.1103/PhysRevLett.112.030602
http://dx.doi.org/10.4086/toc.2013.v009a004
http://dx.doi.org/10.4086/toc.2013.v009a004
http://dx.doi.org/10.4086/toc.2013.v009a004
http://dx.doi.org/10.4086/toc.2013.v009a004
http://dx.doi.org/10.1038/nphoton.2013.102
http://dx.doi.org/10.1038/nphoton.2013.102
http://dx.doi.org/10.1038/nphoton.2013.102
http://dx.doi.org/10.1038/nphoton.2013.102
http://arxiv.org/abs/arXiv:0812.4955



