
PHYSICAL REVIEW E 90, 062120 (2014)

Capturing the Landauer bound through the application of a detailed Jarzynski equality for entropic
memory erasure

Moupriya Das*

Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
(Received 3 September 2014; published 12 December 2014)

The states of an overdamped Brownian particle confined in a two-dimensional bilobal enclosure are considered
to correspond to two binary values: 0 (left lobe) and 1 (right lobe). An ensemble of such particles represents bits
of entropic information. An external bias is applied on the particles, equally distributed in two lobes, to drive
them to a particular lobe erasing one kind of bit of information. It has been shown that the average work done for
the entropic memory erasure process approaches the Landauer bound for a very slow erasure cycle. Furthermore,
the detailed Jarzynski equality holds to a very good extent for the erasure protocol, so that the Landauer bound
may be calculated irrespective of the time period of the erasure cycle in terms of the effective free-energy change
for the process. The detailed Jarzynski equality applied to two subprocesses, namely the transition from entropic
memory state 0 to state 1 and the transition from entropic memory state 1 to state 1, connects the work done on the
system to the probability to occupy the two states under a time-reversed process. In the entire treatment, the work
appears as a boundary effect of the physical confinement of the system not having a conventional potential energy
barrier. Finally, an analytical derivation of the detailed and classical Jarzynski equality for Brownian movement in
confined space with varying width has been proposed. Our analytical scheme supports the numerical simulations
presented in this paper.
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I. INTRODUCTION

The computational procedure consists of a number of logic
operations [1]. In the case of irreversible logic operations, one
cannot properly estimate the inputs by observing the output [2].
Information is actually lost in the course of operation. This
erasure of information is accompanied by dissipation of a
minimum quantity of heat. Landauer first argued that erasure
of a classical bit of information is associated with dissipation
of at least kBT ln2 of heat [3]. To realize this limit through an
experiment or a numerical process, one has to represent the
information by some physical quantity, and the act of erasing
is done in an appropriate physical setup [4]. The two wells of
a bistable potential may represent the two binary values of the
memory, say, the left potential well represents 0 state and the
right potential well represents 1 state. Then the dynamics of an
overdamped Brownian particle moving in a bistable potential
and subjected to an external bias may be viewed as an erasure
process [5,6]. Here, the Landauer limit is recovered for a very
long erasure cycle [5]. The idea of correlating information
erasure with thermodynamics [2–15] has been an important
area of research for quite a long time and is still a very
active domain in view of both experimental and theoretical
investigations. The immediate consequence of realizing the
Landauer limit is to investigate whether this lower bound of
work done can be found from the free-energy difference of the
initial and the final states of the system in the erasure cycle.
It is expected that the Jarzynski equality [16–18] would be of
much help in this context as it connects the nonequilibrium
work measurement with the free-energy change of a process.
This has been studied recently [13] both experimentally and
theoretically considering the two potential minima of the
above-mentioned bistable system as two memory states, 0 and
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1. It has been observed that the detailed Jarzynski equality [19],
rather than the classical Jarzynski equality [16–18], serves the
purpose satisfactorily.

In the present paper, we have explored a different represen-
tation of the memory state. We consider a Brownian particle
confined in a two-dimensional bilobal enclosure. The particle
is essentially free as there is no intrinsic potential present,
the only constraint being that the particle is made to move
in a geometrical confinement [20–24]. It is now well known
that when a Brownian particle is made to move in a channel
or a tube of varying cross section, the confinement in higher
dimension gives rise to an entropic potential [21–49] in the
reduced dimension. The state of the Brownian particle in two
different lobes may be designated by two binary values 0 and 1
(for example, the state of the particle in the left lobe is assigned
to 0 and that in the right lobe to 1). As we are interested in the
statistics of work done associated with the erasure process,
we consider an ensemble of such particles. Each particle
corresponds to an entropic bit of information or an entropic
memory state. In a recent study, the existence of the Landauer
bound was investigated numerically for an entropic memory
erasure procedure [15]. Here we have explored the statistics
of work done, and we focus on the proper application of the
Jarzynski equality to extract the actual free-energy change
of the entropic memory erasure process through numerical
computation. We also seek the connection of the average work
done and the effective free-energy change with the Landauer
bound for the erasure protocol. The interesting aspect related
to the present study is that here the calculated work appears as a
nontrivial boundary effect. Essentially, we study the Brownian
dynamics of a free particle on which a geometrical boundary
condition has been imposed. The external bias applied on
the particle in the erasure cycle exploits the nonlinearity of
the confinement to produce the work value associated with the
process. Our object is to explore the applicability of the
Jarzynski equality and the detailed Jarzynski equality for
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the memory erasure procedure where the two memory states
are separated by an entropic barrier, and to obtain the
value of the free-energy change for such processes from
the nonequilibrium work distribution obtained as a result
of irregular geometrical confinement. Another focus of the
study is the reverse protocol of the memory erasure process,
which is necessary to investigate the existence of the detailed
Jarzynski equality [14] through which the work done for two
subprocesses is connected to the percent occupancy of the
two lobes under the time-reversed process. In addition to
the detailed numerical analysis done on the entropic memory
erasure process, we carry out an analytical investigation on the
applicability of the Jarzynski equality for this protocol.

The paper is organized as follows. In Sec. II, the model of
the system and the dynamics of the overdamped Brownian par-
ticle are described for the entropic memory erasure protocol.
In Sec. III, the numerical results are discussed. We analytically
study the validity of the detailed and the classical Jarzynski
equality for the entropic memory erasure process in Sec. IV.
The paper concludes in Sec. V.

II. DESCRIPTION OF THE MODEL AND THE
STOCHASTIC DYNAMICS

We have considered a two-dimensional overdamped dy-
namics of a Brownian particle which is allowed to move in a
bilobal enclosure as shown in Fig. 1(a). The following equation
corresponds to the Langevin dynamics of the Brownian
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FIG. 1. (Color online) (a) The bilobal enclosure with its geomet-
ric parameters, (b) time series plot of the external bias B(t) with the
parameter set Bmax = 1.5, ttherm = 400, τ1 = 1425, and τ2 = 75.

particle:

γ
d
−→
r

dt
= −Gêy + B(t)êx +

√
γ kBT

−→
ξ (t). (2.1)

In the above equation, −→
r represents the position vector of the

particle, and êx and êy stand for the unit vectors along the x and
y directions, respectively. γ denotes the frictional coefficient
of the system, and kB and T are the Boltzmann constant and
temperature of the bath, respectively. G corresponds to a very
weak constant bias that acts along the negative y direction

of the system.
−→
ξ (t) = (ξx(t),ξy(t)) is a zero mean, Gaussian

white noise and obeys the fluctuation-dissipation relationship.
The characteristics of the noise are described by the following
equations:

〈−→ξ (t)〉 = 0, 〈ξi(t)ξj (t ′)〉 = 2δij δ(t − t ′) (2.2)

for i,j = x,y.

Apart from the usual forces described above, the particle is
also subjected to an additional external bias, B(t)êx , which has
a sawtooth form with respect to time. The physical confinement
of the particle has been introduced by imposing the following
boundary conditions on the two-dimensional dynamics of
the Brownian particle. The lower and the upper boundary
functions of the bilobal enclosure [28], as shown in Fig. 1(a),
can be described by the following equation:

yl(x) = −yu(x) = ωl(x) = −ωu(x)

= Ly(x/Lx)4 − 2Ly(x/Lx)2 − c/2, (2.3)

where ωl(x) and ωu(x) denote the lower and the upper walls
of the confinement, and yl(x) and yu(x) correspond to the
lower bound and the upper bound of the y value at position x,
respectively. Lx stands for the distance between the midpoint
of the bottleneck and the position of the maximal width, Ly

represents the narrowing of the boundary functions, and c

corresponds to the remaining width at the position of the
bottleneck. The local half-width of the bilobal confinement
is described by the following equation:

ω(x) = [ωu(x) − ωl(x)]/2. (2.4)

These wall functions are responsible for the confined move-
ment of the overdamped Brownian particle in the bilobal
enclosure.

We now use a dimensionless description [24–34] of the
system and the dynamics for the sake of simplicity for
further analysis. The lengths are scaled with the characteristic
length scale, Lx , i.e., x̃ = x/Lx and ỹ = y/Lx , suggesting
c̃ = c/Lx . This scaling leads to the scaled boundary functions
and the local half-width described as ω̃l(x̃) = ωl(x)/Lx =
−ω̃u(x̃) and ω̃(x̃) = ω(x)/Lx . The time t is scaled by a
distinctive time scale tref as t̃ = t/tref with tref = γL2

x/kBTR ,
where TR corresponds to a reference temperature. tref actually
denotes twice the time necessary for a particle to diffuse
a distance Lx at temperature TR . The forces are scaled by
the characteristic force term FR = γLx/tref leading to G̃ =
Gtref/γLx and B̃(t̃) = B(t)tref/γLx . To maintain brevity and
notational convenience, tildes will be omitted from now on. In
dimensionless form, the Langevin equation can be described
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as follows:

d
−→
r

dt
= −Gêy + B(t)êx +

√
D

−→
ξ (t), (2.5)

where D is represented as T/TR . D signifies the strength of
noise and it is dependent both on the thermal energy and the
mobility of the system. Here, we have scaled all the force
terms including the Langevin force with the factor γLx/τ

to make them dimensionless. This leads us to the above
expression of D. The Langevin dynamics described above
can be decomposed into two mutually perpendicular Langevin
equations along the x and y directions as follows:

dx

dt
= B(t) +

√
Dξx(t),

(2.6)
dy

dt
= −G +

√
Dξy(t),

where ξx(t) and ξy(t) denote the components of the Langevin
force ξ (t) along the x and y directions, respectively. The wall
function is written as follows:

ω(x) = [ωu(x) − ωl(x)]/2 = −ax4 + bx2 + c/2. (2.7)

In the above equation, the aspect ratio has been defined as a =
Ly/Lx and b = 2a, implying that a and b are appropriately
scaled constants. The external driving force B(t) actually has
a sawtooth form described as follows:

B(t) = 0

for 0 < t � ttherm,

B(t) = Bmax(t − ttherm)/τ1

for ttherm < t � ttherm + τ1,

B(t) = Bmax[1 − (t − ttherm − τ1)/τ2]

for ttherm + τ1 < t � ttherm + τ1 + τ2,

B(t) = 0 (2.8)

for t > ttherm + τ1 + τ2.
ttherm corresponds to the thermalization time in Eqs. (2.8).

The thermalization time refers to the time interval during which
the system is allowed to reach a thermal equilibrium initially
with the bath in the absence of any bias; i.e., after time ttherm,
the external force B(t) is turned on. Then during the time
interval between ttherm and ttherm + τ1, the external bias reaches
its maximum value Bmax, which corresponds to the amplitude
of the driving force following the return of the value of B(t)
back to its initial value, i.e., B(t) = 0 within the time duration
τ2. The time series plot of the external bias force has been
represented in Fig. 1(b).

In general, noise is inherently present in computational
devices as the systems are small in size and the constituents
are small in number. As a consequence, intrinsic noise has
been considered to model such processes. The presence of
noise turns the thermodynamic quantities such as work or heat
corresponding to the erasure procedure into stochastic vari-
ables. Therefore, we essentially calculate the average values
of the stochastic thermodynamic variables and their functions.
For this purpose, we consider an ensemble of particles. Each
particle is placed at the position of the bottleneck (0,0) initially.

As expected, during the thermalization time ttherm, the particles
get equally distributed in the two lobes, i.e., the system contains
both types of binary information in equal proportion. As stated
earlier, the left lobe of the confinement is assigned to logical
value 0 and the right lobe to logical value 1. After the initial
thermalization period ttherm, the external bias B(t) is switched
on and the particles are directed selectively to the desired lobe,
leading to erasure of one kind of bits of information.

The Fokker-Planck equation [50] corresponding to the
Langevin dynamics [Eq. (2.6)] in the absence of any external
bias can be written as

∂P (x,y,t)

∂t
= D

∂

∂x
exp

[−u(x,y)

D

]

× ∂

∂x
exp

[
u(x,y)

D

]
P (x,y,t)

+D
∂

∂y
exp

[−u(x,y)

D

]

× ∂

∂y
exp

[
u(x,y)

D

]
P (x,y,t), (2.9)

where the potential function is represented as u(x,y) = Gy.
To consider the effect of confinement, we use the reflecting
boundary condition at the wall of the enclosure. The dimen-
sional reduction (i.e., the study of the dynamics only along the
direction of interest) can be done by introducing a marginal
probability distribution C(x,t) along the x direction [i.e.,
C(x,t) = ∫

dyP (x,y,t)] and a local equilibrium probability
density of y conditioned at a given x, ρ(y; x), and assuming
that P (x,y,t) ∼= C(x,t)ρ(y; x). Therefore, after reducing the
transverse direction, the kinetic equation for the marginal
probability distribution takes the following form:

∂C(x,t)

∂t
= ∂

∂x

[
D

∂

∂x
C(x,t) + A′(x,D,G)C(x,t)

]
. (2.10)

The effective potential A(x,D,G) is obtained from the exact
potential u(x,y) making use of the relation described as∫

dy e−u(x,y)/D = e−A(x,D,G)/D . For a constant force acting
along the transverse direction, the potential function A(x) has
the following form:

A(x,D,G) = −D ln

[
2D

G
sinh

(
Gω(x)

D

)]
. (2.11)

A(x,D,G) corresponds to the potential that is associated with
the varying cross-sectional width of the system. Therefore,
the barrier created by the potential function A(x,D,G) is
entropic rather than energetic in origin. Equations (2.9)–(2.11)
help us to realize the emergence of an entropic potential in
reduced dimension when a Brownian particle is allowed to
move in a higher-dimensional confinement having varying
cross-sectional [22–24] width. This implies that the diffusive
motion of the particle gets retarded due to the irregularity of
the wall functions of the confining system, even in the absence
of any conventional potential energy barrier. This dimension
reduction formulation holds to a good extent in the presence
of an external bias when the forcing amplitude is not too
high [51].
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III. NUMERICAL RESULTS AND DISCUSSION

For numerical simulation, we consider the overdamped
two-dimensional Langevin dynamics of the Brownian particle
described in Eq. (2.6) along with the boundary condition
represented in Eq. (2.7). Equation (2.6) is solved using an
improved Euler algorithm. The time step has been taken to be
equal to 10−3. The Langevin force has been generated using the
Box-Muller algorithm [52]. We use the basic algorithm [53]
proposed by Box and Muller to get normally distributed
random variables representing thermal noise from uniformly
distributed random numbers generated in the interval (0,1).
One additional check has been incorporated in the algorithm
to ensure a physically realistic value of noise. The width of
the distribution is determined by the strength of the noise,
i.e., D. The values of a, b, and c are set as 0.25, 0.5, and
0.02, respectively, for the entire study. The value of the very
weak transverse force has been kept fixed as 0.0001. This
value of G (tending to zero) ensures achieving the entropic
limit of the potential. This implies that the work distribution
and free-energy estimate appear purely as a result of physical
confinement.

As discussed earlier, the particles get equally distributed in
two lobes of the bilobal enclosure during the thermalization
time, and after application of the external bias they accumulate
to a particular lobe. The form of the external bias [Eq. (2.8)] is
considered in such a way that it drives all the particles from the
left and right lobe into the right lobe, i.e., the memory states
0 and 1 are erased to the memory state 1. We estimate the
free-energy change for the entropic memory erasure process
from the work value, or more specifically, the mean of the
exponential function of the work done [16–18] obtained by
direct numerical simulation of the exact dynamics along with
appropriate boundary conditions, and we verify whether it
agrees with the Landauer bound of minimum work done for
the process. The statistical work done along each trajectory
within the erasure cycle is numerically calculated using the
following expression:

W =
∫ ttherm+τ

ttherm

dt B(t)ẋ. (3.1)

This form arises from the simple definition of work done by an
applied field. As the effect of application of the external bias
over the entire time period is intended to be captured, the force
is multiplied by the velocity of the particle and is integrated
over the forcing time period, ttherm to ttherm + τ , where τ =
τ1 + τ2. ẋ for each time step is calculated taking into account
the x values of two consecutive time steps (obtained from
simulation of the two-dimensional Langevin dynamics). The
value of the position variable, x, and hence the velocity, ẋ,
are guided by the external bias and the wall functions. This
is reflected in the value of W for all trajectories, leading to a
work distribution emerging purely as an effect of the physical
boundary.

A. Estimation of the effective free-energy change for the
entropic memory erasure process using the Jarzynski relation

We denote the free-energy change for the entropic memory
erasure process, i.e., transfer of information content of the

system to a unique state of memory, as 	Feffective. This
effective free-energy change for the process is related to the
nonequilibrium work done for the memory erasure protocol as

〈e−βW 〉−→1 = e−β	Feffective , (3.2)

where β = 1/kBT , and 〈.〉−→1 denotes the mean value of the
quantities averaged over trajectories which ultimately end up
in the right lobe (state 1) at the end of the erasure protocol.
In the present study, we are dealing with dimensionless
system parameters and dynamics. All the quantities have
been made dimensionless with proper scaling factors. This
suggests that the corresponding dimensionless parameter of
γ kBT [in Eq. (2.1)] is D. Had we simulated the actual
dynamics with quantities having their usual dimensions, we
would have considered γ to be equal to unity, as we are
not actually interested in the friction coefficient appearing in
the dynamics. We focus instead on the temperature of the
bath, and we analyze its effect on the work value, keeping
γ fixed. Therefore, for future reference, whenever we use
kBT , it must be remembered that the quantity actually has
the same magnitude as D. We denote the percent success
rate as Psuc, which is the ratio of the trajectories that stays
at the desired lobe at the end of the forcing time period
to the total number of trajectories. The calculation of the
work value for these trajectories is only considered as they
correspond to the successful erasure and contribute to the
effective free-energy change. Inclusion of other trajectories
into the above-mentioned calculation will introduce error
in the value of 	Feffective. For the entire numerical study,
we have ensured that Psuc > 95%. To calculate the mean
of the exponential function of work done as described by
the left-hand side of Eq. (3.2), we subdivide the process of
jumping of particles from both the lobes to the right lobe
into two subprocesses depending upon the initial position of
the particles in the erasure cycle. Let us define the value of the
average exponential work functions for these two subprocesses
as follows:

A01 = 〈e−βW 〉0−→1, A11 = 〈e−βW 〉1−→1, (3.3)

where 〈.〉i−→j corresponds to the mean value of the function for
the trajectories that initially start at the ith lobe and end at the
j th lobe after the completion of the erasure cycle, with (i,j ) ≡
(0,1). Consequently, the average quantity for the successful
memory erasure process is given by

〈e−βW 〉−→1 = A01 + A11

2
. (3.4)

The factor 1/2 appears because of the equally distributed
memory states attained after the thermalization period. We
have plotted A01, A11, and the sum A01 + A11 against the
forcing time period τ = τ1 + τ2 in Figs. 2(a) and 2(b) at
three different temperatures for optimized Bmax values cor-
responding to the temperatures and three different amplitudes
of the external bias for a fixed temperature D, respectively.
The optimized value of Bmax indicates the minimum value
of the forcing amplitude for which Psuc is at least 95% for
all values of τ concerned when all other parameters are held
fixed. ttherm has been taken to be equal to 400, and τ1 and
τ2 have been varied over a wide range keeping the ratio
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FIG. 2. (Color online) Plot of A01, A11, and A01 + A11 against
τ (a) for three different temperatures: D = 0.08 (Bopt

max = 0.9),
D = 0.1 (Bopt

max = 1.2), and D = 0.12 (Bopt
max = 1.4); and (b) for

three different amplitudes of the external bias: Bmax = 1.0, 1.2,
and 1.4 at D = 0.1. The parameter set used is a = 0.25, b = 0.5,
c = 0.02 and ttherm = 400, τ1 : τ2 = 19 : 1, and G = 0.0001. The
half-filled symbols correspond to A01 + A11, open symbols to A01,
and completely filled symbols to A11.

τ1 : τ2 fixed at 19 : 1 for the entire process. The averaging
has been performed over 106 trajectories for all cases. It has
been observed that the sum A01 + A11 is constant and close to
1 irrespective of the value of noise strength or the amplitude
of the external bias, and more specifically on the forcing time
period. This value of A01 + A11 corresponds to 〈e−βW 〉−→1 =
1/2, leading to 	Feffective = kBT ln2 [Eq. (3.2)]. This signifies
that the Landauer bound can be recaptured in terms of the
free-energy change corresponding to the entropic memory
erasure procedure. The intriguing feature of this result is that
the limit can be understood for any time period of the external
forcing, as here we concentrate on the free-energy change of
the process. In the studies [5,6,15], which address the average
work done for such processes, the attainment of the Landauer
limit occurs for a very slow erasure process. It is also observed
that although A01 + A11 remains more or less constant, A01

increases and A11 decreases with an increasing value of τ . This
observation will be explained later.
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FIG. 3. (Color online) Plot of 〈W 〉 and 	Feffective against τ (a)
for three different temperatures: D = 0.08 (Bopt

max = 0.9), D = 0.1
(Bopt

max = 1.2), and D = 0.12 (Bopt
max = 1.4) (the large symbols denote

〈W 〉, the similar small symbols represent corresponding 	Feffective,
and the dotted lines present the respective Landauer bounds) and
(b) for three different forcing amplitudes: Bmax = 1.5 (over forced),
Bmax = 1.2 (optimized), and Bmax = 1.0 (under forced) at tempera-
ture D = 0.1. The fitting with the function kBT ln2 + C1

τ
has been

shown, where C1 = 90. The parameter set used is a = 0.25, b = 0.5,
c = 0.02 and ttherm = 400, τ1 : τ2 = 19 : 1, and G = 0.0001.

B. Connection of 〈W〉 and �Feffective with the Landauer bound

To discern the variation of 〈W 〉 and 	Feffective with τ and their
connection with the Landauer bound more clearly, we have
plotted 〈W 〉 and 	Feffective obtained from numerical simulation
against τ for three different temperatures for optimized Bmax

values corresponding to the mentioned temperatures, and we
compare the data with the Landauer bound accordingly in
Fig. 3(a) for the same set of parameters as in the previous
study. Averaging has been done over 106 trajectories. The
value of 〈W 〉 decreases with τ and approaches the Landauer
limit for very high values of τ . However, for any value of
τ , 	Feffective has a value close to the Landauer bound. It
has also been observed that the variation of 〈W 〉 against
τ can be fitted with an expression kBT ln2 + C1

τ
, where

C1 is a constant. This fit has been shown in Fig. 3(b)
for an optimum value of Bmax at a particular temperature.
The variation of 〈W 〉 against τ has also been presented for
overforced and underforced situations in this plot [Fig. 3(b)].
The values of 〈W 〉 or 	F presented in Fig. 3 are dimensionless
quantities, as we are dealing with a properly scaled system and
dynamics.
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C. Analysis of the results in light of the detailed Jarzynski
equality

We now analyze the above results from the point of view of
the overall process and subprocesses. The Landauer bound sets
a lower limit for the work done associated with erasure of a
classical bit of information. For memory erasure in systems
in which fluctuation is present, this principle is modified [6]
and the bound is obtained for the average value of the work
done. As a consequence, it is expected that the mean value of
work done for the erasure cycle would be at least kBT ln2 (or
D ln2 in dimensionless form), corresponding to the Landauer
bound. We observe that this limit may be approached for very
long cycles for erasure of an entropic bit of information. This
suggests that the free-energy change for the entropic memory
erasure process would be equal to kBT ln2 as it essentially
corresponds to the lower bound of the average work done for
the process. Our numerical study reveals that the effective free-
energy change obtained using the nonequilibrium work values
for the entropic memory erasure protocol satisfies the limit. To
evaluate the free-energy change of the process concerned, we
have taken into consideration only the trajectories for which
successful erasure takes place, and we do not focus on the
process as a whole. Now, to resolve the work effect and the
free-energy change for the overall process, we turn to the
Jarzynski equality, which relates the equilibrium free-energy
change for the entire process, 	F , with the nonequilibrium
work done, W , over an ensemble of similar paths associated
with the procedure as follows:

〈e−βW 〉 = e−β	F . (3.5)

The free-energy change 	F in the Jarzynski equality actually
corresponds to the difference in free-energy values of the
equilibrium states corresponding to the final and the initial
value of the switching field parameter. For the erasure cycle,
the initial and the final value of the driving field parameter
are B(t = 0) = 0 and B(t = ttherm + τ1 + τ2 = ttherm + τ ) =
0, i.e., there is no free-energy difference between the initial
and the final equilibrium states of the system, which leads
to 	F = 0 or 〈e−βW 〉 = 1. Therefore, it is quite evident that
the Landauer bound could not be retrieved had we used the
classical Jarzynski equality. The correct calculation of the work
done and the mean of the exponential function of work done
as described in the Jarzynski equality regarding erasure of a
bit of information concerns exact knowledge about the work
parameter B(t) and the stochastic variable of the Langevin
dynamics x(t) during the forcing time period only (t = ttherm to
t = ttherm + τ ). The important point to note here is that the final
state in this process differs from the equilibrium state for the
same value of B(t). The distinct difference between the final
state of the erasure process and the corresponding equilibrium
state has been presented graphically in Figs. 4 and 5. Figure 4
presents the time evolution of x(t) and attainment of the final
state (not the equilibrium state) at the end of the erasure cycle
along with the time series plot of the external bias. In Fig. 5, the
same time series of x(t) has been replotted up to the time when
the system tends to reach equilibrium and finally will reach
equilibrium after a certain time. The effective free-energy
change, 	Feffective, denotes the change for the first process
[Fig. 4(b)], not for the second one [Fig. 5(b)]. The overall
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FIG. 4. (Color online) Time series plot of (a) B(t) with Bmax =
1.2 and (b) x(t) for 100 trajectories up to the completion of the erasure
process. The parameter set used is a = 0.25, b = 0.5, c = 0.02 and
ttherm = 400, τ1 = 1900, τ2 = 100, and G = 0.0001.

free-energy change, 	F , is equal to zero, which is evident
from Fig. 5(b).

To capture the work effect and free-energy difference for
the memory erasure process, one has to take into consideration
the detailed Jarzynski equality [13,14,19], which connects the
free-energy change for a process and nonequilibrium work
measurement for the same when the final state is quite distinct
from the equilibrium state, through the actual and equilibrium
probability density of the state,

〈e−βW (t)〉(x,t) = ρeq(x)

ρ(x,t)
e−β	F , (3.6)

where the subscript (x,t) corresponds to the trajectories that
pass through x at time t . ρ(x,t) denotes the actual probability
density at position x at time t , and ρeq(x) stands for the
equilibrium density at x when the external work parameter
has been held fixed at the same value as that at time t .
If we wish to apply the detailed Jarzynski equality to the
erasure of information from both 0 and 1 memory state to
memory state 1, we have to concentrate on the probability
density of the state 1 (i.e., x > 0 corresponding to the right
lobe) at time t = ttherm + τ . It is evident from Figs. 4 and 5
that ρ(x > 0,B(ttherm + τ )) is twice as big as ρeq(x > 0).
Therefore, the detailed Jarzynski equality for the successful
memory erasure process [13] reads

〈e−βW 〉(x>0,ttherm+τ ) = 〈e−βW 〉−→1 = 1/2

Psuc
(3.7)
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FIG. 5. (Color online) Time-series plot of (a) B(t) with Bmax =
1.2 and (b) x(t) for 100 trajectories tending to reach equilibrium. The
parameter set used is a = 0.25, b = 0.5, c = 0.02 and ttherm = 400,
τ1 = 1900, τ2 = 100, and G = 0.0001.

as the actual probability density at the state 1 is equivalent to
the percent success rate of the process. Consequently, for Psuc

close to 1 (which is the case in our study), 〈e−βW 〉−→1 remains
close to 1/2, leading to 	Feffective ≈ kBT ln2. This is what we
have obtained in our numerical result. For the trajectories that
ultimately end up in the wrong well (i.e., x < 0) at the end of
the erasure cycle, the detailed Jarzynski equality can be written
as

〈e−βW 〉(x<0,ttherm+τ ) = 〈e−βW 〉−→0 = 1/2

1 − Psuc
. (3.8)

The Landauer limit of minimum work done for erasure of a bit
of information can also be derived [13] using the above two
equations [Eqs. (3.7) and (3.8)] obtained as a consequence
of the detailed Jarzynski equality and Jensen’s inequality
(〈e−βW 〉 � e−β〈W 〉), as

〈W 〉 � kBT ln2 + PsuclnPsuc + (1 − Psuc)ln(1 − Psuc). (3.9)

This expression suggests a generalized version of the Landauer
limit. Now, if we concentrate on the entire process as a whole
and do not exclude the trajectories that end up in the wrong
well at the completion of the erasure cycle, the average value
of the exponential work function may be represented in terms
of the average quantity for two individual process (for the
trajectories ending up in the memory states 0 and 1) and the
percent success rate of the entropic memory erasure process

as follows:

〈e−βW 〉 = Psuc〈e−βW 〉−→1 + (1 − Psuc)〈e−βW 〉−→0. (3.10)

The substitution of 〈e−βW 〉−→1 and 〈e−βW 〉−→0 according to
Eqs. (3.7) and (3.8) gives rise to the expected value of 〈e−βW 〉
equal to 1. The validity of the classical Jarzynski equality has
been checked numerically in our present study.

The variation of A01 and A11 with τ may be clarified with
the help of the detailed Jarzynski equality applied to the two
subprocesses corresponding to the act of successful erasure
of entropic memory, namely transfer of an entropic bit of
information from state 0 to state 1 and from state 1 to state 1.
It has been shown [14] by Kawai et al. that

〈e−βW 〉j = ρj (t)

ρj (t)
e−β	Feffective , (3.11)

where the subscript j corresponds to the index of the
nonoverlapping subsets constituting the overall phase space.
ρj and ρj stand for the phase-space density evaluated at the
same but otherwise arbitrary intermediate instant of time for
the forward and reverse processes, respectively. The subspace
may be formed on the basis of any kind of distinction. In
the present study, there are two subsets, i.e., j = (01,11),
depending upon the initial position of the trajectory involved in
a successful erasing process. If we consider t = 0, it is evident
that ρ01 = ρ11 = 1/2 and ρ01 (or ρ11) is equivalent to the
proportion of trajectories that return to state 0 (P 10) [or state
1 (P 11)] starting from state 1 under the time-reversed process.
Taking into consideration the value of e−β	Feffective equal to 1/2
and the phase-space densities under the forward and the reverse
subprocesses individually, new descriptions of A01 and A11 are
at hand,

〈e−βW 〉0−→1 = A01 = P 10,
(3.12)

〈e−βW 〉1−→1 = A11 = P 11.

To examine this relation, we run the entropic memory
erasure process in the reverse direction and calculate P 10

and P 11, varying τ numerically over a wide range. Next,
we compare this variation with A01 and A11, respectively.
This has been represented in Fig. 6. It is observed that the
agreement holds quite well in the case of the entropic memory
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FIG. 6. (Color online) Variation of A01, A11, P 10, and P 11 with τ .
The parameter set used is a = 0.25, b = 0.5, c = 0.02 and D = 0.1,
Bmax = 1.2, ttherm = 400, τ1 = 1900, τ2 = 100, and G = 0.0001.
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erasure phenomenon. A01, i.e., P 10, increases with increasing
τ . This is because a long time duration of the reverse protocol
promotes transition from one lobe to another. For a very long
time period, P 10 and P 11 tend to equalize with each other. This
is quite expected according to the above explanation.

One pertinent point must be clarified here. In previous
studies related to the Landauer limit in an energetic domain,
the erasure cycle consists of two steps, the first step being
the symmetric lowering of the potential energy barrier and the
second involving tilting of the potential. The lowering of the
barrier does not have much significance in the evaluation
of the work done [5,13]. This is even more conspicuous in
systems having physical confinement with varying width. To
modulate the depth or size of the lobes, one has to tune
the system boundary. Therefore, the barrier lowering part
does not affect directly the numerical calculation of the work
done. Consequently, this barrier lowering step may be omitted
without any alteration in the work distribution, and the erasure
cycle consists of only the later step involving external forcing
driving the particle to the desired lobe. As we do not deal
with symmetric modulation of the wall function (equivalent to
the symmetric lowering of the potential energy barrier) in the
present study, we do not maintain a very high entropic barrier
height, so that barrier crossing becomes almost improbable
under the given condition. We actually assume that barrier
lowering has already taken place at the beginning of the erasure
cycle, and the cycle terminates instantly after the bias force is
switched off. Thus soon after, the system regains its initial
state.

IV. VALIDITY OF THE CLASSICAL AND DETAILED
JARZYNSKI EQUALITY FOR ENTROPIC TRANSPORT:

AN ANALYTICAL SCHEME

So far, we have concentrated on the numerical study associated
with the entropic memory erasure process and analyzed
the numerical results. The findings suggest that both the
detailed and the classical Jarzynski equality hold well for
the system with an entropic barrier. However, in previous
studies the Jarzynski equality has been verified analytically
for the Brownian movement of particles in the presence of
an energetic potential barrier [16,17], but not in the case
of physical confinement having varying width. Here in this
section, we try to investigate analytically the validity of the
Jarzynski equality when the movement of Brownian particles is
guided by an effective entropic potential in reduced dimension.

We consider a parameter-dependent Hamiltonian HB(x,y),
which depends on the value of the work parameter B(t) and
accounts for the total energy of the system in state (x(t),y(t)).
With given HB(x,y), the partition function and free energy are
defined as

ZB(β) ≡
∫ +xr

−xr

dx

∫ ωu(x)

ωl (x)
dy exp[−βHB(x,y)], (4.1)

where −xr and +xr correspond to the extreme left and extreme
right end of the confining system and

FB(β) ≡ −β−1lnZB(β), (4.2)

respectively. Again, β must be considered as a real, positive,
dimensionless constant that corresponds to the inverse of the

thermal energy of the system in equilibrium with the heat bath.
Here also we deal with dimensionless quantities and dynamics
as they are defined in terms of properly scaled variables and
parameters introduced previously.

To proceed further, we define the work done along a
particular trajectory due to the evolution of the work parame-
ter [16–18] as follows:

W ≡
∫ ttherm+τ

ttherm

dt Ḃ
∂HB

∂B
(x(t),y(t)). (4.3)

For a cyclic process, this definition of W and the expression
used in Eq. (3.1) to denote the same are equivalent [18]. Ḃ(t)
may be immediately evaluated using Eqs. (2.8). As discussed
earlier, the system gets thermalized with the bath before
switching on the external bias. Therefore, the probability
distribution function at time ttherm is a canonical distribution
defined as

P eq(x,y,ttherm) = Z−1
0 exp[−βH0(x,y)]. (4.4)

To have an idea about the analytic form of the distribution
function, we return to the two-dimensional Fokker-Planck
equation [Eq. (2.9)] described in Sec. II. In the presence of the
external bias B(t) acting along the x direction and constant bias
G acting along the negative y direction, the potential function
takes the form u(x,y,t) = Gy − B(t)x. In the presence of
these two bias forces, Eq. (2.9) may be written in an alternative
form described as

∂P (x,y,t)

∂t
= − ∂

∂x
[B(t)]P (x,y,t) + D

∂2

∂x2
P (x,y,t)

+ ∂

∂y
[G]P (x,y,t) + D

∂2

∂y2
P (x,y,t). (4.5)

The operator acting on the distribution function P (x,y,t) on
the right-hand side of the above equation is a linear operator.
It can be abbreviated as

∂P (x,y,t)

∂t
= R̂BP (x,y,t), (4.6)

where R̂B is a linear operator that has a parametric de-
pendence on B. As stated before, initially the system is in
thermal equilibrium. When B(t) is swept infinitely slowly,
the system remains in quasistatic equilibrium with the bath
in all steps, and the distribution function matches with the
canonical distribution. However, for finite time switching the
distribution function P (x,y,t) lags behind the equilibrium dis-
tribution [16–18]. The point to note here is that for a fixed value
of B, the process actually describes a steady-state Markov
process and the distribution function ultimately collapses to
a canonical distribution corresponding to that particular value
of B. This has been verified with the canonical distribution
function P eq(x,y) = C exp[−Gy−Bx

kBT
] that the linear operator

R̂B nullifies the canonical distribution, i.e.,

R̂BP eq(x,y) = 0. (4.7)

To explore the validity and proper applicability of the
Jarzynski equality for the system having varying width, we
define some important quantities and functions. For example,
the work done up to any arbitrary time t due to the action of

062120-8



CAPTURING THE LANDAUER BOUND THROUGH THE . . . PHYSICAL REVIEW E 90, 062120 (2014)

the external bias along a trajectory (x(t),y(t)) is described as
follows:

W (t) =
∫ t

ttherm

dt ′Ḃ
∂HB

∂B
(x(t ′),y(t ′)). (4.8)

At this point, we focus on the processes where the trajectories
pass through a particular x value (as the state of the system
is determined by the x value of the position coordinate of the
particle) and not on the processes involving other trajectories.
This has been inspired by the fact that ultimately the ensemble
average of the exponential function of work done for the
trajectories ending up in the desired state (i.e., state 1 or the
right lobe) at the end of the erasure process gives the effective
free-energy change for the entropic memory erasure process, as
discussed earlier. A function M(x,t) is defined as the average
of exp[−βW (t)] for the trajectories that traverse through x at
time t , i.e.,

M(x,t) = 〈exp[−βW (t)]〉(x,t). (4.9)

Another important function f (x,y,t) constituted with earlier
defined functions is considered. This is expressed as

f (x,y,t) = P (x,y,t)M(x,t). (4.10)

The time evolution of this function can be described by the
following equation:

∂f (x,y,t)

∂t
=

[
R̂B − βḂ

∂HB

∂B

]
f (x,y,t). (4.11)

This equation arises by taking the time derivative of Eq. (4.10)
and substituting the value of Ẇ , which follows from Eq. (4.8).
The above equation [Eq. (4.11)] is solved to give [17]

f (x,y,t) = 1

Z0
exp[−βHB ], (4.12)

where at time t , B(t) = B. The solution follows from the
two properties of the operator R̂B , namely the linearity of the
operator and the ability to annihilate the canonical distribution
of the system after acting on it [17]. Another consideration,
which leads to the above expression for f (x,y,t), is the initial
condition, f (x,y,ttherm) = P (x,y,ttherm) = 1

Z0
exp[−βH0], as

W (ttherm) = 0 for all the trajectories. Now, as we are interested
in the trajectories terminating their motion at the right lobe
at the end of the cycle and not particularly on the y value
of their position coordinate, we integrate Eq. (4.12) along the
transverse direction, i.e.,∫

dy f (x,y,t) = 1

Z0

∫
dy exp[−βHB ]. (4.13)

f (x,y,t) is integrated over y to give f1(x,t), which contains
the marginal probability distribution function C(x,t) along the
x direction and is defined as follows:∫

dy f (x,y,t) =
[∫

dy P (x,y,t)

]
M(x,t)

= C(x,t)M(x,t)

= f1(x,t). (4.14)

The integral of exp[−βHB] along the y direction is defined
following the description of the effective entropic potential
discussed in Sec. II. Similarly as the effective entropic

potential, we consider an effective canonical distribution for a
fixed value of B as follows:

Ceq(x) = 1

ZB

∫
dy exp[−βHB (x,y)]= 1

ZB

exp
[ − βH 1

B(x)
]
.

(4.15)

This may be understood from the relation [22]∫
dy exp[−βu(x,y)] = exp[−βA(x)]. H 1

B stands for an effec-
tive Hamiltonian in reduced dimension. The partition function
for the exact two-dimensional system and that in the reduced
dimension has the same form,

ZB =
∫ +xr

−xr

dx

∫ ωu(x)

ωl (x)
dy exp[−βHB(x,y)]

=
∫ +xr

−xr

dx exp
[ − βH 1

B (x)
]

= Z1
B. (4.16)

The partition function with superscript 1 in Eq. (4.16)
corresponds to the one-dimensional partition function. The
above considerations [Eqs. (4.14)–(4.16)] when applied to
Eq. (4.13) yield

f1(x,t) = 1

Z1
0

exp
[ − βH 1

B(x)
]

= Z1
B

Z1
0

Ceq(x). (4.17)

Substituting the partition functions in Eq. (4.17) with their
expressions in terms of the corresponding free energy of the
system (FB = −β−1lnZ1

B), we get

C(x,t)〈exp[−βW (t)]〉(x,t) = Ceq(x)exp(−β	F ), (4.18)

where 	F = FB − F0. So finally we arrive at the detailed
Jarzynski equality [Eq. (4.18)]. The marginal probability
distribution function is equivalent to the probability density
ρ(x,t) defined earlier. ρ(x,t) is supposed to account for the
total probability of finding a particle along the entire y range
for a given value of x. This reconsideration makes Eq. (4.18)
identical with Eq. (3.6). Now, if one wishes to calculate the
effective free-energy change for the entropic memory erasure
process, the mean value of the function exp[−βW (t)] is
evaluated over the ensemble of trajectories that pass through
x > 0 at time ttherm + τ . To get this, Eq. (4.18) may be
rewritten as

〈e−βW (ttherm+τ )〉(x>0,ttherm+τ ) = Ceq(x > 0)

C(x > 0,ttherm + τ )
e−β	F

= e−β	Feffective . (4.19)

The classical Jarzynski equality can be easily proved for the
system with an entropic barrier in reduced dimension if we
consider the relation

〈e−βW 〉 =
∫

dx f1(x,tfinal), (4.20)

i.e., here we average over all the trajectories. Now, substituting
the expression of f1(x,tfinal) in Eq. (4.20) from Eq. (4.17), we
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finally get

〈e−βW 〉 = 1

Z0

∫
dx exp

[ − βH 1
B(tfinal)(x)

]
= ZB

Z0
= exp[−β	F ]. (4.21)

The above discussions indicate that the effectiveness of the
detailed and the classical Jarzynski equality for the systems
with confining geometry with varying width can also be
recovered from the theoretical study, which corroborates our
numerical results presented here. Another important point
should be mentioned. We start our analytical derivation
with the two-dimensional Fokker-Planck equation [Eq. (2.9)],
and final results are given in terms of the one-dimensional
description of the system considering the dimension reduc-
tion scheme [22] due to Zwanzig discussed earlier. On the
other hand, our numerical study deals with the exact two-
dimensional dynamics of the system along with the appropriate
boundary conditions. Our present study reveals that analytical
and numerical findings regarding the entropic memory erasure
process support each other. This validates the dimension
reduction approximation for the erasure of an entropic bit of
information.

V. CONCLUSION

In conclusion, we have presented a comprehensive analysis
about the work done and the free-energy change for an entropic
memory erasure process. We have considered the states of
a Brownian particle in two lobes of a bilobal enclosure as
two binary digits. An ensemble of such system represents
bits of information that are entropic in nature. The particles
initially get thermalized with the bath, allowing both memory
states to be occupied equally. An external bias drives all the
particles selectively to a given lobe, which leads to erasure of
a particular type of bits of information. This entropic memory
erasure process is associated with irreversible logic operations

involving entropic memory. The work done and the effective
free-energy cost for this entropic memory erasure process
are of significant importance. We have carried out a detailed
numerical simulation on the work done and the free-energy
change of the erasure protocol. All the work effect and the
free-energy change for the erasure protocol arise as a nontrivial
boundary effect. Then we suggest an analytical scheme that
might be considered as a derivation of the Jarzynski equality
for the system subjected to an entropic barrier in reduced
dimension. The results can be summarized as follows:

(i) The numerical results suggest that we can recapture the
Landauer limit in terms of free-energy change irrespective
of the duration of the erasure cycle, whereas in terms of the
average work done this limit is approached only for a very
long erasure protocol.

(ii) The observations can be explained with the help of the
detailed Jarzynski equality. The applicability of the general
and the detailed Jarzynski equality to the combined process
and individual subprocesses has also been demonstrated.

(iii) The average exponential of the work function for the
subprocesses can be linked with the probability of residence
at the corresponding lobe under the reverse protocol.

(iv) The analytical study presented in this paper suggests
that the application of the detailed and the classical Jarzynski
equality is justified for the confined system with irregular width
because they appear through theoretical calculations also for
such systems.

Our study demonstrates a close connection between logic
operations and thermodynamically inspired quantities in the
absence of any true energetic potential in physical systems
where geometric constraints play the role of a major guiding
factor.
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