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Nonequilibrium density matrix in quantum open systems: Generalization for simultaneous heat
and charge steady-state transport
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We suggest a generalization of the expression of the nonequilibrium (NE) density matrix obtained by
Hershfield’s method for the cases where both heat and charge steady-state currents are present in a quantum
open system. The finite-size quantum system, connected to two temperature and particle reservoirs, is driven
out of equilibrium by the presence of both a temperature gradient and a chemical potential gradient between
the two reservoirs. We show that the NE density matrix is given by a generalized Gibbs-like ensemble and
is in full agreement with the general results of the McLennan-Zubarev nonequilibrium ensembles. The extra
nonequilibrium terms are related to the entropy production in the system and characterize the fluxes of heat and
particle. An explicit example, for the lowest-order expansion, is provide for a model system of noninteracting
fermions.
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I. INTRODUCTION

When a finite-size quantum system is put into contact with
different macroscopic temperature and/or particle reservoirs
(each at their own equilibrium), the system will reach a
nonequilibrium (NE) time-independent steady state after some
time (which is much longer than some typical relaxation times
of the finite system). The steady state is obtained from the
balance between irreversible processes and the driving forces
induced by the macroscopic reservoirs.

The understanding of such irreversible phenomena and
of the corresponding NE steady state is a long-standing
problem in statistical mechanics. The NE steady state can
be seen as its equilibrium counterpart for different external
constraints, in the sense that an equilibrium state represents
a stationary state of a closed system, while the NE steady
state is the time-invariant state of an open system. This is why
the construction of Gibbs-like ensembles for the NE steady
state has been explored by many authors. Early attempts,
going beyond linear response [1], have been performed by
McLennan [2] for classical systems and by Zubarev [3–7] for
both classic and quantum systems. In such approaches, the
Gibbsian statistical mechanics method is extended to include
steady-state NE conditions in the density matrix leading to
the so-called NE statistical operator method (NESOM). More
rigorous analysis of the existence and stability of the NE
steady state have been performed using C∗ algebraic methods
[8–16]. The existence of conducting steady states has also been
critically discussed in Refs. [17,18] by using different levels
of approximation for the many-body effects in NE Green’s
functions approaches and time-dependent density-functional
theory.

A reformulation of NE steady-state quantum statistical
mechanics has been proposed by Hershfield in Ref. [19]. An
explicit expression for the NE density matrix was derived
for a system at a unique temperature in the presence of
an applied bias between two electrodes. A scheme upon
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which one can build nonperturbative calculations was also
provided. Such an approach has been successfully applied in
numerical calculations of quantum electron transport [20–28].
The universal aspects of NE currents in a quantum dot has
also been explored by Doyon et al. in a somewhat different,
but related, approach [29]. Another approach to calculate the
asymptotic form of operators in NE quantum systems is given
in Ref. [30]. However, in these approaches, only charge current
was considered. The whole system is at a unique temperature
and cannot support any other energy or heat transport processes
happening in parallel with quantum charge transport.

Furthermore, a generalization of the Hershfield scheme
to the full time-dependent problem with arbitrary initial
conditions is provided in Ref. [31]. In this work, the author uses
the formal scattering approach of Lippmann and Schwinger
[32] to construct the time-dependent NE density matrix.
The construction of such a NE density matrix should also
be valid for leads at different temperatures, although this
point was not explicitly addressed in Ref. [31]. One of the
important outputs of this work is that the time-dependent NE
density matrix is variational and therefore one can set up an
efficient single-particle evaluation scheme for the steady-state
Hershfield form [33,34]. However, the connection between
the NESOM and the previous NE density matrix scheme was
overlooked by the author of Refs. [19,31]. We address such a
connection (for the steady state) in an explicitly and rigorous
manner in the present paper.

We suggest an extension of the approach originally
developed by Hershfield to more general NE conditions:
the presence of both a temperature and chemical potential
gradients between two electrodes connected to the quantum
open system. We show how to construct a NE density matrix
when the two reservoirs are at two different temperatures
and at two different chemical potentials. For that, we use
some concepts developed for asymptotic steady-state operators
in Refs. [29,30,35,36], along the lines of the original work
of Hershfield [19]. We obtain the generalized Gibbs-like
expression for the corresponding NE density matrix. The extra
NE terms (extra from an equilibrium grand-canonical density
matrix) characterize the entropy production in the open system
and are related to the fluxes of particle and heat. We also show
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that the generalized NE density matrix for the steady state is
fully compatible with the NESOM of Zubarev [36].

The paper is organized as follows. In Sec. II, we show
how the NE density matrix can be expressed in terms of
asymptotic scattering operators. We discuss in detail the choice
of the initial conditions and partition of the system. We also
provide a central result for an iterative expansion of asymptotic
steady-state operators. In Sec. III, we use this result to rederive
the original expression of NE density matrix for a system at a
unique temperature. We postulate a generalization of the NE
density matrix for conditions including both heat and charge
currents in Sec. IV. A rigorous proof of the equivalent between
our generalized NE density matrix and the more general
McLennan-Zubarev NE statistical operator is given in Sec. V.
An explicitly example of the calculation of the NE density
matrix for a model system is given in Sec. VI. Conclusion are
presented in Sec. VII. Some central mathematical expressions
used to derive our results are provided in the Appendices.

II. NONEQUILIBRIUM DENSITY MATRIX FROM
ASYMPTOTIC SCATTERING TECHNIQUES

A. Generalities

The average of an arbitrary operator X is given by

〈X(t)〉 = Tr[ρ0X(t)] = Tr[ρ(t)X], (1)

where the density matrix ρ, solution of the Liouville equation,
is given by

ρ(t) = e−iH (t−t0)ρ0e
iH (t−t0). (2)

Here H is the total Hamiltonian of the system and ρ0 is the
initial density matrix at time t0. The trace in Eq. (1) is taken over
the appropriate degree of freedom characterizing the entire
system.

Equation (1) can be rearranged by using the property of
cyclic permutation of the trace and the fact that the total
Hamiltonian can be split into two parts: H = H0 + W , with
a reference Hamiltonian H0 (for example an unperturbed
Hamiltonian), and a perturbation W . We have, using u =
t − t0, the following expression:

〈X(t)〉 = Tr[ρ0e
iHuXe−iHu]

= Tr[e−iHuρ0e
iHuX]

= Tr[ρ0e
iH0ue−iH0ueiHuXe−iHu]

= Tr[S̄(τ )ρ0S̄
−1(τ )X], (3)

where we use the fact that ρ0 commutes with H0 and introduce
the notation τ = −u and S̄(τ ) = eiHτ e−iH0τ [37].

B. Setup and initial conditions

We consider a (finite-size) central region C connected
to two electrodes (left L and right R) acting as thermal
and particle reservoirs. These electrodes are described within
the thermodynamics limits, i.e., they are macroscopic (semi-
infinite). Initially they are at their own equilibrium, charac-
terized by two temperatures TL and TR and by two chemical
potentials μL and μR . Furthermore, we ignore the interaction
between particles in the electrodes, although the central region
C may contain such kind of interaction.

We are interested in the steady-state regime, and therefore
we take the initial state of the system to be in the far remote past
t0 → −∞. The system is then characterized by a Hamiltonian
H0. After all parts of the system are “connected” and after
some time elapses, the full system is considered to reach a NE
steady state. The system is then characterized (at time t) by a
total Hamiltonian H = H0 + W . This time t is considered to
be the “now” time (we might take it to be t = 0 in the following
but only for convenience) and t is far enough from t0 so all the
interactions act fully on the system.

The questions related to the possibility of reaching a NE
steady state have been addressed in Refs. [8–15]. It is also been
argued that a system will always reach a steady state if it is a (or
if it is connected to another) system in the thermodynamic limit
regardless the presence (or absence) of adiabatic switching of
the interactions [15,38,39].

We are now facing different possible choices to perform the
separation of the full Hamiltonian into H0 and W . We know
that the full system is described by

H =
∑

α=L,R

(Hα + VαC + VCα) + H 0
C + V int

C , (4)

where Hα,H 0
C are the noninteracting Hamiltonians of the

α = L,R electrodes and of the central region C, respectively.
The interaction between particles in region C is given by V int

C

and the coupling between region C and the α electrode is
given by VαC . We also consider that all the noninteracting
Hamiltonians, HL,H 0

C,HR , commute with each other and with
the occupation numbers Nβ (β = L,C,R). The commutators
between the interaction part V = V int

C + ∑
α(VαC + VCα) and

Nβ does not vanish, i.e., [V,Nβ ] �= 0.
There are basically two families of approaches: the parti-

tioning and the partition-free schemes. In the latter [40,41],
the three L,C,R regions are initially connected and all at
equilibrium, i.e., initially, there is one single T and one single
μeq. The applied bias between the electrodes is then introduced
under the form of an external potential. The interaction
between particles in the central region C could be introduced
in either the initial Hamiltonian H0 or in the “coupling”
term W . Such an approach has been successfully applied for
studying quantum electron transport in systems at a single
temperature [41,42]. However, it does not not seem particularly
well adapted for the study of both energy or heat and charge
transport. The introduction of a temperature gradient between
the electrodes in the partition-free method appears difficult to
perform, especially in the form of an external perturbation on
the electron system.

Therefore, we focus here on the second kind of ap-
proach based on partitioning the system. Initially, all regions
L,C,R are separated and are at their own equilibrium. The
macroscopic L and R regions are represented by a density
matrix ρL,R expressed in the grand-canonical ensemble, with
temperature Tα = 1/kβα and chemical potential μα . The initial
density matrix of the central region is assumed to take any arbi-
trary form ρC , as this region is not in the thermodynamic limit.

There are still two ways to partition the system. In case (a)
we take the noninteracting Hamiltonian H0 to be defined by
H0 = HL + HR and for the perturbation W = H 0

C + V int
C +∑

α(VαC + VCα). Therefore, we have for the initial density
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matrix ρ0 = ρL ⊗ ρR . In case (b) we take for H0 all the
noninteracting Hamiltonians of the three regions H0 = HL +
H 0

C + HR and W = V int
C + ∑

α(VαC + VCα) contains only the
coupling or interaction terms. In this case, we have for the
initial density matrix ρ0 = ρL ⊗ ρC ⊗ ρR . The question that
arises now is the following: How should the density matrix ρC

for the central region be defined?
In the setup we want to study the density matrix ρC cannot

be obtained from a canonical or from a grand-canonical
ensemble. Otherwise it would imply the presence of the
third reservoir characterized by its own temperature (and
chemical potential). Therefore, we need to define ρC from
a microcanonical ensemble. The density matrix ρC can be
given either in a pure state representation ρC = |�C〉〈�C |,
where the ket |�C〉 represents any linear combination of
the states |n〉 of the central region C, or in a mixed state
representation ρC = ∑

n wn|n〉〈n|, with probabilities wn such
as

∑
n wn = 1. The probabilities wn are not given by a

Boltzmann or Gibbs factor since they are not obtained from a
canonical or grand-canonical ensemble.

The choice of the initial preparation ({wn}) of the central
region seems quite arbitrary. However, we know that for the
long-time limit, when a system has reached a steady state after
an applied perturbation, the initial correlations vanishes and
a single steady state is reached regardless to the choice of
initial conditions [8–15]. Therefore any particular choice of
the initial density matrix ρC is not relevant. This is, however,
not the case for the transient regime [43,44].

Since we want to expand the results of Hershfield to heat
and charge transport, as well as the results of Ref. [35] to the
presence of a central region between the two electrodes, we
are choosing similar initial conditions as in Ref. [35]. Hence
we take option (a) for the partitioning of the system, i.e.,
H0 = HL + HR and W = H 0

C + V int
C + ∑

α(VαC + VCα).
One should note that case (a) is related to case (b) when

one takes, for initial condition for the central region, a density
matrix ρC with zero matrix elements (diagonal matrix for a
mixed state representation). In other words, we consider that,
initially, the central region is empty of electrons. The initial
matrix density ρ0 has then a block of zeros in the subspace
of the central region C and the matrix elements of ρα in the
subspaces of the α = L,R electrodes. In the asymptotic limit,
the NE density matrix will have matrix elements spreading
over all three different subspaces. Since the NE density matrix
is independent of the initial conditions in the steady state
[8–15], one can take a convenient choice for the initial
conditions that makes the derivations more easily tractable
[45].

Finally, the left and right electrodes are prepared in a
Gibbs grand-canonical ensemble with density matrices ρα

(α = L,R),

ρα = 1

Zα

e−βα (Hα−μαNα ), (5)

with Zα = Tr[e−βα (Hα−μαNα)]. By definition, we have
[Hα,Hβ] = 0 and [Hα,Nβ ] = 0, hence

ρ0 = ρL ⊗ ρR = 1

Z
e− ∑

α βα(Hα−μαNα ), (6)

where Z = Tr[e− ∑
α βα (Hα−μαNα)].

C. Asymptotic steady-state NE density matrix

For the asymptotic steady-state regime, we consider that
the time difference u = t − t0 goes to ∞ in Eq. (3), hence
τ → −∞. This means that either the time t is fixed and the
initial time t0 is the far remote past t0 → −∞ or t0 is fixed and
t is the far remote future. In this case, the average for the NE
asymptotic steady state is obtained from

〈X〉NE = lim
u→+∞ Tr[e−iHuρ0e

iHuX]

= lim
τ→−∞ Tr[S̄(τ )ρ0S̄

−1(τ )X]

= Tr[�(+)ρ0�
(+)−1X]

= Tr[ρNEX], (7)

where we use the definition of the Møller operator [46–49]

�(+) = lim
τ→−∞ eiHτ e−iH0τ . (8)

In Appendix A, we recall some definitions of the Møller
operators and prove one of their important properties: the inter-
twining relations. Such a relation connects the noninteracting
Hamiltonian H0 to the full Hamiltonian: �(+)H0 = H�(+).

The NE density matrix ρNE in the steady state is obtained
as [35,36]

ρNE = �(+)ρ0�
(+)−1

= 1

Z
e−βL(H+

L −μLN+
L )−βR(H+

R −μRN+
R ), (9)

where the asymptotic operator X+ is defined as X+ =
�(+)X�(+)−1 for any operator X.

Equation (9) is the starting point for deriving the NE density
matrix in the form given by Hershfield and for providing a
generalization to the cases including temperature gradients
(βL �= βR) and applied biases (μL �= μR). For completing our
derivations, we use an important identity:

H+
L + H+

R = �(+)(HL + HR)�(+)−1 = �(+)H0�
(+)−1

= H�(+)�(+)−1 = H. (10)

III. CHARGE CURRENT AT A UNIQUE TEMPERATURE

For a system at a unique temperature (βL = βR) and with
an applied bias (μL �= μR), the NE density matrix, given in
Eq. (9), is rewritten as

ρNE = e−β(H+
L +H+

R −μLN+
L −μRN+

R )/Z

= 1

Z
e−β(H−ϒ), (11)

where

ϒ = μLN+
L + μRN+

R = �(+)Y0�
(+)−1,

(12)
Y0 = μLNL + μRNR.

Equation (11) has just the same form as the NE density
matrix developed by Hershfield in Ref. [19]. This result
suggests that a series expansion of the asymptotic operator
ϒ = �(+)Y0�

(+)−1 can be obtained following the prescrip-
tions given in the original paper of Hershfield [19]. Hence
the ϒ operator in Eq. (11) and Hershfield Y operator can be
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determined from the same iterative scheme. Therefore we have
ϒ = ∑

n ϒn,I with ϒn,I (t) following the iterative relation

∂tϒn+1,I (t) = −i[W̃I (t),ϒn,I (t)], (13)

where the operators are given in the interaction representa-
tion, XI (t) = eiH0tXe−iH0t (W̃I includes the adiabatic factor
W̃I (t) = e−η|t |eiH0tWe−iH0t ), and with the initial value ϒ0,I =
Y0 since Y0 commutes with H0 [50].

It should be noted that the construction of the NE density
matrix for a system at unique temperature can also be found
in Ref. [31]. This paper provides a simpler explicit, but
more formal, construction of the general time-dependent NE
density matrix by using scattering theory and the full-time
evolution operator. The steady-state properties are recovered
as an asymptotic limit.

Finally, we can check an important property of the ϒ

operator. Since ϒ is a linear superposition of the operators
N+

α (α = L,R), we have

[N+
α ,H ] = �(+)Nα�(+)−1H − H�(+)Nα�(+)−1

= �(+)NαH0�
(+)−1 − �(+)H0Nα�(+)−1

= �(+)[Nα,H0]�(+)−1 = 0, (14)

as by definition Nα commutes with the noninteracting Hamil-
tonian H0. Therefore the operator ϒ(t) = ϒ is a constant
of motion (a conserved quantity) with respect to the total
Hamiltonian H . And the NE density matrix ρNE, given by
Eq. (11), is indeed a time-independent density matrix, as
expected for the steady state [51].

IV. SIMULTANEOUS HEAT AND CHARGE CURRENTS

In the presence of both a temperature gradient and a
chemical potential gradient (βL �= βR , μL �= μR), there is a
simultaneous flow of energy or heat and charge between the
two electrodes through the central region C.

We reformulate the general expression of the NE density
matrix [Eq. (9)] by introducing, first, an average temperature
[35] via an average β̄ defined by β̄ = (βL + βR)/2. Hence, the
exponent in Eq. (9) becomes

−βL(H+
L − μLN+

L ) − βR(H+
R − μRN+

R )

= −β̄(H+
L + H+

R ) + (β̄ − βL)H+
L + (β̄ − βR)H+

R + β̄YQ

= −β̄(H+
L + H+

R ) − β̄Y E + β̄YQ, (15)

where

β̄YQ = (βLμLN+
L + βRμRN+

R ),

β̄YE = (βL − βR) 1
2 (H+

L − H+
R ). (16)

The NE density matrix can be rewritten as follows:

ρNE = 1

Z
e
−β̄

(
H−YQ+YE

)
. (17)

Note that in Eq. (17), the generalized Gibbs-like form of the
NE density matrix is given with an effective temperature T̄

defined from β̄. This temperature differs from the temperature
of the left or right electrodes TL,R since T̄ = 1/kBβ̄ =
2TLTR/(TL + TR).

The two quantities YQ and YE follow the same for-
mal expression, i.e., Y x = cLX+

L + cRX+
R = �(+)(cLXL +

cRXR)�(+)−1, with Xα = Nα (Hα) for YQ (YE , respectively).
Furthermore, Eq. (17) has also the same formal structure
of a generalized Gibbs ensemble as originally obtained by
Hershfield.

We then suggest that the two quantities YQ,E can be
obtained from the same formal iterative scheme:

YQ,E =
∑

n

Y
Q,E
n,I ,

(18)
∂tY

Q,E
n+1,I (t) = −i

[
W̃I (t),YQ,E

n,I (t)
]

with the initial values [52]

Y
Q
0,I = Y

Q
0 = a

Q
L NL + a

Q
R NR,

(19)
YE

0,I = YE
0 = aE(HL − HR),

and

aQ
α = 2βαμα

βL + βR
(20)

aE = βL − βR

βL + βR

.

Equation (17) and the iterative scheme, Eqs. (18) and (19)
for YQ,E , are the main results of the paper. We prove exact
their formal equivalence with the McLennan-Zubarev form
of the NE density in the following section. We also provide a
concrete example for deriving the expression of the NE density
matrix for a model system in Sec. VI.

The equations (17)–(19) correspond to the most general
expression of the steady-state NE density matrix in the
presence of both heat and charge currents for a two-reservoir
device.

As shown in the previous section, YQ is a constant of motion
since it commutes with the total Hamiltonian H . It is easy
to show that YE is also a constant of motion (a conserved
quantity), since [H+

α ,H ] = �(+)[Hα,H0]�(+)−1 = 0.
At equilibrium, βL = βR , hence YE vanishes because

aE = 0. There is a single chemical potential μL = μR = μeq

and YQ = μeq(N+
L + N+

R ) [53]. Hence one recovers the usual
Gibbs form for the equilibrium density matrix in a grand-
canonical ensemble ρeq = e−β(H−μeqN)/Z, as expected.

It is important to note that YQ exists because of the presence
of the two different chemical potentials μL,R and hence it is
related to the charge current. The quantity YE exists because of
the presence of the temperature gradient (βL − βR) and hence
is related to the energy or heat flow between the electrodes.
Indeed, following Ref. [35], we have

YE = βL − βR

β̄
E+,

E+ = �(+)E�(+)−1, (21)

E = 1

2
(HL − HR).

In the Heisenberg representation, the energy current op-
erator is given by jE(t) = ∂tE(t) = i[H,E(t)] and E(t) =∫ t

−∞ jE(u)du. We assume that there is no current at t0 = −∞
since the system is decoupled, and the interaction Hamiltonian
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W vanishes. Furthermore, the operator YQ can be rewritten as

YQ = μ̄N + �μ

β̄
Q+,

μ̄ = (βLμL + βRμR)/(βL + βR), (22)

�μ = βLμL − βRμR,

and

Q+ = �(+)Q�(+)−1,
(23)

Q = 1
2 (NL − NR).

The charge current operator jQ(t) is related to the quantity Q

as jQ(t) = ∂tQ(t) = i[H,Q(t)] and Q(t) = ∫ t

−∞ jQ(u)du (no
current at t0 = −∞ since the system is decoupled). The two
quantities YQ,E are now clearly related to the charge and heat
flows induced by the NE conditions. They are also associated
with the entropy production in the system [54,55]. For the
time-dependent problem considered in Ref. [31] for a system
at a unique temperature, it was shown that the operator Y

describes how the Gibbs free energy evolves as the interaction
W is adiabatically turned on.

V. CONNECTION WITH THE MCLENNAN-ZUBAREV
NE STATISTICAL OPERATOR

In this section, we show the formal connection between of
suggested generalization of the NE density matrix Eq. (17)
and the McLennan-Zubarev NE statistical operator.

In Ref. [54], we have shown that the original approach of
Hershfield provides a NE density matrix, see Eq. (11), which
is a subset of the more general NE density matrix given by the
McLennan-Zubarev method.

The generalized NE density matrix Eq. (17) is fully com-
patible with the McLennan-Zubarev NE statistical operator
method (NESOM). Indeed, the quantities E(t) and Q(t),
related to the operators YE,Q, respectively, are expressed in
terms of the time integral

∫ 0
−∞ JS(u)du entering the definition

of the McLennan-Zubarev NE statistical operator [4,11,54].
The latter is given by [56]

ρNESO = 1

Z
exp

{
−

∑
α

βα (Hα − μαNα)

+
∫ 0

−∞
ds eηsJS(s)

}
. (24)

The quantity JS(u) is called the nonsystematic energy flows
[11] and is related to the entropy production rate of the system
[54]. It is given by

JS(s) =
∑

α

βαJ q
α (s),

(25)

J q
α (s) = d

du
[Hα(s) − μαNα(s)],

where all operators are given in the Heisenberg representation.
The concept of the nonsystematic energy flows in the NE-

SOM is also consistent with the Gibbs free energy description
given in Ref. [31] (in this work, the variational for the NE
density matrix and the corresponding thermodynamic grand

potential corresponds to an entropy maximization principle,
constrained by both the particle flow effects and the internal
energy minimization).

In Appendix B, we derive a lemma which shows how the
time integral of an operator in the Heisenberg representation
can be expanded into a series of operators, in the interaction
representation, involving commutators with the interaction
Hamiltonian WI . Hence the integral

∫ 0
−∞ JS(u)du entering the

definition of ρNESO can be expanded in a series similar to that
obtained for the YE,Q operators defining of the generalized
NE density matrix.

We now proceed with the formal derivation of the connec-
tion between Eqs. (17) and (24). For that we first note that

JS(s) = i
∑

α

[H,βαHα(s) − βαμαNα(s)]

= i
∑

α

eiHs[W,βαHα − βαμαNα]e−iHs, (26)

then we rewrite
∑

α βαHα as follows:

βLHL + βRHR = β̄(HL + HR + W )

− β̄W + (βL − β̄)HL + (βR − β̄)HR

= β̄
(
H − W + YE

0

)
(27)

with the help of Eq. (19).
Hence the NE statistical operator in Eq. (24) can be

reformulated as

ρNESO = 1

Z
exp − β̄

{
H − W + YE

0 − Y
Q
0

−
∫ 0

−∞
ds eηsJS(s)/β̄

}
. (28)

The integral of the nonsystematic energy flows is obtained
from different contributions:∫ 0

−∞
ds eηsJS(s)/β̄ = BQ + BE

tot, (29)

where

BQ =
∫ 0

−∞
ds eηseiHs(−i)

[
W,

∑
α

βαμαNα/β̄

]
e−iHs

=
∫ 0

−∞
ds eηseiHs

( − i
[
W,Y

Q
0

])
e−iHs, (30)

and

BE
tot =

∫ 0

−∞
ds eηseiHsi

[
W,

∑
α

βαHα/β̄

]
e−iHs

=
∫ 0

−∞
ds eηseiHs

(
i
[
W,H − W + YE

0

])
e−iHs, (31)

using Eq. (27). The commutator in Eq. (31) contains three
terms, the first is simply the time derivative of the operator W in
the Heisenberg representation: ∂sWH (s) = eiHsi[H,W ]e−iHs .
Hence the time integral (with the adiabatic factor) simply
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gives the value −WH (s = 0) = W . The second term in the
commutator vanishes, while the third term is

−BE =
∫ 0

−∞
ds eηseiHs

(
i
[
W,YE

0

])
e−iHs . (32)

Hence ∫ 0

−∞
ds eηsJS(s)/β̄ = BQ − W − BE, (33)

and the NE statistical operator ρNESO can be rewritten in a
compact form similar to Eq. (17):

ρNESO = 1

Z
e−β̄(H−ϒQ+ϒE ), (34)

with ϒx = Y x
0 + Bx and x ≡ Q,E. We can now prove

that the quantities ϒQ,E obey the same series iterative
expansion as their counterparts YQ,E in Eq. (18). This is
readily done by using the Peletminskii lemma described in
Appendix B. Indeed according to the lemma, the quantity
Bx = ∫ 0

−∞ ds eηseiHs(−i[W,Y x
0 ])e−iHs is strictly equal to

Bx =
∫ 0

−∞
ds eηseiH0s

(− i
[
W,Y x

0

] − i[W,Bx]
)
e−iH0s

= −i

∫ 0

−∞
ds

[
W̃I (s),Y x

0

] − i

∫ 0

−∞
ds

[
W̃I (s),Bx

I (s)
]
.

(35)

The first commutator in the left-hand side of Eq. (35) is just
the definition of the time derivative of the quantity Y x

1,I (s), as
∂sY

x
1,I (s) = −i[W̃I (s),Y x

0 ]. Hence the corresponding integral
simply gives Y x

1,I (s = 0) − Y x
1,I (s = −∞) = Y x

1,I (s = 0), as
we assume that W̃I (s) vanishes at s = −∞. Therefore we
have

Bx = Y x
1,I (s = 0) − i

∫ 0

−∞
ds

[
W̃I (s),Bx

I (s)
]
. (36)

By inserting the definition of Bx itself in the right-hand-side
commutator of Eq. (36), we obtain the series expansion

Bx = Y x
1,I (0) +

∫ 0

−∞
ds

[−iW̃I (s),Y x
1,I (s)

]

+
∫ 0

−∞
ds

[
−iW̃I (s),

∫ s

−∞
ds1

[
−iWI (s1),

∫ s1

−∞
ds2

[−iW̃I (s2),Y x
0

]]]
+ · · · . (37)

Hence we obtain the expected series expansion ϒx =
Y x

0 + Y x
1,I + Y x

2,I + · · · , where the different terms of the
series are given by the iterative scheme Y x

n+1,I =∫ 0
−∞ ds [−iW̃I (s),Y x

n,I (s)] or, equivalently, by the differential
equations defined in Eq. (18).

We have therefore proven in an accurate formal way that
there is a one-to-one correspondence between our generaliza-
tion of the NE density matrix postulated in Sec. IV and the
exact general form of the McLennan-Zubarev NE statistical

operation Eq. (24), henceforth proving (a posteriori) the
validity of our results given in Sec. IV.

VI. AN EXAMPLE

We now present an example for the lowest-order expansion
of the NE density matrix by considering a noninteracting
system and a simple description for the central region C.

In the absence of interaction, the Hamiltonian for the
central region C is simply given by H 0

C = ε0d
†d, where

d† (d) creates (annihilates) an electron in the level ε0. The
noninteracting electrodes are also described by a quadratic
Hamiltonian α = L,R with Hα = ∑

kα εkαc
†
kαckα , where kα

is an appropriate composite index to label the free electrons of
the α electrode. The coupling between the central region and
the electrodes is given via some hopping matrix elements tkα ,
and we have

∑
α(VCα + VαC) = ∑

k,α tkα(c†kαd + d†ckα). We
recall that, by definition, we have W = H 0

C + ∑
α(VCα + VαC)

and that the only nonvanishing anticommutators are {d,d†} =
1 and {ckα,c

†
pβ} = δkδαβ .

We now proceed to calculate the operators Y x (x = Q,E)
from the iterative scheme developed in Sec. IV. The zeroth
order is given by the definition of the operators Y x

0 , i.e., Y
Q
0 =

a
Q
L NL + a

Q
R NR and Y

Q
0 = aE

L HL + aE
R HR from Eq. (19). Note

that we introduced (for later convenience) a new notation for
Y

Q
0 , where aE

L = aE = −aE
R from Eq. (19).

The first-order contribution Y x
1,I involves the calculation

of the commutator [W,Y x
0 ], which is built from three differ-

ent kinds of commutators [d†d,c
†
kαckα], [c†pβd,c

†
kαckα], and

[d†cpβ,c
†
kαckα]. We find[

W,Y
Q
0

] =
∑

α

aQ
α

∑
k

tkα(d†ckα − c
†
kαd)

= i
∑

α

aQ
α jQ

α , (38)

with the conventional definition of the charge current operator
jQ
α = −i

∑
k tkα(d†ckα − c

†
kαd); and[

W,YE
0

] = i
∑

α

aE
α jE

α , (39)

with the definition of the energy current operator jE
α =

−i
∑

k εkαtkα(d†ckα − c
†
kαd) by analogy with the definition of

the charge current. Therefore, the first-order contribution Y x
1,I

is obtained from

Y x
1,I =

∑
α

ax
α

∫ 0

−∞
ds eηsj x

α,I (s), (40)

with jx
α,I (s) being the interaction representation of jx

α (x =
Q,E). Such a result can also be obtained, in a more
straightforward way, from the expression of the NESO given
in Eq. (24). Indeed, the first-order contribution Y x

1,I is simply
obtained from the integral of the nonsystematic energy flow
by replacing the Heisenberg representation of JS(s) by its
lowest-order expansion in the interaction representation.

Interestingly, one can introduce an advanced quantity
f adv(s) by defining f adv(s) = θ (−s)eηsf (s). Hence the

062119-6



NONEQUILIBRIUM DENSITY MATRIX IN QUANTUM OPEN . . . PHYSICAL REVIEW E 90, 062119 (2014)

time integral in Eq. (40) becomes the Fourier transform∫ ∞
−∞ ds j

x,adv
α,I (s) of j

x,adv
α,I (s) evaluated at ω = 0. The first-order

contributions

Y x
1,I =

∑
α

ax
αj

x,adv
α,I (ω = 0) (41)

are then related to the static (dc) limit of the current operators.
The higher-order contributions are more cumbersome to

evaluate explicitly. For example, the second-order contribu-
tions are given by

Y x
2,I =

∫ 0

−∞
ds eηs

[−iW̃I (s),Y x
1,I (s)

]
=

∑
α

ax
α

∫
ds

∫
ds1 eηseηs1eiH0s

× [−iW,jx
α,I (s1 − s)]e−iH0s . (42)

Their evaluation involves not only the calculation of the
commutator between W and jx

α but also the series expansion
of jx

α,I in terms of H0.
For any perturbation series expansion, the results given by

a lowest-order expansion of the NE density matrix will always
differ from the exact (fully resumed) results. We provide, in
Appendix C, a brief analysis of the errors introduced by a finite
series expansion of the YQ,E operators.

One can also draw some analogies between our results
and the results for the expression of the operator Y (system
at a unique T ) given in Ref. [22]. This can be done by
introducing the definition of the advanced Green’s func-
tion gadv

0 (ω) = i
∫

dseηsθ (−s)e±iH0seiωs = [ω ± H0 − iη]−1.
Furthermore the central quantities, in the interaction rep-
resentation of the current operators, are eiH0sd†ckαe−iH0s

and eiH0sc
†
kαde−iH0s . This quantities can be re-expressed as

follows:

eiH0sd†ckαe−iH0s = −d†ckα(1 + e−iεkαse−iH0s)
(43)

eiH0sc
†
kαde−iH0s = −c

†
kαd(1 − eiεkαse−iH0s),

and the time integration of the corresponding time-dependent
factors will lead to the appearance of the Green’s functions in
the series expansion of the YQ,E terms.

One should, however, note that, by definition, our results
formally differ from the expression of the operator Y given
in Ref. [22]. We are dealing with a general problem where
βL �= βR and μL �= μR and the possibility of an asymmetric
potential drop, i.e., our μα , differ from the symmetric case
μL = V/2 = −μR . Furthermore, our expressions will differ
from the results of Ref. [22] since we are using a different
initial density matrix ρ0 = ρL ⊗ ρR . We do not consider that
initial the central region is described by a canonical ensemble
ρC �= e−βH 0

C /Z as explained in detail in Sec. II B.
Finally, we briefly comment on possible extensions to

systems where the interaction is not only limited to the central
region. We suggest that the essential point is that the reservoirs
are indeed described by an equilibrium density matrix, hence
interaction may exist in them and throughout the entire system.
However, when considering the iterative scheme to calculate
the YE,Q quantities, one can anticipate that each iteration will

involve operators which get more and more spread out over
the entire system (when interaction exist inside the leads). This
point might then lead to strong computational constraints in
comparison to the cases where the interaction is present only
in the central region.

VII. CONCLUSION

We have proposed how to expand the NE density matrix
originally developed by Hershfield to the cases of simultaneous
(steady-state) current flows of heat and charge. The stationary
density matrix of an open system is written in the generalized
Gibbs form ρNE = e−β̄(H−YQ+YE )/Z, with the nonequilibrium
“correction terms” YQ,E being related to the charge and energy
currents imposed by the NE conditions. We have provided
an explicit iterative scheme to calculate the YQ,E operators
which is similar to the iterative scheme developed originally
by Hershfield.

We have also proved in a rigorous way that our generalized
NE density matrix is strictly equivalent to the McLennan-
Zubarev form of the NE statistical operator, validating a
posteriori the correctness of our scheme.

The operator β̄(YE − YQ) is related to the entropy produc-
tion of the NE quantum open system [55]. It can be calculated
in the absence and in the presence of interaction and gives
information about the dissipation in the driven system. We have
provided an explicit example for the lowest-order expansion
of the NE density matrix for a noninteracting model system.

The generalized scheme to calculate the NE density matrix
that we have presented here can now serve as the basis for
numerical calculations of both heat and charge transport using
the numerical techniques developed on the original approach
of Hershfield [22–28]. As clearly shown in Ref. [31], the NE
density matrix has variational properties and hence can also
be used to define a rigorous single-particle scheme in the
spirit of a density-functional-based theory (once the proper
NE functionals are properly set up) [31].

The NE density matrix can also lead to more insight
for the NE physical properties of quantum open systems
and to the derivation of NE thermodynamical laws, such
as NE fluctuation-dissipation relations [57], the NE electron
distribution function [58], and NE charge susceptibility [59].

Finally, we make two general comments. First, we briefly
comment on the connections between the NE density ma-
trix and the more widely use NE Green’s functions (GF)
approaches. The GF are correlation functions whose thermo-
dynamical averages are formally identical to those calculated
in Hershfield approach (which we generalized in the present
paper for the cases of two reservoirs at different chemical
potentials and temperatures). As we explained in Ref. [54],
both perturbation series used in the NE GF approach and in
the derivations of the equations for the YQ,E operators start
from the same nonequilibrium series expansion. They are two
different ways of summing that series. For a noninteracting
problem for which the series can be resumed exactly, the NE
GF and the Hershfield Y operator approach provide the same
results [20,21]. For an interacting system, one must resort to
approximations to resum partially the series, and therefore
the two approaches are similar only when the same level of
approximations are used [22,60,61].
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Second, we want to point out that various authors have
constructed a number of theoretical schemes for the description
of irreversible processes in NE systems. In this paper, we
have focused on the approaches developed by Hershfield and
Zubarev. Other schemes have been developed by Peletminskii
et al. to find expressions for the NE density matrix [62–65].
A critical study of the equivalence between the two kinds of
methods can be found in Ref. [66]. It is interesting to note
that in the Peletminskii approaches, the solution is related to
a series expansion of the density matrix, as obtained from
a perturbation expansion of the solution of the Liouville
equation for the density matrix (and with the appropriate
sources term that ensure the irreversible nature of the time
evolution) [67]. In the other approaches, the NE density
matrix is also given by a series expansion but rather in
the form of a linked-cluster-like expansion [68], i.e., the
corresponding series expansion enters the argument of an
exponential functional. In principle, if all the resummations
are performed exactly the two kinds of approach are also
equivalent.
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APPENDIX A: THE MØLLER OPERATORS
FOR SCATTERING

By definition [46–49], the Møller operators are given for
two asymptotic limits:

�(±) = lim
t→∓∞eiHte−iH0t . (A1)

corresponding to retarded or advanced evolution of the system.
Alternatively, the Møller operators can be also expressed in an
integral form [47–49]:

�(±) = lim
η→0+

(∓η)
∫ ∓∞

0
du e±ηueiHue−iH0u. (A2)

They follow the intertwining property: �(±)H0 = H�(±),
which we now prove for �(+). We start by writing:

�(+) = lim
η→0+

∫ 0

−∞
dτ ηeητ eiHτ e−iH0τ

= limη→0+

∫ 0

−∞
dτ ηeητ S̄(τ ). (A3)

It can be seen that S̄(τ ) obeys the following differential
equation: ∂τ S̄(τ ) = iS̄(τ )WI (τ ). Hence

H�(+) = lim
η→0+

∫ 0

−∞
dτ ηeητ eiHτHe−iH0τ

= �(+)H0 + lim
η→0+

∫ 0

−∞
dτ ηS̄(τ )W̃I (τ ), (A4)

where the adiabatic term has been included in W̃I (τ ). The
integral in Eq. (A4) becomes

η

∫ 0

−∞
dτ S̄(τ )WI (τ ) = −iη

∫ 0

−∞
dτ∂τ S̄(τ )

= −iη[S̄(τ )]0
−∞

= −iη[1 − S̄(−∞)], (A5)

and vanishes in the limit η → 0+ since S̄(−∞) = S̄(−∞)† =
�(+)−1 is finite.

Hence the relation H�(+) = �(+)H0 is proved.

APPENDIX B: THE PELETMINSKII LEMMA

In this section, we consider a useful lemma given by
Peletminskii in the Appendix of Ref. [62]. We rederive the
lemma below since we use a different sign convention and
include an adiabatic factor eηx .

The lemma provides, in an integral form, a connection
between the Heisenberg representation of an operator and the
corresponding series expansion of operators in the interaction
representation.

Suppose that, for an arbitrary operator A, we define

B =
∫ 0

−∞
dx eηxeiHxAe−iHx =

∫ 0

−∞
dx eηxAH (x), (B1)

where AH (x) is the Heisenberg representation of A with
respect to the total Hamiltonian H = H0 + W and η → 0+.

Introducing an intermediate quantity,

Ā(x) = e−iH0xeiHxAe−iHxeiH0x, (B2)

we can see that Ā(x) follows the differential equation
∂xĀ(x) = i[WI (−x),Ā(x)] since the quantity P (x) =
e−iH0xeiHx = S̄−1(−x) obeys ∂xP (x) = iWI (−x)P (x).
Hence

Ā(τ ) = A + i

∫ τ

0
dx [WI (−x),Ā(x)], (B3)

where WI (x) is the interaction representation of W : WI (x) =
eiH0xWe−iH0x .

By reversing the definition Eq. (B2) and using Eq. (B3), we
find that

B =
∫ 0

−∞
dx eηxeiH0xAe−iH0x

+ i

∫ 0

−∞
dx eηx

∫ x

0
dy eiH0x[WI (−y),Ā(y)]e−iH0x.

(B4)

Now we follow two steps of calculation: (1) use the
definition of WI (−y) and change the variable y into v = x − y

and (2) use the definition of Ā(x) to transform Eq. (B4) into

B =
∫ 0

−∞
dx eηxeiH0xAe−iH0x

− i

∫ 0

−∞
dx eηx

∫ 0

x

dv eiH0v[W,AH (x − v)]e−iH0v.

(B5)

Finally, by swapping the order of the integrals
∫ 0
−T

dx∫ 0
x

dv → ∫ 0
−T

dv
∫ v

−T
dx (with T ≡ ∞) and identifying
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∫ v

−∞ dx eηxeiH (x−v)Ae−iH (x−v) = eηvB, we obtain the follow-
ing lemma:

B =
∫ 0

−∞
dx eηxeiHxAe−iHx

=
∫ 0

−∞
dx eηxeiH0x(A − i[W,B])e−iH0x. (B6)

Equation (B6) connects, in an integral form, the Heisenberg
representation of A with a series expansion of commutators
([. . . [W,[W,A] . . . ]) in the interaction representation. The
lemma Eq. (B6) is central to our proof of the equivalence
between the NE density matrix ρNE and the McLennan-
Zubarev NE statistical operator.

APPENDIX C: CONVERGENCE OF THE
EXPECTED VALUES

One can perform the calculation of the NE density matrix
by using only a finite number of terms in the series expansion
of the YQ,E (in Sec. VI we show only the two first terms).
We call the corresponding NE density matrix ρNE

(n) , and it is
obtained from the lowest-n terms in the series expansion of
the operators,

Y
Q,E
(n) =

n∑
i=0

Y
Q,E
i,I , (C1)

instead of the full series given by Eq. (18).

The corresponding error induced the average of any
operator X is given by

δ〈X〉NE
(n) = Tr[ρNEX] − Tr

[
ρNE

(n) X
] = Tr

[(
ρNE − ρNE

(n)

)
X

]
,

(C2)

with ρNE
(n) = exp[−β̄(H − Y

Q
(n) + YE

(n))]/Z(n) and the partition
function Z(n) = Tr[ρNE

(n) ].
We can now proceed with an analysis in terms of the power

of the interaction Wn. Both partition functions Z = Tr[ρNE]
and Z(n) contain all orders of the interaction O(Wn) with n =
0,1,2,3, . . . . In order to get the leading term (lowest power
of Wn) in δ〈X〉NE

(n) , we can just consider the difference of the
two exponentials in the NE densities. At the lowest order, it is
easily found that

e−β̄(H−YQ+YE ) − e−β̄(H−Y
Q
(n)+YE

(n)) ∼
∞∑

i=n+1

β̄
(
Y

Q
i,I − YE

i,I

)
,

(C3)

which gives a leading term in O(Wn+1).
Therefore, for the calculations shows in Sec. VI, if we

consider only the terms up to n = 1, the error is (for the
noninteracting case) in t2

kα . Such a lowest-order expansion is
only expected to be valid in the limit of weak coupling between
the central region and the electrodes.
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