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The paper presents a concept to compress and synthesize complex material morphologies that is based on
Wang tilings. Specifically, a microstructure is stored in a set of Wang tiles and its reconstruction is performed by
means of a stochastic tiling algorithm. A substantial part of the study is devoted to the setup of optimal parameters
of the automatic tile design by means of parametric studies with statistical descriptors at heart. The performance
of the method is demonstrated on four two-dimensional two-phase target systems, monodisperse media with hard
and soft disks, sandstone, and high porosity metallic foam.
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I. INTRODUCTION

Randomness and heterogeneity govern the majority of
real-world processes. Indeed, materials which are considered
macroscopically homogeneous usually display heterogeneity
across multiple scales, e.g., defects in crystalline or qua-
sicrystalline lattice, imperfect or entirely random particle
packings, random distributions of pores or inclusions, etc. [1].
Regarding the incorporation of morphological information in
multiscale simulations, it has progressed mainly through a
unit cell definition for heterogeneous materials exhibiting a
locally periodic arrangement of constituents [2,3]. Moreover,
the unit cell approach has also penetrated into the framework
of random microstructures, namely due to the lack of an
appropriate alternative, e.g., [4–6]. In this paper, we thus bring
a generalization to the single unit cell concept that is based on
Wang tiles and tailored especially for computer simulations of
disordered material systems.

The concept of Wang tiles was introduced by Hao Wang as a
method to decide whether a certain class of logical statements
can be proven by means of axioms of mathematical logic
encoded in planar patterns [7,8]. Afterwards, a focus was
on the discovery of a finite set of tiles that could tile the
infinite plane aperiodically in order to find counterexamples
to Wang’s decidability conjecture on statements mirrored in
periodic sets [9].

The first result in this direction was obtained by Berger,
who established a relation between aperiodic Wang tilings
and the Turing-Davis halting problem and introduced the first
finite aperiodic set consisting of 20 426 tiles [10], reduced
to 104 later on [11]. Further developments were brought by
Amman [11], who originated the discovery of the set of 16
tiles, and by Culik and Kari [12], who scored 13. Kari and
Culik also introduced an extension to three dimensions by
means of Wang cubes [13].

In addition to the strictly aperiodic constructions, tile sets
that are not aperiodic themselves may allow for aperiodic
tilings in a stochastic sense. This was first recognized by
Cohen et al. [14], who used Wang tiles to produce irregular

*martin.doskar@fsv.cvut.cz
†novakj@cml.fsv.cvut.cz
‡zemanj@cml.fsv.cvut.cz

patterns for purposes of computer graphics as an extension
of Stam’s seminal idea based on the aperiodic Amman
set [15]. Conforming edge information of Wang tiles was
also instrumental in the syntheses of biological motifs. In
particular, the tiles were exploited for the assembly of
DNA double-crossover molecules with edges playing the role
of peptide bonds according to the Watson-Crick molecular
complementarity [16]. In addition, the motifs based on DNA
branched junctions were used together with tiles for self-
assembly of aperiodic scaffolds in order to produce devices
or specifically structured nanometer grids [17].

Wang tiles have also found use in statistical physics. For
example, Amman’s set was used for the modeling of nucleation
of a metastable quasicrystalline phase [18] whose formation
depends on the cooling rate of the alloy melt [19]. The model
was based on the thermodynamics of Wang tilings studied
earlier by Leuzzi et al. [20].

As for the micromechanics of materials, the application of
Wang tiles to the compression of the geometry of particulate
suspensions was proposed in Ref. [21]. In this work, the
tiles carry microstructural patterns designed to minimize a
difference between spatial statistics of a target system and
the reconstructed media. Preliminary results for tiles carrying
patterns of mechanical fields were reported in Ref. [22].

In this paper, we further examine the potential of Wang tiles
in the compression of real-world material systems. To this goal,
tiles whose design rests on image fusion techniques [14,23] are
investigated and combined with statistics arguments in order
to determine the optimal setting of design parameters. The
methodology is demonstrated on microstructural patterns of
the media with uniformly distributed equal-sized hard and
soft disks, sandstone, and the closed cell aluminum foam
Alporas R©. The proximity of synthesized microstructures to
reference specimens is quantified by means of the one- and
two-point probability functions, and the two-point cluster
function.

II. BACKGROUND

The techniques combined in the present paper originate
from various fields. A brief overview of relevant basics is
given first as their omission would make the paper difficult
reading.
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DOŠKÁŘ, NOVÁK, AND ZEMAN PHYSICAL REVIEW E 90, 062118 (2014)

N

W

S

E

21 3

4 5 6

7 8

71 4 8 5

5 7 ?

4 3

(a) (b) (c)

FIG. 1. (Color online) Wang tiling concept: (a) tile with col-
ored edges, (b) set W8/2-2, i.e., nc

1 = nc
2 = 2, nt = 8, nNW = 2,

c1 ∈ {green,red}, c2 ∈ {blue,yellow}, and (c) single step of CSHD
algorithm.

A. Concept of stochastic Wang tilings

Basic elements of the concept are Wang (i) tiles, (ii) tile sets,
and (iii) tilings. A Wang tile is a square, jigsawlike, quadromi-
noe piece capable of carrying arbitrary microstructural patterns
within its entire domain including edges [8]. It is not allowed
to be rotated or reflected when placed into a tiling, so the tiles
with an identical sequence of edges mutually rotated by kπ/4
where k ∈ N are considered different.

In applications, the edges are usually distinguished by
colors [14] or alphabetical codes [21], or enumerated by
integers [12,18]; cf. Fig. 1(a). A collection of tiles that enables
to cover up an planar domain is called a tile set, Fig. 1(b),
here referred to as Wnt/nc

1 − nc
2, with cardinality nt and nc

i

representing the numbers of unique codes on horizontal (i = 1)
and vertical (i = 2) edges, respectively [21]. The magnitude of
nt depends on the choice of nc

i , so it holds that nt = nNW
√

ncs,
where nNW ∈ M = {2, . . . ,

√
ncs}. Here ncs stands for the

number of all four-tuples given by the admissible permutations
of edge codes ci , or, in other words, it refers to the cardinality
of the so-called complete stochastic Wang tile set. Having the
above notion at hand, notice that the set W1/1-1 corresponds
to a single periodic unit cell (PUC).

Reconstruction or synthesis of a piece of microstructure
gives a tiling. It is a discrete mapping of tiles from the set onto
the centers of a square planar lattice, where each tile conforms
with its neighbors through coincident edge codes or is bounded
from the outside. In addition, we assume that there are no gaps
in the tiling.

When tiling the plane stochastically, the tiles are randomly
selected from the set and successively placed one by one, either
row by row or column by column, so that the edge codes of
a newly placed tile must comply with those of its neighbors
placed beforehand. Owing to the rectangular nature of Wang
tiles, a pair of edges adjacent to the northwestern (NW) corner
is controlled; Fig. 1(c). The index of the tile to be placed is

FIG. 2. (Color online) Wang tilings consisting of 50 × 50 tiles
(10 × 10 tiles in zoomed area) created by (a) a Kari-Culik 13-tile
set and related cellular automaton and (b) a W8/2-2 and CSHD
algorithm. Individual tiles are distinguished by solid colors.

selected randomly from the subset, which stores the tiles of
identical NW edge code combinations. Recall that nNW must
equal at least 2, the minimal cardinality of the subset, in order to
keep the procedure random. Aperiodicity of resulting tilings
is guaranteed assuming the random number generator never
returns a periodic sequence of numbers. We call the resulting
algorithm CSHD, in honor of its authors [14]. In order to give
an impression on the distinction between tilings made up of
aperiodic and stochastic sets, respectively, compare the results
in Figs. 2(a) and 2(b). Clearly, the first method produces rather
artificially looking patterns, while the latter leads to tilings
with randomly distributed periodic clusters, e.g., the circled
purple region in Fig. 2(b). This phenomenon can be controlled
by increasing nNW, though at the expense of larger sets.

B. Image quilting

The proposed automatic design of tiles rests on the image
quilting algorithm (IQA) due to Efros et al. [23] that allows
for the fusion of raster images without severe visual defects.
It seeks a continuous path along which the desired pieces
of microstructure are glued together, minimizing the sum
of square differences of pixel values (1/0 for binary media)
restrained to a certain overlap. Assume a pair of samples A

and B, both of the same height h and overlaying in a strip of
the width ω. The local error in coincident pixels is defined as

e(i,j ) = [A(i,j ) − B(i,j )]2 for

(i,j ) ∈ {1, . . . ,h} × {1, . . . ,ω} (1)

and gives rise to the cumulative error

E(i,j ) =
{
e(i,j ), i = 1
e(i,j ) + min{E(i − 1,j − 1),E(i − 1,j ),E(i − 1,j + 1)}, i ∈ {2, . . . ,h}, (2)

where the nondefined entries E(i,0) and E(i,ω + 1) are excluded from consideration. The minimal cumulative error within the
bottom row

EQ = E(h,Q(h)) = min{E(h,j ),j ∈ {1, . . . ,ω}} (3)

thus characterizes defects caused by the image fusion and determines the horizontal coordinate of the sought quilting path Q(h)
in the bottom row. The remaining path coordinates Q(i), i = 1, . . . ,h − 1, are found recursively by decrementing i:

E(i,Q(i)) = min{E(i,Q(i − 1) − 1),E(i,Q(i − 1)),E(i,Q(i − 1) + 1)}. (4)
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FIG. 3. (Color online) (a), (b) Illustration of automatic tile design due to Cohen et al. [14] and (c) proposed patch enrichment.

The simplicity of the algorithm is redeemed by noticing
that the path can propagate only straight ahead or diagonally
upwards. Moreover, it does not distinguish whether the path
runs through inclusions or the matrix phase, yielding the
inclusion shapes to deteriorate. This disadvantage, pronounced
namely for binary media, can be reduced by recasting Eq. (1)
as

e(i,j ) =
{

0, for A(i,j ) ∧ B(i,j ) in matrix
1, otherwise, (5)

which leads to a modified image quilting algorithm referred to
as IQAM in the sequel.

C. Statistical quantification of microstructure

Assuming a statistically homogeneous quasiergodic binary
composite [24], we can best quantify the microstructure
morphology by means of the n-point probability function Sn,
which gives the probability of locating n points x1, . . . ,xn in
a given phase. This phase corresponds to inclusions in what
follows. In particular, it is understood as the white phase for
hard disks, soft disks, and sandstone, and black phase for
Alporas R©(see Fig. 5). The second phase is referred to as a
matrix.

Since we are primarily concerned with spatial correlations
of multiples of the tile edge length �, induced by the proposed
compression framework, it is sufficient to limit the exposition
to the two-point probability S2(x1,x2) = S2(x2 − x1), which
can be evaluated effectively in Fourier space [1].

Short-range defects arising from the quilting technique are
investigated by the two-point cluster function C2(x1,x2) =
C2(x2 − x1) [25], which can be understood as a special case
of the S2 function as it gives the probability of finding a pair
of points x1 and x2 not only in the same phase, but also in
the same cluster. The cluster is understood as the part of a
phase where the two points x1 and x2 can be reached through
a continuous path [26]. Thus, in addition to the information
on the distribution of inclusions in the matrix phase given
by S2, C2 provides us with a short-range order description of
inclusion shapes. A few limit cases can be distinguished. For
distances |x2 − x1| > bmax, where bmax refers to the maximum
dimension of the largest inclusion, we have C2 = 0. The
limit case |x2 − x1| = 0 yields C2 = S2 = S1 = φ, where φ

symbolizes the volume fraction (the one-point probability
function).

III. AUTOMATIC DESIGN OF TILES

In order to arrive at microstructure compressions consistent
with the reference microstructures from the viewpoint of spa-
tial statistics, the techniques introduced above are combined.
Contrary to our previous study based on an optimization
approach [21], the automatic design of tiles is proposed as
it better suits the complex morphologies under consideration
and is computationally more efficient.

Following [23], an automatically designed tile arises as a
diamond shape cut out from the aggregate of four overlapping
square reference samples, here called r samples, that are placed
according to the edge codes of the tile to be produced (Fig. 3).
The four r samples are fused within an overlap ω by means of
the quilting algorithm and the resulting tile rotated by π/4. Its
edge length yields from the r samples dimension h and overlap
width ω as

� = �
√

2(h − ω)�, (6)

where �·� denotes the round-up operation to the nearest integer.
The quilting paths among individual r samples always

propagate from the tile corners towards the center. The
continuity of the tiling microstructure across the edges is
ensured by the facts that the cut is taken diagonally across
the r sample and that the same r sample is used for all edges
sharing the same code.

It has been shown in previous works that a specific morphol-
ogy design technique may have an impact on the accuracy of
the representation of long-range orientation orders [21,22,27].
Induced artifacts related to repeating tile edges or interiors may
dominate spatial features of synthesized microstructures [21].
Taking this into consideration, the automatic design procedure
based on the fusion of the four r samples leads to compressions
that strongly emphasize tile edges to the interiors. This is
obvious from Fig. 3(b), where almost the entire tile quarter is
related to the edge information. A possible remedy proposed
here is to replace a piece of the microstructure around the
center of automatically designed tiles by a square patch of the
reference microstructure taken independently of the r samples
and quilted around its perimeter as drawn in Fig. 3(c).
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FIG. 4. Sensitivity study flowchart to be passed through automatic tile design procedure. User defined input parameters are placed underneath
arrow lines among individual cells. Outputs entering consecutive steps are written above them.

A. Optimal overlap and best quilting performer

Four different target microstructures were considered in
order to perform a sensitivity study on parameter values ω, h,
and nc

i with respect to the choice of the quilting algorithm IQA
or IQAM (Fig. 4).

In particular, we have explored monodisperse hard disks
(referred to as h disks) [Fig. 5(a)], monodisperse soft disks
(s disks) [Fig. 5(b)], sandstone [Fig. 5(c)], and a large
planar scan of Alporas R© foam [Fig. 5(d)]. Notice that several
cross sections of sandstone CT data were used due to the
insufficiency of microstructural information contained in a
single one.

The first aim was to find the optimal width of the overlap
ω. For each material system, a pair of r samples of h = 300
pixels was chosen randomly from the reference microstructure.
We varied the parameter ω from 1 pixel up to 10 × b pixels,
where b =

√
b2

1 + b2
2, and bi is the length of the mean inclusion

FIG. 5. (Color online) Target systems: (a) h disks, (b) s disks,
(c) sandstone (courtesy of Adrian Russell, University of New
South Wales, Sydney, Australia [28]), and (d) Alporas R© (courtesy
of Jiřı́ Němeček, Czech Technical University in Prague, Czech
Republic [29]).

bounding box in ith spatial direction. The minimum error path
was sought after each increment and quantified according to
Eq. (2). The whole process was repeated a hundred times to
identify the sensitivity of the results to selection of different
r-sample pairs, while keeping their height h unchanged.

Quite surprisingly at first glance, IQA outperforms IQAM
in the sense of the norm defined by Eq. (2). For example, it can
be observed that for the target system consisting of h disks,
Fig. 6(a), IQA returns a zero-error quilting path for ω/b > 6,
whereas its modified version, IQAM, increases the value ω/b

over 9.5. No zero-cumulative-error path Q could be found for
other material systems no matter the quilting algorithm we
used. The errors exhibit similar asymptotic decay, except for
the magnitude of the limit plateaus and oscillatory behavior
of the sandstone microstructure. Finding a quilting path as
such is not the only problem related to the automatic design
of tiles. Another difficulty arises from the random selection of
r samples and from the fact that we take systematically into
account only a portion of the microstructural information they
contain. Moreover, the quilting algorithms bring additional
very local defects into the morphology, which influences the
quality of the designed tiles.

Therefore, we explored the quilting process also from the
perspective of normalized deviation between phase volume
fractions of the target and reconstructed systems, φTS and φRS,
respectively,

Eφ = |φRS − φTS|
φTS

, (7)

and the relative error of the two-point cluster statistics defined
as

EC =
∫

(ω×h)

∣∣CRS
2 (x) − CTS

2 (x)
∣∣dx∫

(ω×h) C
TS
2 (x) dx

. (8)

Both IQA and IQAM demonstrate almost monotonic con-
vergence in Eφ to a plateau value of about 0.05 for all materials
except sandstone, for which the error is still decreasing;
however, we were not able to proceed with the analysis

TABLE I. Optimal parameters of automatic design with respect
to studied material systems.

Parameter h disks s disks Sandstone Alporas R©

ω/b 5 5 6 6
ω (pixels) 40 75 120 180
h (pixels) 200 250 300 400
� (pixels) 227 107 255 312
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FIG. 6. (Color online) Optimal overlap width ω with respect to IQA (solid line), IQAM (dashed line), and various error measures. Plotted
values represent means from 100 realizations.

further due to the limited dimensions of input microstructures
[Fig. 6(b)]. Almost the same behavior can be observed for
EC ; see Fig. 6(c) [30]. It is also interesting to observe that the
behavior of IQAM in terms of spatial statistics is superior to
the original version, namely for Alporas R© and h disks.

In summary, we can deduce that weakly packed dispersions
are microstructural systems of the least complexity from
the viewpoint of the automatic tile design; recall Fig. 6(a).
The performance of IQA seems less powerful compared to
the results provided by its modified version; however, both
procedures are equivalent for remaining material systems and
larger overlaps.

B. Optimal tile edge length and cardinality of sets

The optimal overlap ω, the second row of Table I,
determines together with the dimension of r samples h, length
of tile edges �, Eq. (6). In addition, the size of the r samples
depends on � and the cardinality of sets given by nt, dominant
parameters in terms of the storage of the required amount of
microstructural information.

To assess the optimal nt − � combinations, various com-
plete stochastic Wang tile sets were created. From each of
those, subsets of nt tiles with minimum errors Eφ were chosen.

By analogy to the paragraphs above, 100 realizations of
5 × 5 tilings were synthesized by means of the CSHD
algorithm. The optimal setup of sought objectives, particularly
� versus nt, was assessed from the viewpoint of φ, S2, and
C2. In addition, we quantify the secondary extremes of S2 by
means of a set

Ŝ2 = { S2(m�,n�),∀(m,n) ∈ Z2 \ (0,0) }. (9)

First, the behavior of the relative error Eφ with respect to
� is displayed for individual sets in Fig. 7. From the graphs, it
can be deduced that the scatter in volume fractions decreases
for larger tiles and sets of higher cardinalities, independently
of the material system. However, in some cases (h disks
W8/2-2 and W18/3-3, sandstone all sets but W50/5-5, and
Alporas R© W18/3-3) the error suddenly increases after the
initial decay. In general, the reconstructions for h disks,
Fig. 7(a), possess the least scatter from the target data, while
the largest error is attributed to sandstone, Fig. 7(c). As for
the higher order statistics, obtained results (not shown) proved
the tile edge length � to have a negligible effect on reducing
secondary extremes of S2 [Eq. (9)], as well as no impact on
the deviation between the two-point cluster functions of target
and synthesized systems quantified by Eq. (8), this time, with
integrals over the domain of the tilings instead of ω × h.

On the other hand, the benefits of increasing the set
cardinality are doubtless. In Fig. 8(a), we show the statistics
of the secondary extremes Ŝ2, Eq. (9), by means of box-and-
whisker plots. The mean value of the set of secondary extremes
Ŝ2 seems to correspond well with the relation proposed in
Ref. [21]:

Ŝ
p
2 = φt

nt
[φ + (nt − 1)φ2] + max

i

{
φe

nc
i

[
φ + (

nc
i − 1

)
φ2

]}
,

(10)

where φt and φe = 1 − φt give the portion of microstructural
information attributed to tile interior and edges, respectively.
We can clearly observe the proximity of simulated data to the

FIG. 7. Relative error of pore phase volume fraction versus tile edge length and cardinality of sets. The results are normalized against φTS:
(a) h disks, (b) s disks, (c) sandstone, and (d) Alporas R©.
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FIG. 8. (Color online) Reduction of secondary extremes of S2 with respect to number of edge codes, (a) conventional tiles (majority
of microstructural information is carried by edges), (b) comparison between conventional and patched tiles of sandstone microstructure (in
patched tiles microstructural information is optimally distributed among edges and interiors). The boxes and whiskers involve 50% and 75%,
respectively, of realizations proportionally distributed about the median. Continuous curves follow predictions given by Eq. (10).

estimate with φe = 1, which is attributed to the fact that the
entire microstructural information in automatically designed
tiles is associated with edges, contrary to the optimization
based design [21]. On top of that, observe a notably larger
scatter (whiskers) in simulated data for individual tile set
cardinalities compared to that discussed in Ref. [21]. It stands
to reason that the choice of tiles in explored sets preferred
correct phase volume fractions to the uniform distribution
of edges in synthesized tilings, which violates fundamental
assumptions of Eq. (10) as justified in Ref. [21]. Therefore,
the reconstructed microstructures are prone to repeat patterns
specific to edges of higher frequencies, e.g., Fig. 9(c), thereby

FIG. 9. (Color online) Examples of synthesized microstructure
in 3 × 3 tiling: (a) h disks (W50/5-5), (b) s disks (W50/5-5),
(c) sandstone (W50/5-5), and (d) Alporas R© (W32/4-4).

increasing Ŝ2 in magnitude. A remedy consists in the use of
patched tiles; compare Figs. 8(a) and 8(b) and Figs. 10 and 9.

IV. EXAMPLES OF COMPRESSED AND SYNTHESIZED
MICROSTRUCTURES

Following the above indicators, one can select the optimal
set with respect to the desired compression capabilities and the
level of induced degeneracy in terms of spurious long-range
orientation orders quantified by Ŝ2. For instance, examples
of synthesized microstructures of target systems from Fig. 5
are displayed in Fig. 9. These particular reconstructions are
formed by tilings made up of 10 × 10 tiles. The zoomed left
upper corners contain only 3 × 3 tiles for better visualization
of short-range features. In Fig. 10, we further show synthesized
sandstone microstructures created by means of unpatched
and patched tiles of the set W18/3-3 displayed in the two
top rows. The conjectures coming from Fig. 8(b) are very
difficult to follow by visual inspection; however, the patched
reconstruction in Fig. 10(b) seems to us less polluted by
repetitive patterns than that without the patches; see also
Figs. 10(a) and 11.

FIG. 10. (Color online) Example of synthesized sandstone mi-
crostructure of 3 × 3 (a) unpatched and (b) patched tiles.
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FIG. 11. (Color online) S2 statistics of h disks microstructure: (a) target system, (b) W1/1-1 (PUC), (c) W16/2-2, and (d) W16/2-2 with
patches.

V. CONCLUSIONS AND FUTURE DEVELOPMENTS

In general, the microstructure compression is subject
to a compromise among various factors. The design of a
compression technique calls into question the degree of
compression (dimensions of tiles and tile set cardinality), the
amount of induced distortion (parasitic long-range orientation
orders along with the short-range defects in compressed
microstructures, e.g., due to quilting), and the computational
overhead required to compress and uncompress the data.

In this work, we have proposed an approach to compression
and reverse synthesis of microstructural patterns of real-world
microstructures based on Wang tilings, image processing
techniques, and statistical quantification. The method goes
beyond periodic representations and provides a natural gen-
eralization of the PUC concept (recall, W1/1-1 equals PUC).
It allows to represent complex microstructural patterns by
making use of small data sets called Wang tile sets. The
properties of the automatic tile morphology design were
investigated by means of a number of sensitivity analyses

FIG. 12. (a) Tile set W3/3-3-3 and (b) tiling consisting of 3 × 3 × 2 tiles.
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DOŠKÁŘ, NOVÁK, AND ZEMAN PHYSICAL REVIEW E 90, 062118 (2014)

whose objective was to determine the optimal values of the
input parameters, such that the compressed microstructure
contains maximum microstructural information and is small
enough for an inexpensive treatment. From our results, we
conjecture that the width of the overlapping region of about
nine times the mean characteristic inclusion size was suitable
for all investigated microstructures. However, no general
rule regarding the input values was observed otherwise. A
similar sensitivity study, following the flowchart in Fig. 4,
is therefore recommended any time the compression based
on Wang tiles is desired. The extension of the concept to a
three-dimensional setting by means of Wang cubes is fairly

straightforward and is in the focus of our future work. Pre-
liminary outcomes are demonstrated by an example shown in
Fig. 12.
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