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Nonequilibrium statistical mechanics of a two-temperature Ising ring with conserved dynamics
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The statistical mechanics of a one-dimensional Ising model in thermal equilibrium is well-established, textbook
material. Yet, when driven far from equilibrium by coupling two sectors to two baths at different temperatures, it
exhibits remarkable phenomena, including an unexpected “freezing by heating.” These phenomena are explored
through systematic numerical simulations. Our study reveals complicated relaxation processes as well as a
crossover between two very different steady-state regimes.

DOI: 10.1103/PhysRevE.90.062113 PACS number(s): 05.70.Ln, 05.50.+q, 64.60.De

I. INTRODUCTION

All interesting phenomena in nature arise from many
interacting degrees of freedom. While statistical mechanics,
as developed by Boltzmann and Gibbs, provides a sound basis
for understanding physical systems in thermal equilibrium,
nearly all other fascinating phenomena around us are due
to nonequilibrium stochastic processes, being coupled to
more than one reservoir (of energy, particles, etc.) Exam-
ples include all living organisms and the life-sustaining
ocean-atmosphere complex. Yet an overarching principle for
far-from-equilibrium statistical mechanics remains elusive,
despite considerable recent progress on fluctuation theorems
and the “nonequilibrium counterpart” of the free energy (for a
recent, comprehensive review, see, e.g., Ref. [1]). In particular,
even when a system evolves according to a master equation
with time-independent rates, the probability distribution of the
stationary state is far from the simple Boltzmann factor as soon
as the dynamics violates detailed balance. Further, although a
systematic construction for this distribution exists [2], finding
its analytic form explicitly is a highly nontrivial task. In
addition, there are persistent stationary probability current
loops in such states [3], leading to observable consequences
in general. Needless to say, when the rates are themselves
time-dependent (e.g., diurnal or seasonal heating and cooling
cycles in our atmosphere), the system displays more intriguing,
but less comprehensible, behavior.

One way to make progress, given the general difficul-
ties in exploring nonequilibrium statistical mechanics, is to
study simple model systems. Their behavior can be easily
simulated by computers, and their simplicity may allow us
to develop a full understanding, providing some insight into
nonequilibrium processes. In this spirit, many studies were
conducted for the paradigmatic Ising model with nearest
neighbor interactions, driven to nonequilibrium steady states
(NESSs) by a variety of mechanisms. In all cases, the key lies
in coupling the system to two (or more) energy reservoirs, such
as a bath and an external drive, or two thermal baths at different
temperatures. In general, there is a stationary net flux of energy
through our system, from, say, the hotter bath to the cooler
one, as the system settles into a NESS. Over the last three
decades, a wealth of surprising phenomena associated with
such NESSs have been discovered, many of which remain
poorly understood. One general rule gleaned so far is that,
while driving a system into a NESS will produce novel effects

in general, the most dramatic differences tend to emerge when
the system is endowed with a conservation law (e.g., particle
conservation). For example, taking a model with spin-flip
dynamics out of equilibrium produces observable effects,
but the critical properties, say, remain in the equilibrium
universality class [4–7]. This study is devoted to an Ising
system with a conservation law in arguably the simplest of
settings: the lattice gas on a ring (one-dimensional periodic
lattice).

Before delving into our specific system, let us provide a
brief overview of the various ways in which the Ising model
has been coupled to two thermal baths and the NESS behavior
that emerged. We believe such a paragraph will be helpful
for readers encountering the term “two-temperature Ising
model” in the literature. In typical textbooks on statistical
mechanics, only the static properties of the Ising model
are presented: A spin taking on two values, σi = ±1, is
located on each site, i, of a lattice in d dimensions, subjected
to a variety of boundary conditions, with ferromagnetic
interactions between nearest neighbor spins. Thus, the energy
functional (Hamiltonian) associated with a configuration of
spins {σi} is given by H[{σi}] = −J�iσiσi+1, with J > 0.
Accordingly, the probability to find {σi}, when the system is
in contact with a thermal bath at temperature T , is given by
the Boltzmann factor Peq[{σi}] ∝ e−H/kBT , while averages of
observable quantities, O [{σ }], are found by computing

〈O〉 ≡
∑
{σ }

O[{σ }]Peq[{σ }]. (1)

Promoting this model to a kinetic one, two common forms of
dynamics are used: Glauber, spin-flip [8], or Kawasaki, spin
exchange [9]. In the former, a spin is chosen at random and
flipped according to some probabilistic rule (which depends
on H and T [10]), so that the total magnetization, M ≡ �iσi ,
fluctuates in time. By contrast, in the latter, a random nearest
neighbor pair of spins are chosen and exchanged. Thus,
M remains constant, a dynamics particularly suitable for
describing, say, binary alloys (with spin ±1 representing,
for example, Cu and Zn). This version is also known as the
Ising lattice gas [11], with spin ±1 referred to as particle and
hole, a language we will mostly use here. To achieve thermal
equilibrium, a unique T enters these rules no matter which
spin or pair is chosen. If we insist on coupling our system to
two T values, then it is clear that there is an enormous variety

1539-3755/2014/90(6)/062113(11) 062113-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.062113


NICHOLAS BORCHERS, MICHEL PLEIMLING, AND R. K. P. ZIA PHYSICAL REVIEW E 90, 062113 (2014)

of ways to implement them. The brief survey below provides
the context of our study.

Although spin-flip rates which depend on two temperatures
were introduced as early as 1982 [12], the bulk of such
explorations was carried out in the 1990s (see, e.g., Ref. [13]
for a review of these early studies). Nearly all studies involve
dynamics which are (essentially) translationally invariant,
while many involve anisotropy. Examples include coupling
to the two baths every spin or every other spin (for Glauber
dynamics in d � 1) [14] and exchanges of pairs in the x or
y directions (in d = 2) [15], while more exotic models involve
Glauber at one T and Kawasaki at another T [16]. By contrast,
our study will focus on inhomogeneous couplings: one entire
region of the system coupled to one bath and the complement
coupled to the other bath. Recent efforts were directed towards
(a) Glauber dynamics on two semi-infinite chains (d = 1),
coupled to two baths and joined at the ends [17], and
(b) Kawasaki exchange on two halves of a finite d = 2
system [18,19]. While exact analytic results are available for
the former, the novelties of the NESS can be expected. For
the latter, we have only simulation results, which provided
more exotic and surprising behavior, e.g., convection cells
and states with multiple strips. Naively, the contrast between
two sets of results might be attributed to the difference in
d: the absence or presence of a phase transition. Yet, the
other difference, Glauber versus Kawasaki dynamics, may be
more crucial. It is in this context that we conduct the present
study: an Ising chain with spin-exchange dynamics, coupled to
two T .

The rest of this paper is organized as follows. In the
next section, we present a detailed description of the model.
Although the static, equilibrium properties of the standard
Ising chain can be found in most textbooks, two aspects,
Kawasaki dynamics and fixed M ensemble, are less well
known and will be discussed in Sec. III. We also present
some results for an equilibrium model where different coupling
constants are used in different sectors of the system. In the
following section, we report the many surprising phenomena
discovered through simulations of the two-temperature model
and compare these results with those obtained for the standard
equilibrium Ising model as well as for an equilibrium two-
coupling model. We conclude with a summary. Some technical
details are provided in appendices.

II. MODEL DESCRIPTION

We consider the standard Ising system on a ring of spins,
σi , at i = 1, . . . ,L sites with nearest neighbor, ferromagnetic
interactions. Here we provide a detailed description of how we
couple this system to two thermal baths, in terms of what is
implemented in our simulations.

First, we evolve a configuration by Kawasaki exchange
with Metropolis rates [20]: At each attempt, choose a random
pair of nearest neighbor spins and exchange them with the
following probability. Clearly, a nontrivial update must involve
two spins that are opposite. If �H denotes the change in
H due to the exchange, then we allow it to take place with
probability min[1,e−�H/kBT ], where T is the temperature of
the thermal bath. Thus, the overall magnetization of the system,

FIG. 1. (Color online) Sketch of the two-temperature Ising ring
model studied in this paper. Whereas exchanges across solid (blue
online) borders are accepted with the ordinary Metropolis rate for
a system at temperature T , exchanges across dashed (red online)
borders are accepted with the corresponding rate for a system at
temperature Tw .

M , is conserved. Since there is no phase transition in the
standard Ising model, it is natural for us to restrict ourselves to
systems with M = 0. Of course, these systems will settle into
an equilibrium state associated with the M = 0 ensemble.

Our goal is to explore NESS, associated with a dynamics
which violates detailed balance. One natural way is to couple
two sectors of the ring to reservoirs of differing temperatures.
Specifically, exchanges within a “window” of length w will
be updated with temperature Tw, while the rest of the ring will
be coupled as above. Obviously, the system will revert back to
an equilibrium Ising model for Tw = T or w = 0. To simplify
our study, instead of exploring the full control space of T –Tw,
we set Tw = ∞ in the following. With Metropolis rates, this
choice implies that all attempts at exchanging pairs within
the window are successful, regardless of �H. One question
naturally arises: How do such exchanges differ from the case
involving J = 0, i.e., noninteracting spins? We will address
this subtle issue at the end of this section, along with a crucial
discussion of detailed balance violation.

How these rates operate is concisely captured in Fig. 1,
where the lattice is depicted as being half-filled with particles
or holes (corresponding to M = 0). Any exchange takes place
across a “border” between two adjacent sites. Of the L borders,
we color w of them red and the rest blue. An exchange across a
dashed red border always takes place. By contrast, to exchange
a pair across a blue border, �H must be computed. Then the
exchange is allowed with probability min[1,e−�H/T ] (i.e., the
rate used to study the ordinary equilibrium Ising model at T ).
In the following, we will refer to this as the 2T model,
short for “two-temperature Ising model.” Let us emphasize
that all properties of this system are embodied in a time-
dependent distribution, P [{σ }; t], governed by a simple master
equation:

P [{σ ′}; t + 1] =
∑
{σ }

W [{σ ′},{σ }]P [{σ }; t], (2)

062113-2



NONEQUILIBRIUM STATISTICAL MECHANICS OF A . . . PHYSICAL REVIEW E 90, 062113 (2014)

where W is the transition probability from {σ } to {σ ′} in one
attempt:

L−1
∑

i

�i[{1 − qiδ(σi−1 − σi)δ(σi+1 − σi+2)}

× δ(σ ′
i + σi)δ(σ ′

i+1 + σi+1) + qiδ(σi−1 − σi)

× δ(σi+1 − σi+2)δ(σ ′
i − σi)δ(σ ′

i+1 − σi+1)]. (3)

Here δ is the Kronecker delta (i.e., unity if its argument van-
ishes and zero otherwise), �i ≡ δ(σi+σi+1)�k �=i,i+1δ(σ ′

k−σk)
ensures that only the pair σi,σi+1 may change, and

qi = 1 − e−4J/kBT (i) (4)

with T (i) = Tw for i = 1, . . . ,w and T (i) = T for i = w +
1, . . . ,L, is the probability that this pair is unchanged. Note
that

∑
{σ ′} W [{σ ′},{σ }] = 1 so that P remains normalized

at all times. It can be shown that, as t → ∞, P settles
into a unique stationary distribution, P ∗[{σ }], which is very
different from the Boltzmann Peq (with any T ). Indeed, for
small systems (L = 6,8), we found explicit distributions to
have very different degeneracy structures than the equilibrium
distributions for the same H. For reasonably large systems
(e.g., L � 50), finding P ∗ is impractical numerically and
analytically (due to detailed balance violation), let alone
computing averages of observables from P ∗. Thus, Monte
Carlo simulations are the only viable technique for us to make
progress [21].

When we consider the exchanges away from the interface
between the two sectors, the rates resemble those for an
inhomogeneous Ising model (with J = 0 inside the window)
coupled to a single reservoir at temperature T . Specifically,
we can still exploit Fig. 1, by regarding the blue borders as
energy bonds of strength J and associating the red ones with
J = 0. Let us refer to this model as the 2J model. Clearly
the stationary distribution here is just exp[−J�iσiσi+1/kBT ],
where the sum is over only the blue bonds. Its statistical
properties are just as accessible as the standard model. What is
the key difference between the transition rates for this model
and the 2T case? It lies in the exchanges of just two pairs
of spins at each interface. To see this mathematically, we note
that the dynamics needed for a generally inhomogeneous Ising
model [i.e., H = −�iJ (i)σiσi+1] in contact with a single bath
are the same as above, except for

qi = 1 − e−2[J (i−1)+J (i+1)]/kBT (5)

instead of Eq. (4). For the 2J model, we have J (i) = 0 and J ,
for i ∈ [1,w] and [w + 1,L], respectively. How does one set
of rates obey detailed balance and the other set violate it? The
answer can be found in Appendix A.

To end this section, let us provide the details of our
simulation methods. Starting with a random configuration
of spins with M = 0 if L is even (M = 1 for odd L), we
randomly choose a pair of spins and update them according
to the probabilities in Eq. (2). A Monte Carlo step (MCS)
is defined as L such attempts. Whereas our primary concern
is with the steady-state properties, we also need to ensure
that the system has relaxed sufficiently into the NESS. For
this purpose, we also collected data on the transient regime.
After the relaxation stage, a suitable number of simulation

steps is used to measure the averages of various observables.
Specifically we will focus on two-spin correlations

G(i; r) ≡ 〈σiσi+r〉 (6)

(for certain values of i), the total magnetization within the
window

Mw ≡
w∑

i=1

σi, (7)

the distribution of the normalized window magnetization
m ≡ Mw/w,

Pw(m) ≡
∑
{σ }

δ

(
m −

w∑
i=1

σi/w

)
P ∗[{σ }], (8)

the energy density profile

ui ≡ −J 〈σiσi+1〉 = −JG(i; 1), (9)

and its sum �L
i=1ui (i.e., 〈H〉). The number of relaxation

steps required varies considerably with the system parameters
and increases rapidly for larger L and smaller T values; see
the discussion below. Finally, we performed typically 40 to
100 independent runs (with different initial conditions), so
that time-dependent quantities are constructed by averaging
over these runs. Of course, for stationary state properties, we
perform both a time and ensemble average. In the remainder
of this paper, we choose units such that J/kB = 1.

III. THE EQUILIBRIUM ISING LATTICE GAS

Before reporting results on the 2T Ising ring, we will
briefly review the relevant properties of two equilibrium cases,
namely, the standard homogeneous Ising model with uniform
couplings as well as the 2J model discussed in the previous
section.

Though the standard Ising chain is a textbook model, we
present some less well-known aspects, so as to facilitate the
comparison with its nonequilibrium counterpart. Deferring
technical details to Appendix B, we report only simulation
results here.

As the system relaxes into the stationary state, its behavior is
dominated by eigenvectors which are associated with eigenval-
ues of W [see Eq. (3)] close to unity. While the details depend
on the specifics of the rates, it is known that a power law (t1/3

law) can be expected with Kawasaki dynamics. In particular, at
low temperatures domains (of the same spin) should form and
grow in size. Of course, unlike typical coarsening behavior of
a system with spontaneous magnetization (i.e., below critical
temperature), domains in the ring cannot be much larger than
the correlation length: O(e1/T ). Nevertheless, in the growing
regime, their sizes scale with t1/3 [22]. Though we did not
measure domain sizes, the relaxation of all the quantities we
study are consistent with this law. Figure 2 shows how the
energy density 〈H〉/L relaxes for different L. We thereby use
the log-binning procedure, in which the averages of quantities
of interest are sampled at intervals between 2x and 2x+1 MCS.
In Fig. 3, we show the effects of different T on the relaxation
of 〈H〉/L. Not surprisingly, the energy of a system coupled to
lower temperatures takes considerably longer to settle. For our
2T model, nothing was known about such relaxation times.
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FIG. 2. (Color online) Log-binning relaxation of the energy den-
sity 〈H〉/L for the standard Ising system at temperature T = 1 and
two different lattice sizes L. In this plot (as well as in the other
figures below showing log-binning relaxation) the average of the
quantity of interest is sampled at intervals between 2x and 2x+1

MCS. The equilibrium value of 〈H〉/L is already very close to the
value − tanh(1) ≈ −0.76 of the infinite lattice. The data result from
averaging over an ensemble of 40 to 100 independent realizations.
Error bars are comparable to the sizes of the symbols.

Below we will use a similar approach to determine if those
systems have settled into their NESS.

Turning to properties in the stationary state, let us first
illustrate a typical time trace of the configurations, in Fig. 4,
with a system with L = 128 set at T = 1. A black (white)
square denotes a particle (hole). Each row is a snap shot of
the ring, while successive rows are separated by 10 MCS. The
presence of semipersistent domains is evident. Of course, they
shrink and grow randomly, via evaporation and condensation
at the edges, resulting in, at times, apparent drifts like a
random walker. The figure should provide an intuitive picture
for the quantitative aspects, such as the two-spin correlations
G(r) ≡ G(i; r) (for a particular i, but independent of i due to
translational invariance) and distributions Pw(m). The former
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FIG. 3. (Color online) Log-binning relaxation of the energy den-
sity for the standard Ising model with L = 512. The data result from
averaging over an ensemble of 40 to 100 independent realizations.
Error bars are comparable to the sizes of the symbols.

FIG. 4. Time trace of the standard Ising system after it reached
equilibrium at T = 1. The plot shows the evolution of the system over
a total of 2000 MCS after an initial relaxation period of 220 MCS,
where two consecutive horizontal lines are separated by 10 MCS. The
system size is L = 128.

is a standard quantity of interest in the study of statistical
mechanics. By contrast, we are not aware of systematic
investigations of the latter. Here m is a local magnetization,
coarse grained at the level of w, so that Pw(m) provides
information on clustering at this length scale. Of course, at
the level of the entire system, P(M) (for the nonconserved
case) enjoyed considerable attention, since it signals the onset
of long-range order and reveals nontrivial critical properties
(for Ising models in d > 1). Since we will focus on Pw(m) for
the 2T model, collecting data on its equilibrium counterpart
will provide both a good baseline and a sharp contrast.

For a nonconserved Ising model on a ring, G is well
established:

G(r) = (ωr + ωL−r )/(1 + ωL), (10)

where

ω ≡ tanh(1/T ). (11)

Of course, G > 0 for all finite T . But the M = 0 constraint
adds complications, since �rG(i; r) = 0 in this case. With
details deferred to Appendix B, we find that a simple linear
approximation

G ∼= A(ωr + ωL−r ) + B (12)

[with A and B fixed by G(0) = 1 and �G = 0] agrees quite
well with data. In Fig. 5 we illustrate this agreement in a small
system with L = 127 sites. There are no surprises here; its
main purpose is for comparison with Fig. 13 below.
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FIG. 5. (Color online) G(r) for the standard equilibrium Ising
ring with Kawasaki dynamics for a system of length L = 127. L is
chosen to be odd to ensure a symmetric result about a given reference
point. The lines refer to the approximation (12).

Turning to Pw(m), we illustrate with Fig. 6 the case of
L = 128 and w = 32. For each T , we compile a histogram
from ∼108 measurements of Mw. Not surprisingly, every
distribution is peaked at m = 0, the signature of disorder.
In stark contrast, below we will find transitions to bimodal
distributions in the 2T model, shown in Fig. 15.

Before moving on to the 2T model let us briefly discuss
some aspects of the equilibrium 2J model where inside a
window of width w the coupling constant is zero, whereas
outside of that window it is J . As discussed in the previous
section as well as in Appendix A, the sole difference between
the 2J and the 2T models are the transition rates for exchanges
of pairs of spins at the interface. For that reason, comparison
between results obtained from the 2J and 2T models will be
very enlightening.

Figure 7 shows the time trace for the 2J model after
having reached equilibrium. One distinguishes two regions,
namely, the region inside the window which is disordered,
due to the absence of couplings between spins in that region,
and the region outside with semipersistent domains, similar
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FIG. 6. (Color online) Equilibrium distributions of the normal-
ized window magnetization m for the standard Ising model with
L = 128 and w = 32.

FIG. 7. (Color online) Time trace of the 2J model after it reached
equilibrium at T = 1. The plot shows the evolution of the system over
a total of 2000 MCS after an initial relaxation period of 220 MCS,
where two consecutive horizontal lines are separated by 10 MCS.
The system size is L = 128. The boundaries between the regions are
highlighted in cyan (gray).

to what is observed in the standard Ising model; see Fig. 4.
As the presence of the interface does not create long-range
correlations, the behavior of the system outside of the window
is largely unaffected by the presence of the disordered sector.

Equilibrium distributions of the normalized window mag-
netization are displayed in Fig. 8 for the 2J model. As expected
for a disordered section, these distributions are Gaussian and
show only a very weak dependence on the temperature of the
system.
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FIG. 8. (Color online) Equilibrium distributions of the normal-
ized window magnetization m for the 2J Ising model with L = 128
and w = 32. Distributions for different temperatures are shown.
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FIG. 9. (Color online) Time traces of the two-temperature model
at different values of T . The traces are from a system of length L =
128, with a window of size w = 32 wherein the system is in contact
with a reservoir at temperature Tw = ∞. For the left system we
have T = 1, whereas for the right system T = 1.75. The boundaries
between the regions are highlighted in cyan (gray). Both plots show
the evolution of the system over a total of 2000 MCS after an initial
relaxation period of 220 MCS, where two consecutive vertical lines
are separated by 10 MCS.

IV. THE TWO-TEMPERATURE
NONEQUILIBRIUM MODEL

We now proceed to discuss the two-temperature nonequi-
librium ring and the intriguing and unexpected features
that emerge from a local breaking of detailed balance. The
investigation of steady-state and relaxation properties is mainly
done through the same quantities as those introduced in the
previous section for the characterization of the standard Ising
model.

A. Steady-state time traces

A good starting point for appreciating the nature of the
nonequilibrium steady states that arise in the two-temperature
ring are the time traces of systems that have settled into the
steady state.

The time trace shown in the left panel of Fig. 9, with
the temperature outside the window being at T = 1, is in
stark contrast to the time traces in Figs. 4 and 7 for the
standard Ising system and the equilibrium 2J system at the
same temperature. While phase-separated domains still form
as in the equilibrium model, the presence of one large domain
which envelopes the central window (indicated by cyan lines)
is noteworthy. This domain remains pinned to the location of
the infinite temperature window. This behavior is particularly
strange when considered in light of the equilibrium system
at infinite temperature where the spins are distributed in a
completely uncorrelated manner. It is thus surprising that the
infinite temperature window of the two-temperature model is
the most ordered region of the lattice!

The time traces provide strong indications of a crossover
between different steady-state regimes. This transition can
be observed when varying either the size of the infinite
temperature window or the temperature of the lattice sites

outside the window, T . Figure 9 demonstrates the effect due to
varying T . At larger values of T (illustrated in the right panel in
Fig. 9), the infinite temperature window behaves more or less
as expected by being more disordered than the much colder,
surrounding lattice. When T is lowered, a crossover takes place
to a state where the system within the window is much more
ordered, despite being coupled to a much higher temperature
bath than that in the surroundings (illustrated in the left panel
of Fig. 9).

There is another perspective to this remarkable crossover,
namely, when Tw is raised from T (for the case T = 1,
say) to Tw = ∞. Then, within the window and contrary
to expectations, order will gradually emerge from disorder!
Such surprising phenomena have been reported decades ago
in the context of the two-temperature Ising lattice gas in
two dimensions [13,15]. Finding this unexpected feature, the
increase of order despite an apparent increase of fluctuations,
in driven continuum systems, Helbing et al. coined it “freezing
by heating” [23]. In a more general setting, we may regard
these counter-intuitive behavior as “negative response,” a
property that can be expected in a wide class of nonequilibrium
statistical systems [24].

B. Relaxation process

Before exploring and quantifying the steady-state features
further, we need to consider the issue of how the system relaxes
towards the steady state. As for the standard equilibrium sys-
tem in the previous section we use the log-binning procedure
in order to probe the relaxation process. As shown in the
following, in addition to providing a means to confirm entrance
into the steady state, these measurements contain important
hints to the process which causes the window to display this
high level of order.

The addition of an infinite temperature window within the
lattice dramatically changes the manner in which the system
relaxes for smaller values of T , as becomes obvious when
comparing the time-dependent energy in Fig. 10 with that in
Figs. 2 and 3. Whereas Fig. 10(a) contains for T = 1 curves
with different window sizes for a system with L = 512 sites,
Fig. 10(b) shows for the same temperature the relaxation of
the energy when varying L and w in such a way that the ratio
R = w/L is kept constant.

There are a couple of particularly interesting features which
distinguish the two-temperature curves from the equilibrium
ones. First, the nonequilibrium curves are characterized by the
existence of a metastable state followed by a sudden increase
in fluctuations and decline in average energy. This metastable
state is revealed by the flattening of the curve and the reduction
in statistical error which mimics the behavior of a system
entering a steady state. The duration of this metastable state
is proportional to the size of the window, specifically scaling
with (w/2)3. This is reminiscent of the scaling seen within a
one-dimensional Ising system with conserved dynamics where
the domain size scales as t1/3 [22], indicating that domain
growth outside the window drives this phenomenon. Using the
above scaling relationship, a domain of size w/2 = 64 should
take approximately 218 MCS to form. This time, indicated by
the dashed vertical line in Fig. 10(a), roughly corresponds with
the end of the metastable state for the curve with w = 128.
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FIG. 10. (Color online) (a) Log-binning relaxation of the average
energy density for T = 1 with fixed system size L = 512 and varying
window size w (yielding different values for the ratio R = w/L; see
legend). The dashed vertical line is placed at the point at which
the green curve with w = 128 exits the metastable state, which is
equivalent to (w/2)3 = 643 = 218. (b) Log-binning relaxation of the
average energy density for fixed ratio R = w/L = 1/4 and T = 1.
The dashed vertical lines are placed to correspond with (w/2)3 for
their respective curves (leftmost curve located at 163, rightmost curve
located at 1283).

This idea is further supported by Fig. 10(b), which displays
the average energy density for various system sizes L. Here the
ratio of the window to lattice size, R = w/L, is kept fixed at
1/4. After the initial slope on which all of the curves collapse,
due to initial cluster formation, the curves then diverge as
they enter the metastable state. This is to be expected if
the above reasoning holds since each curve has a different
associated window size, and thus a proportionately different
time to exit the metastable state. Again, the dashed vertical
lines indicate the time this should take for the correspondingly
colored curves. As before, the match indicates that the onset
of the ordered phase scales with (w/2)3. This points to the
fact that the cluster formation outside of the window strongly
influences the emergence of the ordered window.

As a final demonstration of the importance of the t ∝ w3

scaling within this system, the upper panel Fig. 11 mirrors
Fig. 10, but now with the time- and ensemble-averaged window
magnetization 〈|Mw|〉 as the quantity of interest. We should
emphasize here that for 〈|Mw|〉, we first average the window

FIG. 11. (Color online) Upper panel: Relaxation of the normal-
ized average window magnetization for R = 1/4 and T = 1; see
main text. Here the dashed vertical lines correspond with (2w)3.
Lower panel: The same for the standard Ising model.

magnetization from the start to time t , which yields a quantity
which may be either positive or negative and eventually goes
to zero as enough of phase space is explored and the spin
symmetry takes over. The absolute value of the time average
is then taken prior to constructing the ensemble average, here
represented by the angular brackets and again being performed
over 40–100 independent realizations. The construction of this
quantity, while a bit unorthodox, has a key advantage in that
it shows distinctly not only how long it takes for the ordered
state to develop, but also how long it takes for an ordered
state of opposite sign to displace the original configuration.
This point can be identified as the peak within the curves, and
the time for this to take place scales very well with (2w)3.
In the lower panel we show for comparison the same quantity
for the standard Ising model. By construction, 〈|Mw|〉 also
displays maxima for that case, but the heights of these maxima
are much smaller than for the 2T model. This reflects the
fact (see the time trace in Fig. 4) that every choice of the
window will include both positively and negatively magnetized
domains, in contrast to the nonequilibrium case where the
window at infinity temperature is occupied by a single, almost
perfectly ordered domain.

Returning to Fig. 10(a), the other point of interest is the
final relaxed level of the nonequilibrium system with ratio
R = 1/8 (which corresponds to window size w = 64). What is
notable in this case is that the energy per lattice site ultimately
falls to nearly the same level as the equilibrium (black) curve.
Figure 12 demonstrates that it is even possible to have lower
than equilibrium energy with the right mix of parameters.
Notice that the curve for R = 1/8 (which here corresponds
to w = 16 as L = 128) not only approaches the value for the
equilibrium model, but actually goes below it in the steady
state. This is admittedly achieved for a small system size in
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FIG. 12. (Color online) Log-binning relaxation of the average
energy density for L = 128, T = 1, and various values of the ratio
R = w/L.

which finite-size effects are almost certain to play a significant
role. Such a result is again reminiscent of the negative response
considered in Ref. [24].

C. Steady-state properties

One of the best ways to statistically establish the nature of
the steady state is to examine the two-spin correlations G(i; r);
see Eq. (6). Based on the results from the two-temperature
model presented thus far, it should be unsurprising that the
corresponding correlation differs dramatically from that found
in the standard equilibrium model; see Fig. 5. Since the
translational invariance inherent in the equilibrium model is
broken by the inclusion of the second temperature domain,
it becomes necessary to specify the reference lattice site i.
In the case of Fig. 13 the center of the window, located at
i = (w + 1)/2, is chosen as this reference point.

The first feature of note is that G((w + 1)/2; r) is almost
perfectly constant over the entirety of the window. The value of
this plateau agrees very well with 〈M2

w〉/w2 and decreases for
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FIG. 13. (Color online) G((w + 1)/2,r) for the two-temperature
Ising ring with L = 127, w = 31, and various values of T . Here the
lattice site i = (w + 1)/2 is the site in the middle of the window of
width w. The end of the window is indicated by the dashed vertical
line.
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FIG. 14. (Color online) Average bond energy ui at site i for L =
128, T = 1, and various ratios R = w/L. The solid magenta (gray)
horizontal line indicates the equilibrium energy of the standard model
at T = 1. The dashed vertical lines are placed to demonstrate the
end of the window region for the R = 1/4 curve. For all curves the
borders of the infinite temperature window are marked by minima
in ui followed by discontinuous transitions to maxima outside the
window.

increasing T , thereby serving as an indicator of the frequency
of oppositely aligned spins entering the window. Figure 13
also shows that in the region immediately outside of the
window the correlation decays exponentially and roughly fits
the exponential behavior of (12) with different constraints.

Further information about the nature of the steady state can
be obtained from the average energy of the bonds between
lattice sites ui ; see Eq. (9). Displayed in Fig. 14, this quantity
reveals the pronounced effect the boundary between the two
regions has. The equilibrium energy of the standard Ising
model, indicated by the dashed horizontal line, is approached
by the two-temperature curve far from the window, which
indicates that the two-temperature model behaves more or less
as the equilibrium system deep within the primary lattice.
As the boundary between the two temperature regions is
approached, however, the true influence of the point of broken
detailed balance is displayed. There is a sharp, discontinuous
jump at the boundary between the regions, with the average
bond energy much higher immediately outside the window
than inside. This indicates that the lattice sites immediately
outside the window are notably more disordered than those
immediately inside the boundary. This is true even for larger
window sizes in which the energy inside the window is
significantly higher than the equilibrium bond energy.

As the final, and perhaps strongest, characterization of
the nature of the two-temperature ordered state Fig. 15
displays the steady-state distributionPw(m) for the normalized
window magnetization m as a function of T . This distribution
provides information on how likely a certain magnetization
is in the steady state. At relatively high temperatures, such
as T = 2, the histogram takes on the expected shape of a
distribution centered around m = 0, indicative of a disordered
configuration and similar to the shape observed for the standard
equilibrium system (see Fig. 5) as well as for the 2J model (see
Fig. 8). As the temperature is lowered, however, there appears
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FIG. 15. (Color online) Distributions for the normalized window
magnetization m with system parameters L = 128 and R = 1/4
(w = 32). Results for different values of T are shown.

to be a smooth inversion of the distribution such that half-filled
states become increasingly unlikely while wholly filled or
empty states dominate. As a result Pw(m) becomes bimodal
with maxima at some temperature-dependent normalized
magnetizations ±m. The seemingly continuous change of
the distribution as the temperature is lowered is reminiscent
of the behavior expected for a continuous phase transition
across some critical temperature Tc. An example of this can
be found, of course, in the standard equilibrium Ising model
in dimensions d � 2, where the distribution shifts in a similar
manner from a distribution centered at zero magnetization
towards a bimodal distribution with maxima at the spontaneous
magnetization [25].

The lattice temperature T is, however, not the only
parameter that may be varied to produce an apparent transition.
Figure 16 shows that the distribution changes considerably as
the ratio R = w/L is changed with constant L. This happens
in a similar fashion to the above changes with respect to
temperature, with the notable difference that the distribution
with the maximum at m = 0 never materializes for the window
sizes considered. Instead, for larger window sizes a small
central peak appears. This could be an indication of phase
coexistence.
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FIG. 16. (Color online) Distributions for the normalized window
magnetization m with L = 128 and T = 1 and various window sizes.

These results indicate that the crossover between different
steady states observed in the nonequilibrium two-temperature
model has some of the finite-size hallmarks of a true phase
transition. Whereas from the temperature dependence one
might conclude that the transition is continuous, conflicting
information is obtained when varying the window size, with
the appearance of additional peaks indicative of a system with
phase coexistence. It is beyond the scope of the present article
to further clarify the nature of this transition, as much larger
system sizes as well as other quantities need to be studied in
order to be able to make more definitive statements. We plan to
explore the nature of this transition in more detail in the future.

V. CONCLUSION

Gaining a comprehensive understanding of nonequilibrium
processes remains an enormous task, due to the wealth and
diversity of phenomena that emerge far from equilibrium. Far
from having a general theoretical framework, we proceed by
gathering valuable insights through the detailed analysis of
simple model systems.

In this paper we studied a version of the conserved one-
dimensional Ising model on a ring with minimal breaking of
detailed balance. In the two-temperature model, we couple two
sectors of the system to different heat baths: one with infinite
temperature for exchanges within a window of size w, and
one at some temperature T for the remainder of the ring.
Since spin exchanges within w are indistinguishable from
an Ising model with J = 0 coupled to the same T , we also
considered this two-J model, in thermal equilibrium. The
difference between these models lies in detailed balance being
violated in the former, but only for two pairs of exchanges
at the “window edges.” This minimal modification at the
interfaces entails huge changes in the physical properties
of the system, yielding a remarkable “freezing-by-heating”
ordered state. Using extensive numerical simulations we
characterized this state through a variety of quantities, most
notably the spin-spin correlations as well as the probability
distribution of the normalized window magnetization. Varying
the temperature T or the window size yields a transition
between a state with a highly ordered window and a state
where the window is disordered. The finite-size signatures
of this transition are ambiguous, and more work needs to
be done to clarify the nature of this “transition.” Indeed,
we are aware that long-range correlations are well known to
emerge in such driven diffusive systems (breaking detailed
balance in Kawasaki dynamics [13]), and so, the phenomenon
observed here may be due to finite size effects. In particular,
it is reasonable to conjecture that, if two semi-infinite systems
coupled to different baths were joined at one point, the behavior
far in the bulk of either system would be “normal,” while long-
range correlations induce extended boundary layers on either
side of the junction. On an extremely large ring (with fixed
w/L), there would be two such junctions, but widely separated.
Yet, when the ring size is small enough, the two boundary
layers will “interact” and may produce the ordered states
observed here. Substantial progress in our understanding of
these systems therefore relies on gaining a full understanding
of how long-range correlations can lead to apparent long-range
order. In all cases, we believe that further work on simple
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model systems such as this one is likely to produce novel
and surprising phenomena, as well as to provide insights into
how an overarching framework for nonequilibrium statistical
mechanics can be established.
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APPENDIX A: DETAILED BALANCE VIOLATION

In this appendix, we emphasize the crucial difference be-
tween the 2T and the 2J model. In particular, we will illustrate
detailed balance violation in the former with “irreversible”
cycles of configurations [Figs. 17(a) and 17(b)]. By contrast,
the same cycles in the 2J model is reversible [Figs. 17(c) and
17(d)]. To make this distinction clear, we added a notation for
the bond energies here, i.e., presence or absence of a horizontal
dash referring to the ordinary ferromagnetic J = 1 or the free
J = 0 interactions between nearest neighbors, respectively.
Meanwhile, the vertical lines between neighbors carry the
same meaning as in previous sections, i.e., exchanges across
solid (blue online) lines being updated with the finite T and
those across dashed (red online) lines being updated with
T = ∞.

Consider first the configurations in Fig. 17(a), arranged
around the quarters of a clock face. For simplicity, suppose
there are no particles outside the four sites shown. For the
clockwise cycle, using the rates for the 2T model (exchanges
across different vertical lines controlled by thermal baths at
different temperatures), the product is simply 1×1×1×1 = 1.
For the reverse, the rates are e−1/T ×1×1×1, which is not unity
except for T = ∞. The same inequality holds for the cycles
involving the configurations in Fig. 17(b). The inequality of
these products is a hallmark of detailed balance violation [26]
and signals a presence of a nonequilibrium stationary state
[3]. By stark contrast, it is straightforward to check that the

(a) (b)

(c) (d)

FIG. 17. (Color online) Two cycles of configurations illustrating
irreversibility and detailed balance violation in the 2T model (a, b).
By comparison, these cycles are reversible in the 2J model (c, d).
See text for explanation of symbols.

products around the cycles in Figs. 17(c) and 17(d), are the
same as the products for the reversed cycles. Of course, this
equality necessarily holds for a system in thermal equilibrium,
governed by the Hamiltonian −J�iσiσi+1 (with appropriate
J = 1,0).

APPENDIX B: EQUILIBRIUM ISING MODEL

The one-dimensional Ising model (on a ring or with open
boundaries), solved in 1925 [27], appears in most textbooks
on statistical mechanics. We summarize some of its properties
here for the convenience of the reader. In particular, most of
the texts deal with the simplest case (thermodynamic limit and
no constraint on the total magnetization). Since we are not
aware of any literature that displays the explicit form of, say,
the correlation function for a finite system with fixed M , we
present some of its behavior here.

The partition function of the system of interest here is

Z(K; M,L) =
∑
{σi }

δ

(
M −

L∑
i=1

σi

)
exp

{
K

L∑
i=1

σiσi+1

}
,

(B1)

where K ≡ J/kBT . The constraint prevents a simple eval-
uation of the configuration sum, but its generating function

�(M) ≡
∑
M

zMZ(K; M,L) (B2)

can be found easily with the transfer matrix:

T(z,K) ≡
(

zeK ze−K

e−K/z eK/z

)
(B3)

so that

� = TrTL. (B4)

Then, Z can be found through the integral

1

2πi

∮
dz

zM+1
(λL

+ + λL
−), (B5)

where

λ± = eK [cosh H ±
√

sinh2 H + e−4K ] (B6)

are the eigenvalues of T, with H ≡ ln z. Of course, saddle
point methods can be exploited to give us Z as an asymptotic
expansion in large L.

For the two-point correlation function, G(r) ≡ 〈σiσi+r〉, we
have the exact expression

G(r) = Z−1
∑
{σi }

σLσrδ

(
M−

L∑
i=1

σi

)
exp

{
K

L∑
i=1

σiσi+1

}
,

(B7)

which can be found through

Tr

{(
1 0
0 −1

)
Tr

(
1 0
0 −1

)
TL−r

}
(B8)

and another, somewhat more involved, integral. Instead of
pursuing these exact expressions, it is reasonable to appeal
to an approximation, which should be quite good here. We
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start with the exact expression

G0(r) = (ωr + ωL−r )/(1 + ωL), (B9)

where ω ≡ tanh K , for a finite ring without constraints on M .
Assuming a linear relationship between G0 and our G, we fix
the constants by imposing G(0) = 1 and the constraint

L−1∑
r=0

G(r) = M2/L (B10)

(a consequence of M = �L
i=1σi). The result is

G(r) ∼= G0(r) − B

1 − B
(B11)

with

B = 1

L2 − M2

[
L

(1 − ωL)(1 + ω)

(1 + ωL)(1 − ω)
− M2

]
. (B12)

Thus,

G(r) ∼= (ωr + ωL−r ) − (1 + ωL)B

(1 + ωL)(1 − B)
, (B13)

which is the form (12). If we impose M = 0 and consider r

such that ωL−r � ωr , then

B → e2K/L (B14)

and

G(r) ∼= ωr − e2K/L

1 − e2K/L
. (B15)

Turning to the distribution Pw(m), it is given by

Pw(m,M) = Z−1
∑
{σi }

δ

(
m −

w∑
i=1

σi/w

)
δ

(
M −

L∑
i=1

σi

)

× exp

{
K

L∑
i=1

σiσi+1

}
. (B16)

Its generating function

�w(ζ ; z) ≡
∑
m,M

ζmwzMPw(m,M) (B17)

can be computed as above:

Tr[T(ζz,K)wT(z,K)L−w], (B18)

while inverting it to Pw will require two contour integrals.
Though feasible, we will not pursue these results here.
Simulations provide a more direct route to Pw, and we are
not interested in its analytic properties.
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Rev. Lett. 73, 1320 (1994); E. Praestgaard, B. Schmittmann, and
R. K. P. Zia, Eur. Phys. J. B 18, 675 (2000).
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