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Two-point correlation function of an exclusion process with hole-dependent rates
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We consider an exclusion process on a ring in which a particle hops to an empty neighboring site with a rate
that depends on the number of vacancies n in front of it. In the steady state, using the well-known mapping
of this model to the zero-range process, we write down an exact formula for the partition function and the
particle-particle correlation function in the canonical ensemble. In the thermodynamic limit, we find a simple
analytical expression for the generating function of the correlation function. This result is applied to the hop
rate u(n) = 1 + (b/n) for which a phase transition between high-density laminar phase and low-density jammed
phase occurs for b > 2. For these rates, we find that at the critical density, the correlation function decays alge-
braically with a continuously varying exponent b − 2. We also calculate the two-point correlation function above
the critical density and find that the correlation length diverges with a critical exponent ν = 1/(b − 2) for b < 3
and 1 for b > 3. These results are compared with those obtained using an exact series expansion for finite systems.
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I. INTRODUCTION

Nonequilibrium steady states, which are characterized by a
lack of detailed balance, have the important property that they
can exhibit phase transitions even in one dimension [1]. The
condensation transition [2] is an important example of such
a transition in which particles are distributed homogeneously
over the system at low densities, but above a critical density, a
macroscopic number of particles form a cluster. This transition
has been studied using several different models, including
aggregation-diffusion models and zero-range processes (ZRP)
for homogeneous systems [2,3] and for systems with quenched
disorder [4,5]. The ZRP, in which a particle hops to a
neighboring site with a rate that depends only on the properties
of the departure site, has the attractive feature that its steady-
state distribution can be found exactly [6]. This model has been
generalized in various directions in recent years [7–9] and has
been used to model clustering phenomena in traffic flow [10],
granular gases [11] and networks [12], avalanche dynamics
in sandpiles [13], slow dynamics in glasses [14], and to
understand phase separation in nonequilibrium systems [15].

The jamming transition is an avatar of the condensation
transition and has been studied in an exclusion process (EP) in
which a hard-core particle hops to an empty nearest neighbor
with a rate that depends on the vacant sites in front of it. An
exclusion process with hole-dependent rate mimics traffic flow
on a highway where a driver increases (decreases) its speed
if the headway in front of it is large (small) [16,17]. In such
traffic models, the hop rate is an increasing function of the
vacancies with appropriate lower and upper bounds on the
speed of the car. However, it has been shown that if the hop
rates decay sufficiently slowly with the increasing number of
vacancies, as the total density of the system is decreased in
a closed one-dimensional system, a transition occurs from a
laminar phase with typical interparticle spacing of order unity
to a jammed phase in which a macroscopic headway forms
in front of a particle [2]. Since the EP with hole-dependent
rates can be exactly mapped to a ZRP, a lot is known about its
steady-state properties; however, a basic question regarding the
spatial correlation functions in the EP has not been addressed in

previous studies. In this article, we are interested in calculating
the particle-particle correlation function in the steady state of
this model in the canonical ensemble.

Analytical formulas for the two-point correlation functions
are hard to come by. For the one-dimensional totally asym-
metric simple exclusion process (TASEP) on a ring, which is a
special case of the exclusion model studied here, this is trivial
because all configurations are equally likely in the steady state.
A nontrivial exact formula for the TASEP with open bound-
aries (entrance rate α and exit rate β) was given in Ref. [18]
for arbitrary system size. Although the exact formula was
determined in the latter case, their limiting behavior has not
been calculated to the best of our knowledge, especially at the
critical phase line α = β < 1

2 . Recently, the particle-particle
correlation function for the EP with hole-dependent rates was
calculated in the laminar phase for certain special choices of
hopping rates in the grand canonical ensemble [19]. Here we
study the same model in the canonical ensemble and find a
simple analytical formula for the generating function of the
two-point correlation function with arbitrary hop rates in the
thermodynamic limit. This result is applied to the hop rate
u(n) = 1 + (b/n), which decays to a nonzero constant with the
number of holes n in front of the particle. For this choice, a jam-
ming transition occurs when b > 2 at a critical density ρc =
(b − 2)/(b − 1) [2], and here we calculate the two-point cor-
relation function at the critical point and in the laminar phase.

The plan of the article is as follows: in Sec. II, we define the
model and briefly review its steady-state properties. In Sec. III,
we focus on the canonical partition function and give a formula
for it in terms of integer partitions. We then turn to a calculation
of the steady-state particle-particle correlation function in the
canonical ensemble in Sec. IV and obtain an exact expression
for it for any system size. We then find an exact expression
for the generating function of the correlation function in
the thermodynamic limit. In Sec. V, for u(n) = 1 + (b/n),
we show that at the critical density, the correlation function
decays as a power law with continuously varying exponent.
The behavior of the correlation function in the laminar phase
is also studied. We finally conclude with a summary of our
results and discussion in Sec. VI.
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II. MODEL AND ITS STEADY STATE

We consider an exclusion process defined on a ring with L

lattice sites and N particles in which each site can be occupied
by at most one particle. A particle hops to its right empty
neighbor with a rate u(n), where n is the number of holes
in front of the particle. This EP can be mapped to a one-
dimensional ZRP with periodic boundary conditions in which
a site can support any number of particles and a particle hops to
its left neighbor with a rate u(n), where n now is the number of
particles at the departure site [2]. As a result of this mapping,
the density ρ in the EP with L sites and N particles is related
to the density � in ZRP with l(=N ) sites and n(=L − N )
particles as � = (1 − ρ)/ρ.

As we will be exploiting the connection of EP to ZRP
in the following sections, we briefly review the steady-state
properties of the ZRP below and refer the reader to Ref. [2]
for details. The ZRP has the important property that the single
site weights factorize. More precisely, the distribution of a
configuration C ≡ {m1, . . . ,ml}, where mi is the number of
particles at the ith site and

∑
i mi = n, is given by

P (C) = Z̃−1
l,n

l∏
i=1

f (mi), (1)

where the single site weight f (m) is

f (m) = (1 − δm,0)
m∏

i=1

1

u(i)
+ δm,0, (2)

and Z̃l,n is the partition function of the ZRP in the canonical
ensemble given by

Z̃l,n =
∑

0�m1,...,ml�n

l∏
i=1

f (mi)δ∑l
k=1 mk,n

. (3)

In general, it is difficult to obtain results in the canonical
ensemble (see, however, Refs. [17,20,21]), but the grand
canonical partition function Z̃l can be readily obtained. Using
Eq. (3), we can write

Z̃l(z) =
∞∑

n=0

Z̃l,nz
n = gl(z), (4)

where g(z) is the generating function of f (m) defined as

g(z) =
∞∑

m=0

zmf (m), (5)

with a radius of convergence z∗. The number distribution at
a site is given by p(m) = zmf (m)/g(z), where the fugacity
z(�z∗) is determined by

� = 1

ρ
− 1 = z

l

∂ ln Z̃l(z)

∂z
= z

∂ ln g(z)

∂z
. (6)

The fugacity z is an increasing function of the ZRP density
�. But as it is bounded above, it may happen that z reaches
its maximum value at a finite critical density �c. In such a
case, the distribution p(m) = z∗mf (m)/g(z∗) for all � � �c.
But this implies that the average density in the system is
l−1 ∑∞

m=1 mp(m) = �c. The excess mass � − �c is then said
to be condensed into a single cluster.

In Sec. V, we will consider hop rates for which the
jamming transition occurs. We will work with

u(n) = 1 + b

n
, b > 0, (7)

where b is a constant and n is the number of vacant sites in
front of a particle in the EP picture. When b = 0, we arrive
at the TASEP on a ring in which a particle hops to the right
empty site irrespective of the vacancies in front of it (see also
Appendix A). For the above choice of hop rates, the weight
f (n) is given by

f (n) = n!

(b + 1)n
, (8)

where (a)n = a(a + 1)...(a + n − 1) is the Pochhammer sym-
bol or rising factorial. Its generating function g(z) is writable as

g(z) = 2F1(1,1; 1 + b; z), (9)

where the Gauss hypergeometric function is defined as [22]

2F1(a,b; c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
. (10)

It is easy to see that the radius of convergence of g(z) in
Eq. (9) is z∗ = 1. Then Eq. (6) and the discussion following it
shows that a jamming transition occurs at the critical density

�c = 1

b − 2
(11)

for b > 2. Although we will focus on the rate Eq. (7), which
models “attractive interactions” between particles in the ZRP,
we also consider the case of free particles in Appendix B
for which u(n) = n [4]. In the latter case, each particle is
endowed with an exponential clock that ticks at rate one, but
since the particles are free and act independently, the total
hopout rate is equal to the number of particles at the site.

III. PARTITION FUNCTION IN THE
CANONICAL ENSEMBLE

A. Exact recursions

Consider a system of N particles on L sites. If τ is a
configuration in this system, let W (τ ) denote the stationary
weight of such a configuration. Let ZL,N denote the partition
function of the EP in this system. That is to say,

ZL,N =
∑

τ

W (τ ).

We will first give two different recurrence relations for ZL,N .
Note that any configuration can be written in the form

0k0τ10kN , where τ is a configuration in the system with
L − k0 − kN − 1 sites and N − 1 particles. Since we want
this representation to be unique, τ1 has to be 1. Thus,

ZL,N =
∑

0�k0+kN�L−N

∑
τ

W (0k0τ10kN )

=
∑

0�k0+kN�L−N

∑
τ

f (k0 + kN )W (τ )

=
L−N∑
k=0

(k + 1)f (k)
∑

τ

W (τ ),
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where we set k = k0 + kN in the last line and the factor of
k + 1 counts for the number of ways one can split k in this
way. The sum over τ now gives the partition function for a
system with L − k − 1 sites and N − 1 particles where the
first site is occupied. Since the system is translation-invariant,
this gives the formula

ZL,N =
L−N∑
k=0

f (k)(k + 1)
N − 1

L − k − 1
ZL−k−1,N−1. (12)

Another recurrence relation for the ZRP partition function Z̃l,n

with l sites and n particles has been obtained [21] and is given
by

Z̃l,n =
n∑

k=0

f (k)Z̃l−1,n−k, (13)

with Z̃0,n = δn,0 since Z̃1,n = f (n). Since a ZRP can be
mapped to EP by regarding the N particles in EP as l sites
in ZRP and L − N holes in EP as n particles in ZRP, the two
partition functions can be related as

ZL,N = L

N
Z̃N,L−N . (14)

The prefactor on the right-hand side of the above equation
arises due to the fact that the mapping described above between
ZRP and EP assumes that an EP configuration begins with an
occupied site. The EP configurations that begin with an empty
site are taken care of by the factor L/N using the argument
described above.

Therefore, on using the last two equations, we get

ZL,N = L

N

L−N∑
k=0

f (k)
N − 1

L − k − 1
ZL−k−1,N−1. (15)

We have thus shown that both recurrence relation Eqs. (12)
and (15) with the initial conditions ZL,0 = ZL,L = 1 give rise
to the same formula. Although we have proved this result, we
have no deeper understanding of this equivalence.

B. Exact formula for the partition function

It turns out that one can express ZL,N exactly using integer
partitions. To state the result, we need some definitions. An
integer partition of a positive integer n is a representation of
n in terms of other positive integers which sum up to n. For
convenience, the parts are written in weakly decreasing order.
For example, (5,3,3,2,1) is a partition of 14. If λ is a partition
of n, we denote this as λ � n.

Another way of expressing a partition is in the so-called
frequency representation, 1a1 2a2 . . . , where ai represents
the multiplicity of i in the partition. This information can
be encoded as a vector ā = (a1,a2, . . . ). For example, the
same partition of 14 above can be written as 1121324051 ≡
(1,1,2,0,1) followed by an infinite string of zeros, which we
omit. We will write ā � n to mean a partition of n in this
notation.

The number of parts of a partition, denoted by |ā|, is given
by

∑
i ai . Given a function f defined on the positive integers,

we will denote

f (ā) = f (1)a1f (2)a2 . . . .

In the same vein, let ā! = ∏
i ai!. Finally, recall that the

Pochhammer symbol or rising factorial (m)n for nonnegative
integer n, is given by the product m(m + 1) · · · (m + n − 1) if
n is positive and by m if n = 0.

The partition function of the EP can be written as

ZN+M,N = (N + M)
∑
ā�M

(N − |ā| + 1)|ā|−1

ā!
f (ā), (16)

where the length of the system is L = N + M and (m)n is the
Pochhammer symbol defined after Eq. (8). We will prove this
by equating both representation Eqs. (12) and (15). Doing so
for ZN+M,N shows

M∑
k=0

(N − 1)f (k)

N + M − k − 1
ZN+M−k−1,N−1

(
M − Nk

N

)
= 0.

Isolating the k = 0 term and replacing N − 1 by N gives a
recurrence

M

N + M
ZN+M,N =

M∑
k=1

(N + 1)k − M

N + M − k
f (k) ZN+M−k,N .

Define ẐN+M,N = ZN+M,N

N+M
to get a recurrence for Ẑ’s,

ẐN+M,N =
M∑

k=1

(N + 1)k − M

M
f (k) ẐN+M−k,N . (17)

We will now prove the formula for ẐN+M,N equivalent
to Eq. (16) by induction on M . When M = 1, there is a
single term in the sum corresponding to ā = (1,0, . . . ). Thus,
ẐN+1,N = f (1). This is correct since there is a single vacancy
and a factor of f (1) for the particle preceding it.

Now, we assume that Eq. (16) is true for the number of
vacancies being any of 1, . . . ,M − 1. Using Eq. (17) and the
induction assumption, we can write

ẐM+N,N =
M∑

k=1

(N + 1)k − M

N + M − k
f (k)

×
∑

ā�M−k

(N − |ā| + 1)|ā|−1

ā!
f (ā). (18)

Notice that each term in the above equation contains the factor
f (k)f (ā) where a � M − k. We can thus replace ā in the sum
by a′, where a′ = ā ⊕ (k). Then f (k)f (ā) can be replaced by
f (a′). Therefore, the sum above can be reinterpreted as a sum
over partitions of M . We have to compute the coefficient of
f (a′) in such a term.

Suppose a′ can be written as (i
a′

1
1 , . . . ,i

a′
j

j ), where each

a′
k �= 0. Since there are j distinct parts in a′, we can express

a′ = (ik) ⊕ a′
k , where a′

k = (i
a′

1
1 , . . . ,i

a′
k−1

k , . . . i
a′

j

j ) for k =
1, . . . ,j . There are, thus, exactly j terms that contribute to
the partition a′. Note that

|a′
k| = |a′| − 1, f (a′) = f (a′

k)f (ik) and a′! = a′
k! a′

ik
.
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The terms contributing to a′ are

j∑
k=1

(N + 1)ik − M

M
f (ik)

(N − |a′
k| + 1)|a′

k |−1

a′
k!

f (a′
k)

=
j∑

k=1

(N + 1)ik − M

M

(N − |a′| + 2)|a′|−2

a′!
a′

ik
f (a′)

= (N − |a′| + 2)|a′|−2

a′!
f (a′)

j∑
k=1

(N + 1)ika′
ik

− Ma′
ik

M

= (N − |a′| + 2)|a′|−2

a′!
f (a′)(N + 1 − |a′|)

= (N − |a′| + 1)|a′|−1

a′!
f (a′).

This is precisely what we wanted to show.

IV. TWO-POINT CORRELATION FUNCTION
IN CANONICAL ENSEMBLE

A. Exact formula for finite system

We wish to calculate the two-point connected correlation
function

C(r) = 〈nini+r〉 − ρ2, r > 0 (19)

in a system of L sites with N particles. Let us consider a set of
configurations in which the r sites from i to i + r − 1 contain
k holes. Then the contribution to the correlation function
〈nini+r〉 comes from only those configurations in which both
the ith and (i + r)th site are occupied. Using the mapping
between EP and ZRP described in Sec. II and summing over
all the particle configurations in front of the ith and (i + r)th
particle, we get

〈nini+r〉 =
kmax∑

k=kmin

Z̃r−k,kZ̃N−r+k,L−N−k

ZL,N

, (20)

= ρ

kmax∑
k=kmin

Z̃r−k,kZ̃N−r+k,L−N−k

Z̃N,L−N

, (21)

where we have used Eq. (14) to arrive at the last expression. As
the total number of particles is conserved, the maximum num-
ber of particles in the first cluster can be N − 1. In other words,
r − k � N − 1, which gives kmin = max(0,r − N + 1),
as the lower limit kmin can not be below zero. Also the
local conservation in the first cluster with r sites requires that
k � r − 1. Thus we find that kmax = min(L − N,r − 1), since
kmax cannot exceed the total number of holes in the system.

B. Exact expression for infinitely large system

It is evident from Eq. (21) that the partition function at
all densities is required to evaluate the correlation function.
However, barring some special cases that are discussed in
Appendices A and B, it does not seem possible to calcu-
late the exact partition function Z̃l,n for all densities. In
the following subsections, we will calculate the two-point
correlation function in the thermodynamic limit as the problem
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FIG. 1. (Color online) Free energy F̃ (�) as a function of density
� for b = 3/2 (inset) and b = 5/2 (main) for different system sizes.
The data for finite-sized systems is obtained by numerically solving
the recursion Eq. (13) and is compared with the result Eq. (35) for
infinitely large system.

is analytically tractable in this limit. For L → ∞ and finite r ,
we first note that the limits in the sum appearing in Eq. (21)
simplify to kmin = 0 and kmax = r − 1. Furthermore, inspired
by equilibrium statistical mechanics, we conjecture that there
exists a “free energy” F̃ (�) defined as

F̃ (�) = − lim
l→∞

ln Z̃l,n

l
. (22)

For the hop rate Eq. (7), using the recursion Eq. (13), we
calculated the partition function Z̃l,n as a function of density
for various system sizes. Figure 1 shows that the scaled
logarithmic partition function indeed approaches a limiting
function with increasing system size.

Thus, for large L, using Eq. (22), we can write [23]

ln

(
Z̃N−r+k,L−N−k

Z̃N,L−N

)
= kμ − (r − k)P, (23)

where the chemical potential μ and the pressure P are given
by

μ = ∂(lF̃ )

∂n

∣∣∣∣
l

= F̃ ′(�), (24a)

P = −∂(lF̃ )

∂l

∣∣∣∣
n

= −F̃ (�) + �F̃ ′(�), (24b)

and the prime stands for derivative with respect to �. Using
Eq. (23) in Eq. (21) for correlation function 〈nini+r〉 and the
boundary condition Z̃0,n = δn,0 [refer to the discussion after
Eq. (13)], we get

〈nini+r〉 = ρe−rP

r∑
k=0

Z̃r−k,ke
k(μ+P ), r � 0, (25)

= ρerμ

r∑
k=0

Z̃k,r−ke
−k(μ+P ), (26)
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= ρerμ

r∑
k=0

k

r
Zr,ke

−k(μ+P ), (27)

= −ρ

r
erμ d

d(μ + P )

r∑
k=0

Zr,ke
−k(μ+P ). (28)

Thus, the correlation function is related to the grand canonical
partition function of the EP with r sites, which is not known.

However, as explained in Sec. II, the grand canonical
partition function for ZRP is known. We therefore define
the generating function of the correlation function as G(y) =∑∞

r=0 yrC(r), which, on using Eq. (26), works out to be

G(y) = ρ

∞∑
l=0

(ye−P )l
∞∑

n=0

Z̃l,n(yeμ)n − ρ2

1 − y
, (29)

= ρ

1 − ye−P g(yz)
− ρ2

1 − y
, (30)

where z = eμ. Furthermore, we recall that the equation of state
in the grand canonical ensemble is given by [23]

P l = ln(Z̃l(z)) = l ln g(z), (31)

which thus gives e−P = 1/g(z). Thus, we arrive at our main
result, namely

G(y) = ρg(z)

g(z) − yg(yz)
− ρ2

1 − y
, (32)

where the fugacity z(ρ) is determined by Eq. (6). The
correlation function is then given by

C(r) = 1

r!

drG(y)

dyr

∣∣∣∣
y=0

, (33)

=
∮

C

dy

2πi

G(y)

yr+1
, (34)

where the integral in the last expression is along the closed
curve C around the origin [24]. We check that C(0)=ρ(1 − ρ)
is obtained from the above expression. The behavior at r → ∞
is obtained by taking the limit y → 1. Expanding Eq. (32)
close to y = 1 and using Eq. (6), we see that G(y) [and hence
C(r)] vanishes as r → ∞.

Before proceeding further, we note that due to Eqs. (24)
and (31), the free energy can be written as

F̃ (�) = �μ − ln g(z). (35)

This expression is also plotted in Fig. 1 for hop rate Eq. (7)
with b = 3/2 and 5/2, and we see that it matches well with
the results for large systems. We note that F̃ (�) is a decreasing
function of the density for b < 2, but it saturates to − ln g(1)
at high density for b > 2.

V. CORRELATION FUNCTION FOR HOP RATE EQ. (7)

We now apply the general result Eq. (32) for the generating
function of the correlation function to the choice Eq. (7) of
the hop rates. The correlation function can be easily obtained
numerically from Eq. (32) for an infinitely large system, and
these results are shown along with those obtained using the
exact result Eq. (21) for a finite system in Figs. 2–4, and we
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FIG. 2. (Color online) Decay of the correlation function in the
laminar phase at ρ = 0.4 for various b < 2 in the infinite system. The
analytical result Eq. (45) for b = 1 is also shown. The inset compares
the correlation function for b = 1 obtained using Eq. (21) for L = 104

and Eq. (32) for infinite system.

see that the latter approaches the result obtained from Eq. (32)
with increasing system size. In the following subsections, we
obtain analytical results for C(r) using Eq. (32).

A. Laminar phase: 0 < b < 2

When b = 0, we obtain the well-known TASEP [6] on a
ring for which the steady state is known exactly. This case is
discussed briefly in Appendix A using Eq. (32). For b = 1, the
generating function g(z) given by Eq. (9) takes a particularly
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Equation (54)

FIG. 3. (Color online) Decay of spatial correlation function with
distance at the critical density for b = 5/2. The data for finite-sized
systems is obtained by numerically solving Eqs. (13) and (21), while
the result in the thermodynamic limit is obtained using Eq. (32).
The analytical result Eq. (54) valid for large interparticle distances is
also shown. The inset shows the data collapse of C(r,L) for different
system sizes using Eq. (65).

062104-5



PRIYANKA, ARVIND AYYER, AND KAVITA JAIN PHYSICAL REVIEW E 90, 062104 (2014)

10−6

10−5

10−4

10−3

10−2

10−1

100 101 102

C
(r

)

r

10−1

10−2 100

r1
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)
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using G(y) in (32)
Equation (54)

ρ = 0.231769
ρ = 0.233769
ρ = 0.235769
ρ = 0.238269
Equation(62)

FIG. 4. (Color online) Decay of spatial correlation function with
distance at the critical density for b = 3.3. The data for finite-sized
systems is obtained by numerically solving Eqs. (13) and (21), while
the result in the thermodynamic limit is obtained using Eq. (32). The
analytical result Eq. (54) valid for large interparticle distances is also
shown. The inset shows the data collapse of the correlation function
for different densities close to the critical point in the laminar phase
for infinite system using Eq. (62).

simple form:

g(z) = − ln(1 − z)

z
. (36)

Therefore, from Eq. (32), we get the generating function of
the correlation function as

G(y) = ρ ln(1 − z)

ln(y0 − 1) − ln(y0 − y)
− ρ2

1 − y
, (37)

where y0 = 1/z > 1. The density-fugacity relation Eq. (6) is
given by

ρ = −1 − z

z
ln(1 − z), z < 1. (38)

To calculate the correlation function, we consider the
following integral in the complex-y plane along a closed
contour C ′ wrapped around the branch cut at y0, which
consists of a large circle of radius R about the origin and a
small circle of radius ε about y0:

I1 = 1

2πi

∮
C ′

dy

yr+1

ρ ln(1 − z)

ln(y0 − 1) − ln(y0 − y)
. (39)

As the integrand has a simple pole at y = 1 and poles of order
r + 1 at y = 0, due to Eq. (34), the residue at these poles
immediately gives C(r). It is easy to check that the contribution
from the integrals over the large and the small circle vanishes
when R → ∞ and ε → 0. Since the integrand in Eq. (39)
also has a branch cut singularity at y = y0, we finally obtain

C(r) = 1

2πi

[ ∫
AB

dy

yr+1

ρ ln(1 − z)

ln(y0 − 1) − ln(y0 − y)

+
∫

B ′A′

dy

yr+1

ρ ln(1 − z)

ln(y0 − 1) − ln(y0 − y)

]
, (40)

where y − y0 = x along AB and y − y0 = xei2π along B ′A′.
Since the correlation function is real, writing −x = xe−iπ ,
we get

C(r) = ρ ln(1−z)

2πi

∫ ∞

0

dx

(y0 + x)r+1

[
1

ln(y0 − 1)− ln x + iπ

− 1

ln(y0 − 1) − ln x − iπ

]
(41)

= −ρ ln(1 − z)(1 − z)

yr
0

∫ ∞

0

dx

(1 + x(1 − z))r+1

1

(ln x)2 + π2
.

(42)

We are not able to perform the above integral exactly. But an
approximate expression can be found for large r as follows:

C(r) ≈ −ρ ln(1 − z)(1 − z)

yr
0

∫ ∞

0
dx

e−rx(1−z)

(ln x)2 + π2
, (43)

≈ −ρ ln(1 − z)(1 − z)

yr
0

∫ 1
r(1−z)

0

dx

(ln x)2 + π2
, (44)

≈ ρ| ln(1 − z)|
r

e−r| ln z|

[ln(r(1 − z))]2 + π2
, (45)

where the last expression is obtained after an integration
by parts and the fugacity is determined in terms of density
from Eq. (38). The last result is plotted against that obtained
by solving Eq. (32) numerically, and we see an excellent
agreement. Like the b = 1 case, in general for 0 < b < 2, the
correlation function shows an exponential decay (with power
law correction), as can be seen in Fig. 2.

B. At the critical density: b > 2

We now calculate the correlation function at the critical
density Eq. (11) using Eq. (32). At the critical density �c, as
the fugacity z = 1, we get

G(y) = ρcg(1)

g(1) − yg(y)
− ρ2

c

1 − y
. (46)

We first consider the case when b is not an integer. For large
r , we can expand g(y) given by Eq. (9) about y = 1. Using
Eq. (15.3.6) of Ref. [22], we obtain

g(y) = g(1) − sg′(1) + s2

2!
g′′(1) + · · ·

+ (−s)n

n!
g(n)(1) + αsb−1 + O(sb), (47)

where s = 1 − y. Here we have retained analytic terms in the
Taylor series expansion up to nth order where n is the integer
part of b − 1 and the leading nonanalytic term. In the above
expression, α = bπ csc(bπ ) and g(1) = b/(b − 1). Then we
have

G(s) =
∫ ∞

0
dre−srC(r), (48)

= ρc

s
ρc

+ c2s2 + · · · + cnsn − αsb−1

g(1)

− ρ2
c

s
, (49)

= ρ2
c

s

[
αρcs

b−2

g(1)
− ρc(c2s + · · · + cns

n−1)

]
, (50)
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where the coefficients ci are writable in terms of the derivatives
of g(z) evaluated at z = 1. Since G(s) has a branch cut singu-
larity at s = 0, its inverse Laplace transform is given by [24]

C(r) = 1

2πi

∫ i∞

−i∞
dsesrG(s), (51)

= − ρ3
c

2πi

∫ i∞

−i∞
dsesr

(
c2 + c3s + · · ·

+ cns
n−2 − αsb−3

g(1)

)
. (52)

An integral similar to the one above also appears in the
calculation of the canonical partition function of the ZRP [20]
and we can use those results here. In the above expression,
the first integral is δ(r) and all the integrals (barring the last
one) are the derivatives of the δ function. Therefore, for large
r , these integrals vanish, and we are left with

C(r) = αρ3
c

g(1)

∫ i∞

−i∞

ds

2πi
esr sb−3. (53)

The above integral can be obtained from the integral I2

calculated in Appendix C by setting c = t = 0, and we obtain

C(r) = ρ2
c (b − 1)

rb−2
. (54)

This result is compared against that obtained using Eq. (32),
and we see an excellent match at large r .

When b is an integer, as before, we expand g(y) about y = 1
and using Eq. (15.3.11) of Ref. [22], we obtain

g(1 − s) = g(1) − sg′(1) + s2

2!
g′′(1) + · · ·

+ (−s)n

n!
g(n)(1) + βsb−1 ln s, (55)

where β = (−1)bb. Following the same steps as described
above, we get

C(r) = βρ3
c

g(1)

∫ i∞

−i∞

ds

2πi
esr sb−3 ln s, (56)

= ρ3
c β

g(1)rb−2

∫ i∞

−i∞

ds

2πi
essb−3(ln s − ln r), (57)

= ρ3
c β

g(1)rb−2

∫ i∞

−i∞

ds

2πi
essb−3 ln s, (58)

where we have used that b is an integer to arrive at the last
equation. As the above integrand has a branch cut at s = 0,
proceeding in a manner similar to that described in Appendix C
with c = t = 0, we find the above integral to be (−1)b−2(b −
2), which shows that Eq. (54) is valid for integer b as well.

C. Above the critical density: b > 2

We now consider the behavior of the correlation function in
the laminar phase at a density close to the critical point. Since
the fugacity is below one here, we write t = 1 − z and expand
Eq. (6) about z = 1 to find the relationship between t and ρ.

We find that

1

ρ
=

{
1
ρc

− α(b−1)g′(1)
g2(1) tb−2, 2 < b < 3

1
ρc

+ g′(1)
g(1)

(
g′(1)
g(1) − g′′(1)

g′(1) − 1
)
t, b > 3.

(59)

The next-order corrections to the above expression can also be
worked out, and turn out to be of the order t for 2 < b < 3,
tb−2 for 3 < b < 4 and t2 for b > 4.

For large distances and densities close to the critical density,
we now expand the generating function G(y,z) in Eq. (32)
about y = 1 and z = 1. For b > 3, on using Eq. (59), we
obtain

G(s,t) = αρ3

g(1)

(s + t)b−1 − tb−1

s2
, (60)

where, as before, s = 1 − y and we have dropped the analytic
terms as they do not contribute to C(r,z) for the same reasons
as described in the last subsection. We then have

C(r,z) = αρ3

g(1)

∫ c+i∞

c−i∞

ds

2πi
esr (s + t)b−1 − tb−1

s2
, (61)

where c is a positive real number. The above integral is
calculated in Appendix C, and we find that in the limit
t = 1 − z → 0,r → ∞ with rt finite, the correlation function
is of the following scaling form:

C(r,z) = r2−bH[r(1 − z)], (62)

where the scaling function

H(x) = (b − 2)(b − 1)ρ2
c e

−x[(x + b − 1)exEb−1(x) − 1]

(63)

is a decreasing function of x. In the above expression, En(x) =∫ ∞
1 dte−xt t−n is the exponential integral. By carrying out a

calculation similar to above, it can be checked that the results
Eqs. (62) and (63) hold for 2 < b < 3 and integer b as well.
The inset of Fig. 4 shows the data collapse for the correlation
function for various densities close to the critical point and the
scaling function.

Using the asymptotic properties of the exponential integral

En(x) [22], we find that the scaling function H(x)
x→0∼ (b −

1)ρ2
c , which thus reproduces the result at the critical point

obtained in the last subsection. At large x, as the scaling func-
tionH(x)

x→∞∼ (b)(b − 2)ρ2
c e

−x/x2, the correlation function
decays exponentially fast with interparticle distance r . This
analysis yields the correlation length defined by x = r/ξ to be

ξ ∼ (1 − z)−1 ∼ (ρ − ρc)−ν, (64)

which, by virtue of Eq. (59), gives ν = 1/(b − 2) for b < 3
and 1 for b > 3.

VI. DISCUSSION

In this article, we studied an exclusion process on a ring in
which a particle hops to a right empty neighbor with a rate that
depends on the number of empty sites in front of it. Although
we assumed that the hops are totally asymmetric, the results
obtained here hold for the general case also in which a particle
may hop to either left or right empty neighbor with nonzero
rate. This is because the general exclusion model maps to a
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ZRP whose partition function is independent of the bias in
the hop rates [2]. Then our exact Eq. (21) for the correlation
function, which holds for any bias in the hop rates, gives the
same solution as obtained in the previous sections.

Although most of the results for the ZRP and hence the
exclusion process have been obtained in the grand canonical
ensemble [2], some studies in the canonical ensemble have also
been carried out [17,20,21,25]. In particular, an expression for
the partition function Z̃l,n in the canonical ensemble at and in
the vicinity of the critical point has been calculated for finite
systems [20], and it has been shown that for the weight f (m)
with the same asymptotic behavior as Eq. (9), Z̃l,n depends
exponentially on system size for � < �c, but sublinearly on l

for � � �c. This implies that the free energy Eq. (22) changes
with the density � in the homogeneous phase but becomes
a constant equal to − ln g(1) (which is chosen to be zero in
Ref. [20]) for all � � �c, as seen here in Fig. 1. Due to the latter
property, our analysis cannot be carried over to the jammed
phase. However, since we are mainly concerned with critical
exponents here, it suffices to consider the system in the infinite
size limit.

For an infinitely large system, we have derived an exact
expression Eq. (32) for the generating function of the steady-
state two-point correlation function in the canonical ensemble.
This result was applied to the hop rate Eq. (7) for ρ � ρc to find
the relevant critical exponents. Interestingly, we find that at the
critical point, the exponent characterizing the power law decay
of the two-point correlation function changes continuously
with the parameter b in the hop rate Eq. (7). Equilibrium
systems in two dimensions that show continuously varying
exponents at the critical point are known [26], and their
behavior is understood in terms of conformal field theories
with central charge one [27]. We do not know if the behavior
found here has any such deeper significance. The correlation
length exponent ν in Eq. (64) also changes continuously for
2 < b < 3, whereas it is constant for b > 3. This scaling for the
correlation length has been obtained in a previous work [28]
as well. In addition, we have also derived the scaling function
for the correlation function in the high-density phase here.
The case of b = 1, where the system is in laminar phase for
all densities, has been considered in Ref. [19], but an explicit
expression for the correlation function was not provided.

From the numerical data shown in Figs. 3 and 4 at the
critical point, we note that the finite size effects set in early on.
For example, in Fig. 3 for b = 5/2 and a system size L = 104,
a power law is seen for about a decade only. This makes a
numerical determination of the correlation function exponent
difficult. Here we have given an expression, Eq. (32), for the
generating function of the two-point correlation function for an
infinite system, which can easily generate several decades of
data. For a finite system with L sites, we expect the correlation
function to be of the following scaling form:

C(r,L) = 1

rb−2
F(rL−z), (65)

where the scaling function F(x) is a constant for x � 1 and
decays for x � 1. In the ZRP, the average mass cluster at the
critical point scales as l1/(b−1), b < 3, and

√
l,b > 3 [20]. If

we make the reasonable assumption that at the critical density
there is a single length scale in the system under consideration

and is set by the typical headway, we expect z = 1/(b − 1)
for b < 3. This expectation is consistent with the data shown
in the inset of Fig. 3 for b = 5/2, where we see that the data
collapse gets better with increasing L.
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APPENDIX A: SIMPLE EXCLUSION PROCESS

For u(n) = 1, n > 0, as all configurations are equally likely
[29], the steady-state partition function is given by ZL,N =
(L

N). The two-point correlation function C(r) =(L−2
N−2)/(

L

N)=N(N−
1)/[L(L−1)], r>0 vanishes in the limit L → ∞. It can be easily
checked that Eq. (21) also gives this result. For large systems,
the free energy defined in Eq. (22) works out to be

F̃ (�) = (1 + �) ln(1 + �) − � ln �, (A1)

which is an increasing function of the density �. Furthermore,
since f (m) = 1, we have g(z) = 1/(1 − z), and therefore

G(y) = ρ
1 − (1 − ρ)y

1 − y
− ρ2

1 − y
, (A2)

which immediately yields C(r) = 0, r > 0, as expected in the
thermodynamic limit.

APPENDIX B: FREE PARTICLE CASE

When the particles jump independently (in the ZRP
picture), the hop-out rate is proportional to the number of
particles at the site, u(n) = n. Therefore, from Eq. (3), the
ZRP partition function is easily seen to be

Z̃l,n = ln

n!
.

Using this in Eq. (21), we obtain the exact expression for the
two-point correlation function as

〈nini+r〉 = ρ

NL−N

kmax∑
k=kmin

(r − k)k

k!
(N − r + k)L−N−k

× (L − N )!

(L − N − k)!
. (B1)

In the thermodynamic limit, the above expression gives

〈nini+r〉 = ρ

r−1∑
k=0

(r − k)k

k!
�ke−(r−k)�. (B2)

For this case, we have g(z) = ez and z = �. As a result, Eq. (32)
gives

G(y) = ρ

1 − yez(y−1)
− ρ2

1 − y
. (B3)

It can be checked that the correlation function in Eq. (B2)
matches that obtained from the series expansion of Eq. (B3).
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To obtain an explicit expression for the correlation function
C(r), we use the Euler-Maclaurin formula given by [30]

r∑
k=0

f (k) ≈
∫ r

0
dxf (x) + 1

2
[f (0) + f (r)]

−
∫ r

0
dxf ′(x)

∞∑
j=1

sin(2jπx)

πj
, (B4)

=
∫ r

0
dxf (x) + f (0)

2

+ 2
∞∑

j=1

∫ r

0
dx cos(2jπx)f (x), (B5)

=
∫ r

0
dxf (x) + f (0)

2

+ 2
∞∑

j=1

Re

[∫ r

0
dxei2jπxf (x)

]
, (B6)

where f (k) is the summand in Eq. (B2). Our main task is to
calculate the integral on the right-hand side of the last equation,
which can be carried out using the saddle point method for
large r . We find that∫ r

0
dxei2jπxf (x) ≈ er(x0−�)

1 + x0
, (B7)

where x0 is the solution of the saddle point equation

� − x0 + ln(�/x0) + i2πj = 0. (B8)

Writing x0 = �αeiθ , we find that α and θ obey the following
equations:

� = 2πj − θ

tan θ
+ ln

(
2πj − θ

� sin θ

)
, (B9a)

α = 2πj − θ

� sin θ
. (B9b)

For j = 0, the saddle point x0 = �, which immediately
gives

C(r) = 2ρ

∞∑
j=1

∫ r

0
dx cos(2jπx)f (x), (B10)

where the summand is given by

er( 2πj−θ

tan θ
−�)

× cos[r(2πj− θ )]
(
1+ 2πj−θ

tan θ

)+ sin[r(2πj− θ )](2πj− θ )(
1 + 2πj−θ

tan θ

)2 + (2πj − θ )2
.

(B11)

Since the contribution of the successive terms in the sum
decreases with increasing j , we estimate only the j = 1

term here. Also, numerical analysis of Eq. (B9a) shows that
θ increases with j and therefore we work within small-θ
approximation. These considerations finally yield

θ = 2π

W (�e1+�)
, (B12)

where W is the Lambert function that satisfies W (z)eW (z) = z

[31], and

C(r) = 2ρe
−r

(
1
ρ
− 2π

θ

) cos(rθ )
(

2π
θ

) − sin(rθ )(2π − θ )(
2π
θ

)2 + (2π − θ )2
, (B13)

≈ ρe
−r( 1

ρ
− 2π

θ
) θ cos(rθ )

π
, (B14)

which is an oscillatory function with decaying amplitude.

APPENDIX C: EVALUATION OF THE INTEGRAL EQ. (61)

Consider the following integral:

I2 = 1

2πi

∮
C ′

dsesr (s + t)b−1 − tb−1

s2
, t � 0, (C1)

where the contour C ′ around the branch cut at −t includes
the Bromwich contour along the line s = c, c being real and
nonnegative. The residue from the second-order pole at s = 0
gives I2 = (b − 1)tb−2. The integral along the large semicircle
with radius R decays exponentially fast with increasing R, and
the one along the small semicircle with radius ε is proportional
to εb−2 and therefore vanishes as ε → 0. Thus, we get

I2 = 1

2πi

[ ∫ c+i∞

c−i∞
+

∫
AB

+
∫

B ′A′
dsesr (s + t)b−1 − tb−1

s2

]
.

(C2)

Since s = −t + xe±iπ along the upper (lower) branch
AB(B ′A′), we get∫ c+i∞

c−i∞

ds

2πi
esr (s + t)b−1 − tb−1

s2
, (C3)

= sin(bπ )

π
e−tr

∫ ∞

0
dxe−xr xb−1

(x + t)2
+ (b − 1)tb−2, (C4)

= sin(bπ )

π
(b − 1)e−tr (rt + b − 1)Eb−1(tr)etr − 1

rb−2

+ (b − 1)tb−2. (C5)

For t = c = 0, using that exEb−1(x)
x→0∼ (b − 2)−1 + O(xb−2)

[22], the above integral reduces to∫ i∞

−i∞

ds

2πi
esr sb−3 = sin(bπ )

π

(b − 2)

rb−2
. (C6)
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