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A procedure for solving Poisson’s equation using plane waves in adaptive coordinates (u) is described. The
method, based on Gygi’s work, writes a trial potential £ as the product of a preselected Coulomb weight
times a plane-wave expansion depending on u. Then, the Coulomb potential generated by a given density p is
obtained by variationally optimizing &, so that the error in the Coulomb energy is second-order with respect to
the error in £. The Coulomb weight p is chosen to provide to each £ the typical long-range tail of a Coulomb
potential, so that calculations on atoms and molecules are made possible without having to resort to the supercell
approximation. As a proof of concept, the method is tested on the helium atom and the H, and Hs" molecules,
where Hartree-Fock energies with better than milli-Hartree accuracy require only a moderate number of plane

waves.
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I. INTRODUCTION

The use of plane waves in adaptive coordinates (PWACs)
as basis functions for quantum-mechanical calculations was
pioneered by Gygi [1,2]. This approach introduces a map
f from Cartesian coordinates r to some new adaptive
coordinates u,

u= f(r). 1
Then this map is used to construct PWAC basis functions,
X = et J |2 e, )

where K is a wave vector and J; is the Jacobian matrix of
f. Finally, each molecular orbital is expressed as a linear
combination of these PWAC bases,

V=) akxk. 3)
k

PWAC bases are orthogonal and complete [1,2].

Adaptive coordinates and PWAC bases have been used
by a number of authors [1-19], and they promise some
computational advantages over more conventional approaches,
mainly Gaussian [20] or plane-wave [21] bases (although we
would like to point out the existence of promising alternatives
such as real-space mesh [22-27] or multiresolution wavelet
[28,29] techniques). Gaussians are accurate (allowing, for
instance, routine all-electron calculations) but computationally
demanding. Plane waves, on the other hand, are less accurate
than Gaussians (so that pseudopotentials have to be used for
core electrons), but they show, thanks to the fast Fourier
transform [30] (FFT), a nicer scaling with the size of the
system. Noting that a plane wave is just a PWAC basis function
where the map f is the identity map (that is, u = r), one would
expect that a judicious choice of f will make PWAC bases
more accurate than plane waves, while hopefully maintaining
their scaling advantages.

Gygi’s original method [1,2] has been applied mainly to
periodic systems (for nonperiodic systems, calculations have
been performed [3,4] by means of the supercell approximation

*jmpj@ua.es

1539-3755/2014/90(5)/053307(6)

053307-1

PACS number(s): 02.60.—x, 02.70.—c, 31.15.xt

[21]), and the problem posed by the nucleus-electron singular-
ities has to be circumvented in an approximate way by the use
of pseudopotentials [1-8] or some other approximation for
the nuclear potential [9-11,19]. These limitations are being
addressed by our ongoing project [14—17], the goal of which
is to use PWAC bases in order to perform accurate all-electron
calculation on nonperiodic systems. This paper is devoted
to the development of a variational procedure for solving
Poisson’s equation and computing the Coulomb repulsion
energy, which is a crucial ingredient of any quantum chemical
calculation.

First we will review the work done so far, and then we
will describe our proposed procedure for computing Coulomb
energies via the solution of Poisson’s equation. After that, we
will discuss the technical implementation of the algorithm,
and, as a proof of concept, we will compute the Hartree-Fock
energy of the helium atom and the H, and H3" molecules. We
will close the paper with a summary of the main conclusions.

II. REVIEW OF PREVIOUS WORK

In this section, we will summarize our improvements
[14-17] over Gygi’s original method [1,2], beginning with
the choice of the map u = f(r), which is of fundamental
importance in calculations employing PWAC basis. The kind
of maps [14,17] that we are using have three main features:

(i) The domain for the Cartesian coordinates r covers the
whole space, while the range of the adaptive coordinates u is
kept within finite intervals. This enables the exact and trivial
handling of isolated atoms or molecules, which are surrounded
by an infinite amount of empty space, without having to resort
to the supercell approach (we should point out that there are
[31] efficient alternatives to the supercell approach, but based
on wavelets rather than on plane waves).

(ii) The maps are adaptive, meaning that they adapt
themselves to the molecular geometry, so that regions of
chemical interest (such as atomic cores or bonds) are dealt
with more carefully. This allows, for instance, the accurate
description of core densities for heavy atoms such as uranium
[14], thus rendering the use of pseudopotentials unnecessary,
and all-electron calculations feasible.
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(iii) The maps can be inverted easily, so that the value r
corresponding to a given u can be found efficiently. This is
a crucial property, since the evaluation of molecular integrals
requires extensive sampling in u space.

Apropos this sampling, it is well known that some quan-
tum chemical methods (such as the Hartree-Fock model or
density-functional theory) are variational, meaning that if
6§ represents the error in the wave function, then the error
in the total energy is much lower, only second-order in
8&. The use of PWAC bases for such methods would, in
principle, be variational too, provided that the computational
implementation is accurate enough. A problem, however, is
posed by the evaluation of molecular integrals, which have to
be done by numerical integration over a given set of sampling
points, so that, if this set is not large enough, a numerical error
will be introduced that will kill the second-order advantage. We
have solved [15,17] this problem by implementing an efficient
and accurate procedure that minimizes the numerical error,
thus keeping the whole procedure truly variational and with a
total energy error that is second-order in 6&. As an illustration,
we have presented [15] evidence that second-order variational
calculations yield errors about one order of magnitude smaller
that the corresponding first-order nonvariational counterparts.
It should be noted that, by the nature of the maps used in
some calculations [1-6] for periodic systems, this sampling
procedure is not really necessary to obtain second-order errors
for them.

This evaluation of molecular integrals by numerical inte-
gration is threatened by the nucleus-electron singularity that
appears in nuclear potential integrals: if one of the sampling
points is located at (or very near) one nucleus, then we will
have a division by zero (or by a very small number) problem,
which will ruin the accuracy of the whole calculation. We
have solved [17] this problem by transforming the nuclear
integrals via Green’s first identity, so that the corresponding
integrands are singularity-free. This procedure is exact, and
there is no need to use pseudopotentials [1-8] or some other
approximation for the nuclear potential [9-11,19].

These improvements are encouraging, and they have
been successfully tested [17] on one-electron atoms and
molecules. A necessary step for the extension of the method
to arbitrary many-electron atoms and molecules is the eval-
uation of the electron-electron Coulomb repulsion energy.
This will be accomplished in the present paper by improv-
ing an early prototype [15] solver for Poisson’s equation,
which was developed and tested on crude model densities
(spherically averaged Hartree-Fock densities, conveniently
screened to take away the long-range tail of the Coulomb
potential). Improvements to this prototype will be aimed
at getting the correct long-range behavior of the Coulomb
potential and at selecting a map u= f(r) able to deal
successfully both with Poisson’s equation and Schrodinger’s
equation.

III. COULOMB ENERGY VIA POISSON’S EQUATION

The evaluation of the Coulomb energy is a crucial com-
ponent of any quantum chemistry calculation. For example,
in density-functional theory, given an electron density p built
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from a set of molecular orbitals {;},
p=Y ¥l )

the Coulomb energy has the following expression:

e [ s

(we use atomic units). For simplicity, in this paper we will
restrict ourselves to Coulomb energies having this form. Other
quantum chemistry models, such as the Hartree-Fock method,
have electron-electron repulsion energies that can also be
expressed in terms of orbitals, so that the procedure explained
here can be easily adapted to these other methods.

To get the Coulomb energy, one can first obtain the Coulomb
potential v generated by a density p,

v(r):/ ) dr’, (6)
Ir—r|

and then compute the Coulomb energy as

Eee = %fp(r)v(r)dr. N

Alternatively, instead of using Eq. (6), one can obtain the
Coulomb potential by solving Poisson’s equation,

Vv = —47p. (8)

This is the approach that we will use here.
Let us have the following functional:

1
g/wsﬁdr—/psdr, ©

where £ is a trial potential. It is easy to prove, via the
Euler-Lagrange equation (see, for instance, Ref. [11]), that v,
the solution of Poisson’s equation, minimizes this functional:
given a trial potential

Fyl§]=

& =v+ 8¢, (10)
then

F,l§] = Fplv] + % / V8§17 dr > Fylv] = —Eee. (11)

Thus we can solve Poisson’s equation via the minimization
of F,, and the value of —F), at the minimum will provide the
value of the Coulomb energy. This procedure is variational, so
that the error in the Coulomb energy is second-order in 6&.
We propose the following expression for the trial potential:

§ = pnmC), 12)

where the Cartesian coordinates r and the adaptive coordinates
u are related by the map u = f(r), C is an expansion in plane
waves in u coordinates,

C) = che“"“, (13)
k

and p is the Coulomb weight, that is, a preselected weight func-
tion that would provide the appropriate boundary conditions
(it will be discussed in depth below).

The electron density p is built from molecular orbitals,
as shown in Eq. (4). The molecular orbitals are expressed in
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turn as a linear combination of PWAC basis functions, as in
Eq. (3). Therefore, the density will have, according to Eq. (2),
an expression of the form

p = |detJ ;| Q(u), (14)

where €2 is an expansion in plane waves in u coordinates,

Qu) =) die™" (15)
k

(the single summation is justified by the fact that the product
of two plane waves is another plane wave). It should be noted
that, for the procedure to be practical, the same map u =
f(r) should be used for both the Coulomb potential and the
molecular orbitals.

We now insert the expressions for & and p given, respec-
tively, by Eqs. (12) and (14), into Eq. (9), and, using the
map u = f(r) and the chain rule for the gradient operator
V, we rewrite, in a similar way as was done [17] for the
Schrodinger equation, the functional F,[£] as a functional of

C, Fo ¢[C] = F,l€],
303 3
Fo/IC] = / D3 0iCiCi+ ] Q(CiC +CC))
j=1 k=1 j=1
+ 0C? — uQC | du, (16)
with
Ciw) = s (17
auj
>l (3L)
Q) = m, (18)
du;
MZ: 1 g)ch, ij
Qi = W, (19)
ouj du
. M Zl 1 3x; Bxf
ij(u) W (20)

where x;, x5, and x3 represent the Cartesian coordinates and
ui, up, and u3 represent the adaptive coordinates,

(x1,%2,X3) =1, 2D
(uy,ur,u3) = u. (22)

Finally, to complete the description of our algorithm, we
have to provide an expression for the Coulomb weight u
introduced in Eq. (12). It is well known that the Coulomb
potential v generated by a molecular electron density has a
long-range tail with the following form:

) 1
lim v &x — (23)

[r|—>00 Ir|”
Therefore, a Coulomb weight p with exactly this kind of
behavior would be a sensible choice. We propose to make
u equal to the Coulomb potential generated by a single
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normalized Gaussian distribution g, centered at the origin,

AS
) = () = [ <) g (24)
s— 1]
where
G (r) = e /e’ (25)

YPRvES

and where the parameter A determines the extent of the
Gaussian. To compute u,,., we use the relation [32]

2
P (r) = e Fo(r*/Ag). (26)

where the function F},, with m integer (not to be confused with
the functional F),) is related [33] to the incomplete gamma
function y,

Fu(t) = 5y (m + 1/2,1). 27)

2pm+1/

For the derivatives of u,,., it is easy to arrive at the following
relation:

a4
8x,» ﬁ)\%

where x; represents any of the Cartesian coordinates.

Fi(r*/Ag), (28)

IV. IMPLEMENTATION AND BENCHMARKING

To minimize the functional Fq ¢[C] in Eq. (16), we have
to implement a procedure for finding out the coefficient ck
of each plane wave ¢'*" in Eq. (13). However, as Coulomb
potentials and densities are real functions, we prefer to use cas
functions,

casx = cosx + sinx, 29)
instead of complex exponential functions,
e = cosx +isinx. (30)

Here “cas” stands for “cosine and sine.” The corresponding
3D basis function will be

Kk = cas (ky, u1) cas(ky,uz) cas(ky,uz),  (31)

1
(V2m)

where the integer components of the wave vector k =
(ku, ,ku,,k,,) are restricted as follows:

Nu] NM] Nu2 Nuz
- < ku] < 5 - < kuz < 5
2 2 2 2
Nu3 Nu3
— Sk < (32)

and N,,, N,,, and N,, give the size of the basis along
the respective dimension, so that the total number of basis
functions will be N,, x N,, x N,,. For simplicity, a basis of
the same size will be used for the molecular orbitals, expressed
as indicated in Eq. (3).

We proceed by writing the functional Fg ¢[C] in matrix
form, and we define a square matrix A and a column matrix b
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with respective elements,

3 3
aXl aXm
<mm=2/
1 ZZQJ]‘ 314] Buk

j=1 k=1

D
+ZQ1<  Xm + 13X )+Qxlxm du
uj
(33)
and
®h=i/u9mdu (34)

These integrals are evaluated by the sampling procedure
outlined in Sec. II, so that the numerical integration error is
kept low enough to ensure an overall second-order variational
procedure [15,17]. We have used 10N,,,, 10N,,, and 10N,
sampling points along the respective dimension for A, and
3N,,,3N,,,and 3N, for b. Next, taking into account Egs. (16)
and (13), we arrive at the following equivalence:

SE Y amen — Yo (39
1 m

Fq ¢[C]l =

To minimize Fq ¢[C], we equate its partial derivatives with
respect to each ¢ to zero, and we obtain the following system
of linear equations:

D (Amcm = (b (36)

As A is a symmetric positive-definite matrix, it is possible to
solve this system by Cholesky decomposition and obtain the
coefficients ¢y, (note that, although Cholesky decomposition
is fine for systems of moderate size, more efficient procedures
should be used for larger systems, such as conjugate-gradient
or iterative methods).

The maps u = f(r) that will be used in this work are
composites of two maps g and &, thatis, f = g o h, or

u = f(r) = h(g(r)). (37

These composite maps have been successfully used [17] for
solving the 3D Schrodinger equation. We will give a brief
outline.

(i) The g map depends [17] on three parameters: A,, A,,
and A, (one for each Cartesian coordinate), parameters that
are related to the extent of the system, and therefore may have
different values for different atoms and molecules.

(i1) The 4 map is built [17] from a point-density py,

Pu(s) =D pls —s0). (38)

The peak function p depends on three parameters: Ly, L,
and L,. To add some extra flexibility to our maps, we have
introduced a new parameter y to this definition, and now we
will use

pn(s) = (39)
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instead of the original [17] form given in Eq. (38) (which
corresponds to y =1). For y =0, the point-density pp
becomes constant, which reduces # to the identity map.

Summing up, the maps used in this work will depend on
seven parameters: Ay, Ay, Az, Ly, Ly, L, and y. Itis important
to stress that, in a calculation on a given molecule, the same
map should be used to obtain the Coulomb potential (via
Poisson’s equation, as explained above), and to obtain the
molecular orbitals (via the 3D Schrodinger equation [17]).

As a proof of concept, we will perform some restricted
Hartree-Fock (RHF) calculations on two-electron systems. For
two-electron systems, the electronic RHF energy [32] may be
obtained by minimizing the following functional:

Erupl¥] = 2/ U* (—%Vz + vne) ¥ dr
+ / [V (0)1 2 (s)]

drds, 40)
Ir — s

where vy, is the nucleus-electron Coulomb attraction potential
and v is a normalized trial orbital. However, by taking into
account Eqgs. (11) and (7), we can express the RHF energy
as a functional depending on both a trial orbital v/ and a trial
potential 7,

Erprl.0] = 2[ v ( SV vne> ¥ dr — 2F (0],
(41)

Finally, we obtain the RHF energy via a self-consistent-
field (SCF) method by alternating the minimization of this
functional with respect to Y with the maximization with
respect to U (note that Fj;p enters the functional with a
minus sign). The maximization with respect to ¥ is done by
the procedure explained above, while the minimization with
respect to ¥ is performed by solving the Schrodinger equation
[17] for the Hamiltonian,

IVt v + 0, (42)

with the same map u = f(r) used for both actions.

We have tested our approach on three two-electron systems:
the helium atom and the H, and Hs" molecules. The results
are given in Table I, about which we offer some remarks.

(i) As expected, the error decreases steadily as N, the
number of basis functions per dimension, increases.

(i) The errors are mostly (but not always) positive. Negative
errors appear because we are maximizing with respect to the
trial potential ¥, so that an approximate energy below the exact
one is perfectly possible. The sign of the error is, however, a
secondary matter, because, regardless of sign, the error is still
second-order both for the trial orbital ¢ and the trial potential
D.

(iii) Our choices for the map u = f(r) and for the Coulomb
weight p are able to yield better than milli-Hartree accuracy
with amodest N in all cases. It should be stressed that the same
map is good enough for solving both Schrodinger’s equation
[17] and Poisson’s equation.

(iv) Molecules, as well as atoms, are successfully handled
by our procedure. There is no need to invoke the supercell
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TABLEI Errors in the total RHF energy (in a.u.) of some systems
estimated as Eryr — E{f{IF, where Eryr is the RHF energy computed
by the present method (including nucleus-nucleus repulsion energy),
and Egl is some accurate reference RHF energy. N,,, N,,, and N,,
are all set to N, so that the total number of basis functions is N*. The
Coulomb weight parameter has been set to the same value Ac = 1 a.u.
in all cases. Technical details for each system are as follows:
He: E,‘fﬁF = —2.861 679995 a.u. [34]. Map parameters: A, = A, =
A, =09,L,=L,=L, =1, and y = 0. Geometry: the nucleus is
located at the origin. Hy: Egir = —1.1336295715 a.u. [35]. Map
parameters: A, = A, =1, A, =1.22066, L, =L, =L, =1, and
y = 0.2. Geometry: the nuclei are located along the Z axis, one
at z = R/2 and the other at z = —R/2, where R = 1.40 a.u. is the
internuclear distance [35]. Hs": E{f{}F = —1.300400 141 a.u. [36].
Map parameters: A, = A, =1.20355, A, =1, L, =L, =L, =1,
and y = 0.2. Geometry: the nuclei are located on the XY plane
forming an equilateral triangle with the center at the origin, one
nucleus over the Y axes, and a side length of 1.6405 a.u. [36].

N He H2 H3+

4 +2.2 x 107! +4.2 x 107! +5.1 x 107!
6 +7.4 x 1072 +1.7 x 107! +1.6 x 107!
8 +2.9 x 1072 +5.5 x 1072 +4.5 x 1072
10 +1.7 x 1072 +1.8 x 1072 +1.7 x 1072
12 +9.5x 1073 +5.6 x 1073 +9.9 x 1073
14 +4.8 x 1073 423 x 1073 +6.6 x 1073
16 +23x 1073 +8.7 x 10~* +2.5%x 1073
18 +1.8 x 1073 +3.9x 10~ +7.9 x 10~
20 +8.9 x 10~* —6.8 x 1074 —3.8x 107*

approximation (or alternatives [31] to it) nor to use pseudopo-
tentials.

V. CONCLUSIONS

We have described a procedure for solving Poisson’s
equation and computing Coulomb energies. Our approach
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is based on the variational (second-order error) optimization
of a functional F,[£] given in Eq. (9), where the solutions are
expressed by the product of a Coulomb weight 1 times a plane-
wave expansion depending on a new coordinate system u =
f(r), as detailed by Eqs. (12) and (13). The main conclusions
are as follows:

(i) The method is variational, meaning that the approxi-
mated Coulomb energy will have a second-order error with
respect to the trial potential error (for nonvariational methods,
such as finite-difference methods, the error in the Coulomb
energy will be first-order).

(i1) The long-range tail typical of a Coulomb potential is
built-in in the solution, thanks to our choice for the Coulomb
weight p given in Eq. (24).

(iii) Our choice for the map u = f(r) is able to deal
successfully with nonperiodic systems such as atoms or
molecules without having to resort to the supercell approach
or other alternatives [31].

(iv) The same map f can solve successfully both Poisson’s
equation and Schrodinger’s equation, allowing one to obtain
both Coulomb potentials and molecular orbitals, and thus
making possible the use of the described method to perform
all-electron quantum chemical calculations in atoms and
molecules.

(v) As a proof of concept, our implementation is able to
achieve, with a moderate number of plane waves, better than
milli-Hartree accuracy for the Hartree-Fock energy of two-
electron systems such as the helium atom and the H, and H3"
molecules.

This method for solving Poisson’s equation, together with
another variational method [17] for solving Schrodinger
equation, would allow variational all-electron quantum chem-
ical calculations for atoms and molecules. The resulting
procedure could combine the accuracy of Gaussian basis
sets used by quantum chemists with the efficiency and nice
scaling properties of plane-wave basis sets used by solid-state
physicists.
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