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acoustical beams in spherical coordinates

F. G. Mitri1,* and G. T. Silva2

1Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508, USA
2Physical Acoustics Group, Instituto de Fı́sica, Universidade Federal de Alagoas, Maceió, AL 57072-970, Brazil
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The extended optical theorem is generalized for scalar acoustical beams of arbitrary character with any angle
of incidence interacting with an object of arbitrary geometric shape and size, and placed randomly in the beam’s
path with any scattering angle. Analytical expressions for the extinction, absorption, and scattering cross sections
are derived, and the connections with the axial (i.e., along the direction of wave propagation) torque and radiation
force calculations are discussed. As examples to illustrate the analysis for a viscoelastic object, the extinction,
absorption, and scattering cross sections are provided for an infinite plane progressive wave, infinite nondiffracting
Bessel beams, a zero-order spherical quasi-Gaussian beam, and a Bessel-Gauss vortex beam emanating from a
finite circular aperture, which reduces to a finite high-order Bessel beam, a finite zero-order Bessel beam, and a
finite piston radiator vibrating uniformly with appropriate selection of beam parameters. The similarity with the
asymptotic quantum inelastic cross sections is also mentioned.
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I. INTRODUCTION

The interaction of waves and scattering by a particle is an
important topic in various fields including nuclear physics [1],
quantum mechanics [2], optics [3–5], and acoustics [6,7]. In
this process, the power [8] of the total (i.e., incident + scat-
tered) wavefield [9] is extinguished [10,11] both by scattering
[12] and by absorption inside the particle; thus, a specific cross
section (denoted by σext,sc,abs) has been defined with each of
these processes [3]. The extinction cross section σext corre-
sponds to the extinguished power normalized by the power
per unit area incident upon the scatterer [8]. This phenomenon
constitutes a general law in scattering theory, known as the
optical theorem [13,14] or alternatively the extinction theorem
[3], which relates the extinction cross section of an object
of arbitrary geometry placed in the field of monochromatic
plane waves to its forward scattering amplitude, which is
the scattered wave amplitude measured in the far field along
the forward direction of wave propagation. The application
of the optical theorem has been generalized (originally in
quantum mechanics [15,16]) to a form that involves an angular
integral of a product of scattering amplitudes (of plane waves)
to obtain a condition on scattering amplitudes in an arbitrary
direction (instead of just the forward amplitude), which was
later discussed (pp. 135–138 in [17]) and extended in the
context of electron diffraction theory [18], optical evanescent
waves [19], surface waves and layered elastic media [20],
and acoustic backscattering by elastic targets (with no internal
dissipation) having inversion symmetry [21].

The statement of conservation of energy applied to scatter-
ing and the associated cross section definitions is written as
(p. 13 in [3])

σext = σsca + σabs. (1)

The immediate application of the optical theorem is the
numerical predictions of cross sections rather than direct
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integration procedures [14]. Moreover, the optical theorem
finds useful applications in the theory of dispersion [22,23],
near-field diffraction tomography [24], and inverse scattering
[25]. Note that the standard optical theorem, which has been
essentially established for plane waves, is not applicable for
beams that possess some degree of amplitude roll-off in the
transverse direction [26,27], such as Gaussian and Bessel
beams. When extending the usual plane-wave form of the
optical theorem (involving only forward scattering) to an
angular superposition of amplitudes for nondiffracting beams,
the convention has been to describe that as an extended optical
theorem [28], which can be connected with radiation force and
torque.

Motivated by the important applications of the (extended)
optical theorem for scalar beams (which satisfy the Helmholtz
equation), a generalized formulation applicable to any beam
of arbitrary character with any angle of incidence is developed
for a scatterer of arbitrary geometric shape and size, and
placed on or off the beam’s axis with any scattering angle.
The generalization of the extended optical theorem gives
generalized partial-wave series expansions for the extinction,
absorption, and scattering cross sections in terms of the
beam-shape and scattering coefficients of the target. Particular
examples are considered for cases where a viscoelastic sphere
is centered on the axis of wave propagation of the incident
beam. Though the present analysis treats the case of acoustical
beams, the similarity with the inelastic cross sections for
asymptotic quantum arbitrary beams [29] is also mentioned.

II. THEORY

Consider an acoustic beam of angular frequency ω incident
along an arbitrary direction on a viscoelastic object of arbitrary
geometric shape immersed in a nonviscous fluid of density
ρ0 (Fig. 1). The density and the speed of sound inside the
object are denoted by ρs and cs , respectively. The origin of
the coordinate system is chosen to be the center of the object.
The incident and scattered first-order pressure amplitudes (the
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FIG. 1. (Color online) An object of arbitrary geometrical shape
placed in the field of an incident acoustical beam of arbitrary
character. The primed coordinate system has its origin at the center of
the beam, while the unprimed coordinate system is referenced to the
object. The parameters θ and ϕ are the polar and azimuthal angles,
respectively. The time-averaged intensity vectors associated with the
incident (pivi), interacting (pivs ,psvi), and scattered (psvs) waves
are used to derive the specific cross sections.

time dependence e−iωt is suppressed for convenience) can be
expanded into a partial-wave series expansion (PWSE) in the
spherical coordinates system (r,θ,φ) as follows [30,31]:

pi = p0

∞∑
n=0

n∑
m=−n

an,mjn(kr)Ym
n (θ,φ), (2)

ps = p0

∞∑
n=0

n∑
m=−n

an,msnh
(1)
n (kr) Ym

n (θ,φ) , (3)

where p0 is the pressure amplitude in the absence of the
waves, k = ω/c0 is the wave number and c0 the speed
of sound in the surrounding nonviscous fluid, the function
jn (·) is the spherical Bessel function, h(1)

n (·) is the spherical
Hankel function of the first kind, and Ym

n (·) are the Laplace
spherical harmonics. an,m are the beam-shape coefficients
(BSCs—given explicitly by Eq. (7) in [31]) and sn are the
scaled scattering coefficients.

In a nonviscous fluid, it is convenient to use the far-field
expressions for the incident and scattered acoustic fields [given
by Eqs. (2) and (3)] by using the asymptotic expressions for
the spherical Bessel and Hankel functions for large arguments.
Thus,

pi |kr→∞ ≈ p0

kr

∞∑
n=0

n∑
m=−n

an,m sin

(
kr − nπ

2

)
Ym

n (θ,φ), (4)

ps |kr→∞ ≈ p0f∞ (θ,φ)

(
eikr

r

)
, (5)

where

f∞ (θ,φ) = 1

k

∞∑
n=0

n∑
m=−n

i−n−1an,msnY
m
n (θ,φ) . (6)

The scaled scattering coefficients sn are known for various
sphere materials [7] (i.e., elastic, viscoelastic, layered spherical
shells, etc.), and are obtained using appropriate boundary
conditions at the interface of the solid and outer fluid.

The analysis is started by evaluating the absorption,
scattering, and extinction cross sections of an arbitrary-shaped
object. The cross sections are obtained from the ratio [8] of
the time-averaged acoustic power W to the acoustic intensity,
I0 = |p0|2/2ρ0c0.

The absorption cross section is therefore obtained from
the ratio of the time-averaged absorbed acoustic power to the
acoustic intensity, where the absorbed power is evaluated by
the surface integral of the time-averaged energy flux of the
total field over a fixed spherical surface [32], such that

σabs = Wabs

I0

= − 1

I0

∫∫
S

(pivi + pivs + psvi + psvs) · dS, (7)

where S is a spherical surface that encloses the scatterer,
dS = nr2 sin θdθdφ is the differential vector surface element
and n the outward normal (the overbar denotes time averaging
over the period of the wave), and vi and vs are the incident and
scattered fluid particle velocities, respectively.

In the absence of the object in the acoustical field, there
is no absorbed (or extinct) power. Therefore, the first term in
Eq. (7) involving incident fields vanishes, and thus does not
contribute in the evaluation of Eq. (7). Moreover, if the object
is nonabsorptive, σabs = 0 leading to σext = σsc, according to
Eq. (1).

When the object is absorptive, the incident beam is
extinguished both by scattering and by absorption according
to Eq. (1). Noticing that the scattering surface cross section,
obtained from the ratio of the time-averaged scattered acoustic
power [32] to the acoustic intensity, can be expressed as

σsca = Wsca

I0
= 1

I0

∫∫
S

psvsdS, (8)

the expression for σext is therefore deduced from Eqs. (1), (7),
and (8), such that

σext = Wext

I0
= − 1

I0

∫∫
S

(pivs + psvi)dS, (9)

where Wext is the power extracted from the incident beam.
In the far-field region, the expressions for the incident

and scattered waves can be approximated to the following
expressions, such that

vi ≈ ∇pi/(iωρ0), (10)

and

(n · vs) ≈ ps/(ρ0c0). (11)

After some algebraic manipulation using the angular integrals
of the Laplace spherical harmonics (see the Appendix in
Ref. [33]), it follows that the substitution of Eqs. (4)–(6) with
Eqs. (10) and (11) into Eqs. (7)–(9) gives the expressions for
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the absorption, scattering, and extinct cross sections as

σabs = − 1

2k2

∞∑
n=0

n∑
m=−n

(sn + s∗
n + 2|sn|2)|an,m|2, (12)

σsca =
∫∫

S

|f∞(θ,φ)|2dS

= 1

k2

∞∑
n=0

n∑
m=−n

|sn|2|an,m|2, (13)

and

σext = − 1

k|p0|2
Im

{∫∫
S

p∗
s

(
ikpi + ∂pi

∂r

)
dS

}

= − 1

2k2

∞∑
n=0

n∑
m=−n

(sn + s∗
n)|an,m|2, (14)

where the superscript * denotes a complex conjugate. Note
that the double integral for the extinction cross section, given
in the first line of Eq. (14), was given in equivalent forms in
terms of the extinction efficiency factor for a sphere (Eq. (15)
in [32]), or the extinction power (Eq. (9) in [28]).

III. RESULTS

The most general law of acoustic wave scattering theory
for any beam of arbitrary character scattered by an arbitrary-
shaped object, relating the extinction cross section of the
scatterer to the interacting incident and scattered pressures,
is given by Eq. (14). Moreover, Eqs. (12) and (13) are the
generalized expressions for the absorption and scattering cross
sections written in terms of the BSCs, anm, and the scaled
scattering coefficients of the object, sn. Note that Eq. (14)
equals the scattering cross section, Eq. (13), if the object
is nonabsorptive. Equivalent forms for Eqs. (12)–(14) have
been provided in the context of quantum beams (Sec. iv
in [29]). Though the cross sections have the dimensions
of area, in quantum mechanics, this concept is used to
express the probability of absorption, scattering, or extinction
(i.e., annihilation) between particles, while in the acoustical
context, the (classical) cross sections determine the strength
of absorption, scattering, and extinction of mechanical waves
from the object.

With the cross sections expressed in generalized partial-
wave series expansions, generalized efficiency factors
[3,32,34] for an arbitrary-shaped object of cross-sectional
surface Sc can be expressed as

Qext,abs,sca = σext,abs,sca/Sc. (15)

It is also important to note the close connection of the absorp-
tion cross section given by Eq. (12) with the axial component
τz of the dimensionless torque of arbitrary acoustical waves
(Eq. (11) in [35]). Denoting by V the volume of the object,
the expression for the axial component of the dimensionless

torque given previously in [35] is generalized to

τz = − 2

3V k3

∞∑
n=0

n∑
m=−n

m(sn + s∗
n + 2|sn|2)|an,m|2,

= − 2

3V k3

∞∑
n=0

n∑
m=1

m(sn + s∗
n + 2|sn|2)(|an,m|2 − |an,−m|2).

(16)

Moreover, it should be noted that the factor
(sn + s∗

n + 2|sn|2) in Eqs. (12) and (16), [and Eqs. (17)
and (18), following], can be rewritten in terms of a
scattering function Sn [7] such that Sn = 2sn + 1, leading
to (|Sn|2 − 1)/2 = (sn + s∗

n + 2|sn|2). For an elastic material,
the scattering function Sn is unimodular [7], i.e., |Sn| = 1.
Consequently, the factor (sn + s∗

n + 2|sn|2) is zero, and there
is no axial torque on the object in the ideal case of no
absorption. See also an equivalent form in Eq. (18) of [36]
in which the scattering coefficients were denoted by An

therein—a misprint occurred in which Eq. (18) in [36] should
have been printed as

(|Sn|2 − 1) = 4(Re{An} + |An|2) = 4�n = 0.

As particular examples, simplified partial-wave series
expansions can be obtained for the cross sections given by
Eqs. (12)–(14) in the case of a viscoelastic arbitrary-shaped
object centered on the axis of a known incident beam.

In the particular case where the axis of wave propagation
of the incident beam coincides with one of the axes of the
coordinates system centered on the object, the expression for
the BSCs reduces to a simplified form. In that case, those
are defined as the axial BSCs. Generally, when the axial BSCs
satisfy the condition an,−m = 0 (which is typical for high-order
Bessel-vortex beams, plane waves, or quasi-Gaussian beams
centered on a sphere), Eqs. (12) and (16) are reduced to

σ axial
abs = − 1

2k2

∞∑
n=|m|

(sn + s∗
n + 2|sn|2)

∣∣aaxial
n,m

∣∣2
, (17)

τ axial
z = − 2m

3V k3

∞∑
n=|m|

(sn + s∗
n + 2|sn|2)

∣∣aaxial
n,m

∣∣2
; (18)

hence, the axial component of the dimensionless torque can
be expressed as

τ axial
z = 4m

3V k
σ axial

abs . (19)

For the case of a sphere of radius a, where V = 4
3πa3,

Eq. (19) indicates that in the axial configuration, two different
spheres with the same radius and having the same absorption
cross section will exhibit exactly the same dimensionless
torque for a given m. This has also been observed in the context
of the axial optical torque of circularly polarized light [37].

For arbitrary plane waves, the BSCs are given by [5]

apw
n,m = 4πinYm∗

n (β,α)δm0. (20)

Assuming the axis of wave propagation coincides with the
one centered on the object, the angles α = β = 0, and Eq. (14)
reduces to the well-known optical theorem for plane waves
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(involving forward scattering only),

σ
pw
ext = 4π

k
Im

{
1

ik

∞∑
n=0

(2n + 1) sn

}
. (21)

Similarly, the absorption [Eq. (12)] and scattering [Eq. (13)]
cross sections can be expressed, respectively, as

σ
pw

abs = −4π

k2

∞∑
n=0

(2n + 1)
(
Re [sn] + |sn|2

)
, (22)

σpw
sca = 4π

k2

∞∑
n=0

(2n + 1)|sn|2. (23)

Moreover, the optical theorem can be extended to evaluate
the cross sections for other types of beams centered on an
arbitrary-shaped object, such as Bessel-vortex, or trigonomet-
ric beams [38]. The axial BSCs for a Bessel-vortex (BV) beam
are given by Eq. (33) in Ref. [38] as

aBV
n,m = 4πin−mYm∗

n (β,0) H (n − m) δ�m, (24)

where � is the order (known also as topological charge)
of the beam, H (·) is the Heaviside step function, and δij

is the Kronecker delta function. Substituting Eq. (24) into
Eqs. (12)–(14), the extinction, absorption, and scattering cross
sections become

σ BV
ext = 4π

k
Im

⎧⎨
⎩ 1

ik

∞∑
n=|�|

(2n + 1)
(n − �)!

(n + �)!

[
P �

n (cos β)
]2

sn

⎫⎬
⎭ ,

(25)

σ BV
abs = −4π

k2

∞∑
n=|�|

(2n + 1)
(n − �)!

(n + �)!

[
P �

n (cos β)
]2

× (Re[sn] + |sn|2), (26)

σ BV
sca = 4π

k2

∞∑
n=|�|

(2n + 1)
(n − �)!

(n + �)!

[
P �

n (cos β)
]2|sn|2. (27)

Thus, from Eq. (19), the axial torque can be evaluated. For the
sphere case with a cross-sectional surface Sc = πa2, the axial
torque τBV,axial

z = �σ BV
abs /(kaSc), in agreement with the result

provided previously in [32,36,39,40].
For a Bessel trigonometric (BT) beam, which may be ex-
pressed as a combination of two vortex beams of opposite
helicity [41,42], the axial BSCs are expressed as

aBT
n,m = 2πin−mYm∗

n (β,0)[H (n − m)δ�m

+ (−1)mH (n + m)δ−�m]. (28)

[Equation (28) should replace the mathematical expressions
given previously by Eq. (34) in [38], and Eq. (15) in [43],
since the BSCs describe the incident beam in the spherical

coordinates system, and should be expressed independently of
the angular coordinates (after integration)]. From Eq. (28), the
following property can be deduced; that is,

aBT
n,−m = (−1)maBT

n,m. (29)

Equation (29) indicates that for a BT beam of order �, the BSCs
aBT

n,−m �= 0. Thus Eqs. (18) and (19) are not applicable to BT
beams. In addition, the substitution of Eq. (29) into Eq. (16)
shows that the axial dimensionless torque for a BT beam
vanishes, in agreement with previous investigations showing
that it does not carry a vortex [41,42]. Furthermore, it is found
that the extinction, absorption, and scattering cross sections
for the BT beam equal half those obtained for the BV beam
[Eqs. (25)–(27)]. A similar result was previously obtained for
the axial radiation force of a BT beam (on a sphere), which
also equals half the force of a BV beam [41].

Another exact solution to the Helmholtz equation, known
as the lowest-order spherical quasi-Gaussian beam [44–47], is
considered, for which the axial BSCs can be expressed as

aqG00
n,m = in

√
4π (2n + 1)gn (kzR) δm0, (30)

where the function gn(kzR) is given explicitly by Eq. (4) in
[45], and kzR is the dimensionless beam waist. Substituting
Eq. (30) into Eqs. (12)–(14), the extinction, absorption, and
scattering cross sections for a viscoelastic object centered on
the focus of a zeroth-order quasi-Gaussian beam are expressed
as

σ
qG00
ext = 4π

k
Im

{
1

ik

∞∑
n=0

(2n + 1) [gn (kzR)]2sn

}
. (31)

σ
qG00
abs = −4π

k2

∞∑
n=0

(2n + 1)[gn(kzR)]2(Re[sn] + |sn|2), (32)

σqG00
sca = 4π

k2

∞∑
n=0

(2n + 1) [gn (kzR)]2|sn|2. (33)

An additional important example is considered here, which
concerns the derivation of the extinction, absorption, and
scattering cross sections for a viscoelastic object centered on a
high-order Bessel-Gauss vortex beam of order �, emanating
from a finite circular aperture. In practice, every acoustic
source (except a point source radiating omnidirectional waves)
produces a finite propagating beam, as opposed to waves of
infinite extent considered previously.

Following Eqs. (6), (7), and (11) in Ref. [48], the axial BSCs
for a high-order Bessel-Gauss vortex beam, which satisfy the
Helmholtz equation, can be expressed as

aHOBGVB
n,m = (−1)n+m

√
4π (2n + 1)

(n − m)!

(n + m)!

× fHOBGVBH (n − m)δ�m, (34)

where the function fFBGV is given by the following integral:

fHOBGVB =
∫ kra

kr0

[
(kr1)Jm

(
kρ

√
r2

1 − r2
0

)
e−[(r2

1 −r2
0 )/w2

0]h(1)
n (kr1)P m

n

(
r0

r1

)]
d(kr1). (35)
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The parameters in Eq. (35) are the distance ra from the edge
of the radiator to the object, the distance r1 from a point
on the surface of the radiator to the object, the distance r0

from the center of the radiator to the object, the half-cone
angle β with kρ = k sin β, the beam’s waist w0, the cylindrical
Bessel function Jm (·) of the first kind of order m, and the
associated Legendre functions P m

n (·) of degree and order n

and m, respectively.
Substituting Eq. (34) into Eqs. (12)–(14) and manipulating

the results, the extinction, absorption, and scattering cross
sections become

σ HOBGVB
ext = 4π

k
Im

⎧⎨
⎩1

ik

∞∑
n=|�|

(2n + 1)
(n − �)!

(n + �)!

2

|fHOBGVB|2sn

⎫⎬
⎭,

(36)

σ HOBGVB
abs = −4π

k2

∞∑
n=|�|

(2n + 1)
(n − �)!

(n + �)!
|fHOBGVB|2

× (Re[sn] + |sn|2), (37)

σ HOBGVB
sca = 4π

k2

∞∑
n=|�|

(2n + 1)
(n − �)!

(n + �)!
|fHOBGVB|2|sn|2. (38)

Particularly interesting cases can be obtained from
Eqs. (34)–(38) for other beams; for example, by letting w0 →
∞, which corresponds to the case of a collimated beam, the
axial BSCs and related cross sections can be derived for a finite
high-order Bessel-vortex beam of order �. Moreover, if � is set
to zero, the axial BSCs and related cross sections for a finite
zero-order Bessel-Gauss, or a zero-order Bessel beam (i.e.,
� = 0, w0 → ∞) can be obtained. Note that the axial BSCs for
a zero-order Bessel beam, deduced from Eqs. (34)–(38) when
� = 0 and w0 → ∞, can be accurately recovered from Eqs. (6)
and (7) of Ref. [49]. In addition, the case of a finite piston
circular radiator vibrating uniformly can be also deduced by
setting w0 → ∞, � = β = 0 in Eqs. (34)–(38). In that case,
the integral given by Eq. (34) has an exact closed-form solution
[50,51].

As the axial dimensionless radiation torque can be linked
to the absorption cross section as shown by Eq. (19) for
beams centered on an object and satisfying the condition
an,−m = 0, it is instructive to note also that previous analyses
have demonstrated the connection between the axial radiation
force with the scattering cross section for the case of plane
waves on a rigid sphere (see Sec. V in [52]), both the scattering
and absoption cross sections for the case of plane progressive
waves [53,54], both the scattering and extinction cross sections
for plane waves on an object with arbitrary oscillating surface
[55], and for Bessel-vortex beams [32] on a sphere. An analogy
has been also noted for optical beams [56]. Nevertheless,
considering the generalized expression for the axial component
of the radiation force (i.e., Eq. (13) in Ref. [57], or Eq. (2) in

Ref. [58]), there has been no simplified expression describing
the direct connection with the generalized cross sections as
given by Eqs. (12)–(14) for the axial case.

IV. DISCUSSION

The results presented here provide a generalized solution
and insight into the wave interference phenomena in acoustical
scattering. In particular, the PWSE in Eq. (14) provides
the most general relationship describing the extinction of
acoustical beams [as opposed to (plane) waves of infinite
extent] by the scattering and absorption phenomena, related
to the presence of an arbitrary-shaped object. Precisely, the
results show that the extinction, scattering, and absorption
cross sections (or power) are meaningful measures of the object
scattering and absorption properties for certain forms of the
incident field. Essentially, all applications and experimental
methods, processes, and operational devices involving the
scattering of acoustical waves can benefit from this analysis.
For example, ultrasonic attenuation spectroscopy (UAS) [59]
currently used in practice for a wealth of applications in
materials science, powder technology, and multiphase flow
metering to name a few; computerized ultrasound tomography
(CUT) [60], which is accomplished through measurements of
the ultrasonic field extinction [due to the (multiple) scattering
and attenuation] throughout the object under analysis; and
ultrasound absorption microscopy (UAM) [61,62], in which
the transmitted acoustic field is detected in a confocal setting
via the extinguished signal, are all fundamentally based on
this approach. The present generalized theoretical formalism
should therefore assist in the design of improved acoustical
systems using the above-mentioned methods and taking into
account the beam shape and character of the incident wave
fronts.

Further extension of the analytical formalism presented
here may be obtained for the extinction of acoustical beam by a
collection of acoustically interacting arbitrary-shaped objects,
and this analysis should assist along that direction of research
so as to include the attenuation and extinction effects due to
multiple scattering phenomena.

V. CONCLUSION

In summary, a generalization for the extended optical theo-
rem for arbitrary acoustical beams that satisfy the source-free
Helmholtz equation is presented, and generalized partial-wave
series expansions (PWSEs) for the extinction, absorption,
and scattering cross sections [Eqs. (13)–(15)] are derived
stemming from the general law that the power of the incident
beam is extinguished both by scattering and by absorption
inside a viscoelastic object of arbitrary shape. PWSE for the
extinction, absorption, and scattering cross sections in plane
waves, infinite, and finite Bessel-Gauss, Bessel-vortex, and
Bessel trigonometric beams, as well as quasi-Gaussian beams
centered on the object, are provided.
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