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Mathematical, particularly, asymptotic properties of the random-phase approximation, Mermin approximation,
and extended Mermin-type approximation of the coupled plasma dielectric function are analyzed within the
method of moments. These models are generalized for two-component plasmas. Some drawbacks and advantages
of the above models are pointed out. The two-component plasma stopping power is shown to be enhanced with
respect to that of the electron fluid.
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I. INTRODUCTION

The extension of numerous models for the description of
the coupled or nonideal plasma dynamic properties onto the
density-temperature domain characteristic of inertial fusion
bound experiments [1] is a hot problem nowadays. In partic-
ular, the diagnostic methods applied in these experimental
studies require a reliable method of reconstruction of the
ion-ion dynamic structure factor and the method of moments
[2–8] has demonstrated its advantages here with respect to
other approaches recently [9]. What are these advantages based
on? When we wish to enter the realm where the correlations
between charged particles in a plasma become more and more
important in comparison with the kinetic characteristics of the
particles, when the system ceases to possess small parameters,
how can we control the qualities of the model we develop?

We believe that sum rules can help us answer these
questions and determine the level of accuracy of dynamic
theories of nonperturbative systems [10]. Certainly, the f -sum
rule related to the density conservation is a pillar of any such
model, but there are other pillars. These are other conservation
laws and higher-order sum rules. The latter take into account
the correlations in the system under scrutiny and if the
system dynamic characteristics, e.g., the dielectric function,
do not satisfy these rules, which are effectively additional
conservation laws, it is difficult to expect the corresponding
model to be adequate in the strong-coupling domain. The
advantage of the approach based on the theory of moments
is that the constructed (inverse) dielectric function satisfies all
sum rules taken into account automatically. The disadvantage
is related to the necessity to model a phenomenologically
unknown and immeasurable parameter function with certain
mathematical properties, the Nevanlinna parameter function
(NPF). The latter can be either reconstructed from available
dynamic data, as done in [9] by the local constraints method
(see [8] and references therein), or modeled on the basis
of additional exact properties and/or limiting properties, as
suggested in [11]. The point or the hope is that the main
physical properties of the dynamic characteristic reconstructed
on the basis of sum rules depend on the NPF model weakly.
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As we will show, in one-component plasmas the random-
phase approximation (RPA) with an adequate dynamic local-
field correction complies with the higher-order sum rule, but
in two-component plasmas it does not. On the other hand, the
above dynamic models based on the Mermin extension [12] of
the RPA do not help to take into account the system correlations
even if all applicable conservation laws are included [13,14].

The scope of the work is the following. First we will see
in detail whether the available different model expressions
for the electron plasma dielectric function satisfy the sum
rules, especially those related to the system coupling. Then
we will generalize these models to two-component plasmas
(TCPs) and demonstrate that in this case the correlation-related
sum rule is not satisfied by these generalizations and that the
dielectric function constructed within the method of moments
has a significant advantage in this sense. The importance
of the sum rules for the moderately and strongly coupled
completely ionized plasma (polarization) stopping power will
be analyzed as well, particularly in TCPs, where the electron-
ion interaction within the target is shown to enhance the
plasma stopping power. Certain conclusions will be finally
drawn and some additional information will be provided in the
Appendixes.

A. Loss function

Modeling of the dielectric function (DF) ε(k,ω) or the
inverse dielectric function (IDF) ε−1(k,ω) of strongly coupled
Coulomb systems is actively discussed in the literature, in
particular, because the corresponding loss function

L(k,ω) = − Im ε−1(k,ω)/ω � 0, (1)

which is an even function of the real frequency ω, determines
the polarization stopping power of such systems [15]. The non-
negativity of the loss function stems from a similar property of
− Im ε−1(k,ω) for positive frequencies, which in turn follows
from the fluctuation-dissipation theorem since the (charge-
charge) dynamic structure factor Scc(k,ω) is non-negative by
definition

L(k,ω) = πβφ(k)b(β�ω)Scc(k,ω). (2)

Here β−1 = kBT is the system temperature in energy units, kB

and � are the Boltzmann and Planck constants, respectively,
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and φ(k) = 4πe2/k2; the function b(x) = [1 − exp(−x)])/x
is obviously strictly positive. We presume the system we con-
sider to be in thermal equilibrium, uniform, and unmagnetized.

The analyticity of the prolongation of the IDF onto the upper
half plane of the complex frequency w = ω + iδ, δ > 0, is due
to the causality principle and the Kramers-Kronig relations are
always valid for this function:

ε−1(k,w) = 1 +
∫ ∞

−∞

Im ε−1(k,ω)

ω − w

dω

π
, Im w > 0. (3)

Additionally,

ε−1(k,0) = lim
δ↓0

ε−1(k,iδ) = 1 + P

∫ ∞

−∞
Im ε−1(k,ω)

dω

πω
,

(4)

where P implies the principal value of the integral.
Consider the sum rules for the IDF, which are effectively

the (non-negative) power moments of the loss function [4–8]:

Cl(k) = 1

π

∫ ∞

−∞
ωlL(k,ω)dω, l = 0,1,2, . . . . (5)

The odd-order moments vanish due to the symmetry of the
loss function.

The expression for the zeroth moment follows immediately
from (4) since the loss function can be considered continuous
at ω = 0:

C0(k) = − 1

π

∫ ∞

−∞

Im ε−1(k,ω)

ω
dω = 1 − ε−1(k,0) > 0.

(6)

The inequalities of the form

ε−1(k,0) � 1 ⇐⇒ ε(k,0) � 1, ε(k,0) < 0 (7)

also follow directly from (4) (see [16,17] and references
therein); the values of ε(k,0) between 0 and 1 turn out to
be forbidden and the causality conditions corresponding to the
action of the external charge on the system do not preclude
negative values for a static DF of the system. If the static DF
ε(k,0) becomes negative, then the analyticity of the DF in the
half plane Im w > 0 might break down.

We are interested here in taking into account not only the
sum rules, but other exact relations as well. We wish to consider
multispecies systems and the method of moments does not
involve essentially the local-field corrections and expresses the
dynamic properties in terms of the system static characteristics
such as the static structure factors and the moments themselves.
Therefore, we are not explicitly bounded, e.g., by the Niklasson
condition or the compressibility sum rule [18,19], though the
latter is important for the correct solution of the Ornsten-
Zernicke equation; e.g., in the hypernetted approximation we
use it to compute the system partial static structure factors.
The exact relation that directly influences our expression for
the TCP IDF is, along the Kramers-Kronig relations, the
Perel’-Eliashberg exact asymptotic form [20] (particularly in a
hydrogenlike two-component completely ionized plasma with
the neutrality condition ne = Zni)

Im ε[k,ω � (β�)−1] � A(ωp/ω)9/2,

A = 3−5/4
√

2Zr3/4
s . (8)

The Brueckner parameter rs = a/aB is determined by the elec-
tronic Wigner-Seitz radius a = (3/4πne)1/3, aB = �

2/mee
2 is

the Bohr radius, and ωp =
√

4πnee2/me is the (electronic)
plasma frequency. At high frequencies the asymptotic forms
of the DF and IDF differ only in sign, so the loss function
behaves at high frequencies as ω−11/2. This implies that in a
real system the sixth- and higher-even-order power moments
must diverge. The result (8) was rediscovered in [21(a)]; see
also [21(b)].

Observe also that due to the f -sum rule,

C2 = ω2
p.

We will apply the method of moments to the set

{C0(k),0,C2,0,C4(k)} (9)

and use the characteristic frequencies

ω1(k) =
√

C2/C0(k) = ωp/
√

1 − ε−1(k,0),
(10)

ω2(k) =
√

C4(k)/ωp.

Note that due to the non-negativity of the loss function and the
Cauchy-Schwarz inequality (see Appendix A) the above set of
moments (9) is positive definite and thus the corresponding
Hamburger moment problem of reconstruction of the loss
function is solvable [2,3]. Since, due to (3), we can rewrite
the IDF as

ε−1(k,w) = ε−1(k,0) − w

π

∫ ∞

−∞

L(k,ω)dω

ω − w
, (11)

the Nevanlinna theorem and formula determine the noncanon-
ical solutions of the Hamburger moment problem for the IDF
as well (see Sec. III A).

It is important also that the explicit exact forms of these
convergent moments can be derived independently of a
particular DF or IDF model of an equilibrium plasma. The
latter limitation can be avoided [22(a)] by applying the matrix
version of the method of moments [22(b)] in the species space
[22(c)].

The asymptotic expansion of the IDF along any ray in the
upper half plane Im w > 0 can be easily constructed from (11):

ε−1(k,w → ∞)

� ε−1(k,0) + 1

π

∫ ∞

−∞

[
1 + ω

w
+

(
ω

w

)2

+ · · ·
]
L(k,ω)dω

= 1 + ω2
p

w2
+ ω2

pω2
2(k)

w4
+ · · · . (12)

Similarly, if the dielectric function itself is a response function,
i.e., if ε(k,0) > 1,

ε(k,w → ∞) � 1 − ω2
p

w2
− ω2

p

[
ω2

2(k) − ω2
p

]
w4

+ · · · , (13)

so that for

P(k,ω) = Im ε(k,ω)/ω, (14)
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which is also presumed to be non-negative and even for any
real frequency ω,

Ml(k) = 1

π

∫ ∞

−∞
ωlP(k,ω)dω, l = 0,2,4,

M0(k) = ε(k,0) − 1, M2 = ω2
p, (15)

M4(k) = C4(k) − C2
2 .

Indeed, if

ε(k,w) = 1 + 1

π

∫ ∞

−∞

Im ε(k,ω)

ω − w
dω , Im w > 0,

(16)

M0(k) = 1

π

∫ ∞

−∞

Im ε(k,ω)

ω
dω = ε(k,0) − 1;

however, the positivity of the fourth moment M4(k) does
not follow from the Cauchy-Schwarz inequality in L2 (see
Appendix A).

Hence, the coefficients of the asymptotic expansion of a
certain function along any ray in the upper half plane coincide
with the convergent power moments of the corresponding
distribution density (the loss function in our case) only if
we deal with a Nevanlinna function [2], i.e., with a response
function. In general, there are no reasons for the loss function
higher moments (for even l > 4) to diverge in one-component
plasmas (OCPs), particularly in electron fluids, but we show
that they do for some of the models we consider here. Due
to the definition of an asymptotic expansion, such divergence
does not mean that lower-order sum rules are not satisfied;
such an option was not considered in [23].

In other words, in order to employ the Akhiezer theorem
[3] to determine the quality of a model dynamic characteristic,
e.g., the IDF (or the DF, if it is a response function), one has to
study the convergence of the corresponding power moments
and the high-frequency asymptotic expansion of the dynamic
function in question. On the other hand, if we know that in a
real Coulomb system higher-order even moments must diverge
but in a certain model they do not, this can be considered as a
drawback for this model.

B. Models

The long way to the current situation with the plasma DF or
IDF modeling was initiated (in the long-wavelength limiting
case) by the Drude-Lorentz model and developed by the
RPA. The collisionless one-component (usually, electronic)
Lindhard dielectric function [15] εRPA(k,ω) was generalized
by Mermin [12] and later by Das [24], who used an alternative
distribution function variation method to take the collisions
into account in the relaxation-time approximation. Note that
the direct extension of the Lindhard dielectric function by
replacing ω with ω + iν, ν being the collision frequency, fails
to conserve the local density [12].

Mathematical properties and different versions of the
Lindhard DF were further considered in a number of elaborate
studies. We point out the seminal paper of Gouedard and
Deutsch [25] and the paper of Arista and Brandt [26], who
managed to rewrite the RPA dielectric function in a way that,
at least in the 1980s, was more suitable for calculations. The
high-frequency asymptotic behavior of the Lindhard DF at

high and low temperatures was studied in [25,26] in detail.
Recently, the Mermin model was extended to include, along the
density conservation, the energy and momentum conservation
laws [13,14]. On the other hand, the influence of these model
IDFs on the plasma stopping power was thoroughly studied by
Barriga-Carrasco and co-workers in a series of papers [27,28].

In our present work we study the asymptotic and ana-
lytic properties of the RPA, the Mermin DF, the extended
Mermin DF, and the full conserving DF (FCDF). Precisely,
from the point of view of the method of moments (MM)
[2–8] discussed above and in Sec. III A in more detail, we
wish to determine whether the sum rules (other than the
f -sum rule) are satisfied by these models. The convergent
fourth-order sum rule, which is the fourth frequency power
moment of the loss function (1) C4(k), includes the correlation
contributions and thus its fulfillment is presumably crucial for
strongly coupled systems such as those of inertial fusion [1].
Note also that the long-wavelength limiting form of C4(k)
related to the target electron-ion correlations modifies the
well-known Bethe-Larkin logarithmic asymptotic form of the
polarization stopping power of heavy ions in strongly coupled
two-component plasmas [29] and we believe that if this
fourth-moment sum rule does not hold for a certain DF model,
the predictions of this model on the plasma stopping power
should differ from those based on the MM and eventually
from the real experimental data. What matters, from the point
of view of an experimentalist, is to what extent they will differ
and whether they will be observable.

Though the derivation of the Mermin dielectric function

εM(k,ω) = 1 + (ω + iν)[εRPA(k,ω + iν) − 1]

ω + iν εRPA(k,ω+iν)−1
εRPA(k,0)−1

(17)

guarantees the conservation of the local number of charged
particles (electrons), this model is valid only in the first order in
the total electrostatic potential energy and presumably cannot
describe the properties of the plasma liquid phase at any value
of the coupling parameter

	 = βe2/a (18)

and at any degeneracy. Nevertheless, it is actively employed
under variable physical conditions (see, e.g., [27,30]).

On the other hand, the generalized Drude-Lorentz model
for the IDF [31]

ε−1
GDL(0,ω) = 1 + ω2

p

ω2 − ω2
p + iων(ω)

(19)

is often used in numerical simulations of dense plasmas
[31,32]. Note that the corresponding (internal) dynamic
conductivity

σ int(ω) = ω

4πi
[εGDL(0,ω) − 1] = iω2

p/4π

ω + iν(ω)

converts into the classical Drude-Lorentz model if we neglect
the frequency dependence of the generalized (complex) col-
lision frequency ν(ω), the static conductivity being equal to
ω2

p/4πν(0).
The static collision frequency ν = ν(0) is determined, e.g.,

by the Spitzer formula or in the general Green-Kubo context
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[33]. The interpolation formula for the static conductivity [34]
can be used for an initial evaluation.

The dynamic collision frequency, in hydrogenlike plasmas,
can be introduced to take into account the ion-ion correlations
in the Born approximation via the static ion-ion structure factor
Sii(q) (see [30] and references therein),

ν(ω) = ni

6π2m2
e

∫ ∞

0
q6V 2

ei(q)Sii(q)

× εRPA,e(q,ω) − εRPA,e(q,0)

iωω2
p

dq. (20)

Here

Vei(q) = − 4πZe2

q2εRPA,e(q,0)

is the statically screened electron-ion interaction potential.
Note that (20) is obtained within the kinetic approach and
it does not contain the electron-ion correlation contribution.
The standard definition of the (electronic) DF in the RPA is
provided in Sec. II.

A development of the topic has been suggested in [35],
where, in a consistent way, the Mermin model for the dielectric
function of electronic fluids at T = 0 has been extended to
include the dynamic local-field correction (LFC) modeled
in three different ways. We will also discuss the extensions
of the Mermin model that include the dynamic collision
frequency (20) (the Born-Mermin approximation) [35] or other
conservation laws [13,14].

As we have mentioned, we wish to compare the above
models to the IDF model based on the nonperturbative method
of moments and valid at finite temperatures. Notice that the
viscoelastic approximation [19,36] and the approach based on
the continuous fractions [37] are particular cases of the MM
[7].

As we have seen, the sum-rule conditions can be checked
using the asymptotic expansions of the model expressions in
question [3]. Other theoretical approaches can be treated in
a similar way, e.g., the quasilocalized charge approximation
[38] (see [39]).

It was stated in [23] (also using the asymptotic expansions
but without referring to the method of moments) that for a
one-component system the compressibility sum rule, the f -
sum rule, and the loss function fourth-frequency-moment sum
rule could be satisfied by the FCDF [13] only within the quasi-
particle approach by taking into account the effective mass
and self-energy, i.e., some unknown smooth functions. This
approach has been generalized to multispecies systems for the
(asymmetric) nuclear matter by introducing the matrix (in the
species space) of non-Markovian, i.e., frequency-dependent,
relaxation times related to the interspecies (transport) cross
sections [40].

Like other theoretical approaches heavily dependent on
the LFCs, for example [35], these results have not been
extended to multispecies plasmas at nonzero temperatures.
On the other hand, the application of the MM permits one to
include, via the moments, the interspecies static correlations
with the partial static structure factors evaluated, e.g., within
the hypernetted-chain approach at T 
= 0, while usually the
application of the local-field theory to multispecies systems

is based on the mixing rule, i.e., is carried out in the additive
way. Certainly, the account of quantum-mechanical effects in
the static characteristics is desirable.

To put our considerations on a more solid basis, we recall in
Sec. II the definitions and results stemming from the causality,
the sum rules, and the asymptotic expansions in strongly
coupled one-component plasmas and outline the properties
of the MM-generated IDF. Then we study the analytic pro-
longation εRPA(k,ω + iν) of the Lindhard dielectric function
at w = ω + iν ∈ C, ν > 0, and its limiting form when ν ↓ 0
and do the same with the FCDF model of [13,14] as well.
This prolongation has been performed in [35], but for T = 0
only, and it facilitates a correct application of the Mermin
model expressions. We reduce the RPA DF in the upper half
plane to the Arista-Brandt form [26] and determine to what
extent the above models of the DF satisfy the sum rules. Then
we carry out a comparison between the RPA and extended
Mermin models for the electron fluid DF, including at finite
temperature, and the MM-generated DF, extend these results
to multispecies plasmas, and present some relevant numerical
results.

Further, the repercussions of the above model constructions
on the plasma stopping power (Sec. I C) are analyzed in
Sec. IV. The differences between one- and two-component
models are to be pointed out in this sense. For simplicity of
notation and until Sec. III we consider one-component electron
fluids and omit the species subscripts wherever possible.

C. Polarization stopping power

Measuring energy losses of beams of charged particles is
an important diagnostic tool in both modern condensed matter
and plasma physics. Bethe [41] derived a simplified formula
for the stopping power that describes the energy losses of
fast projectiles in a solid modeled as a system of quantum-
mechanical oscillators. Later, Larkin [42] demonstrated that
the analogous formula remains valid for fast but not relativistic
ions permeating an electron gas,

−dE

dx
�

v→∞

(
Zpeωp

v

)2

ln
2mev

2

�ωp

, (21)

in which the oscillator frequency is effectively replaced by the
plasma frequency. Here Zpe and v stand for the electric charge
and velocity of the projectile, respectively, and the electron
gas is characterized by the number density ne with me and −e

being the electron mass and charge, respectively.
Formula (21) is usually employed to determine the number

density of electrons in a target traditionally treated experi-
mentally as an electron fluid [43–45]. The x-ray Thomson
scattering excepted, this technique remains the only suitable
candidate for the diagnostics of hot and dense (ne � 1019

cm−3) plasmas [45] (see also [46] and references therein).
It was shown in [29] that in a two-component completely

ionized hydrogen plasma with a weakly damped Langmuir
mode of dispersion ωL(k), the plasma frequency in the
Coulomb logarithm of (21) should be replaced by the long-
wavelength limiting value of ωL(k), ωL(0) = ωp

√
1 + H with

H = [gei(0) − 1]/3, gei(r) being the electron-ion radial dis-
tribution function, i.e., this correction is due to the interaction
of the electrons with the target ions. It should be noted that
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the generalization of [29] to partially ionized plasmas or
plasmas with complex ions and a larger number of species
is rather straightforward (see, e.g., [28,47,48]). At present,
this electron-ion correlation correction to the electron fluid
stopping power might not be observable due to a relatively
low accuracy of the experimental techniques available, but for
dicluster heavy-ion projectiles [49] that correlation correction
could become more pronounced.

The problem of stopping power computing for relativistic
projectiles has recently arisen due to the reported experiments
with protons decelerating from velocities of up to 80% of
the speed of light [50] (see also [51]). The importance of the
relativistic corrections to the classical asymptotic form (21)
of the stopping power as compared to the above intertarget
electron-ion correlation contribution was estimated recently
in [52]. In a partially ionized plasma the bound-electron
contribution can be taken into account [47] by incorporating
the ionization losses, but here the plasma is considered to be
completely ionized. Such an assumption allows one to adopt
the polarization picture to calculate the stopping power of a
Coulomb system.

Lindhard [15] expressed the polarization stopping power in
terms of the medium longitudinal dielectric function ε(k,ω).
This expression can further be generalized by applying the
Fermi golden rule [53] to obtain [54–58](

−dE

dx

)pol

= −2(Zpe)2

πβ�v2

∫ ∞

0

dk

k

∫ α+(k)

α−(k)

Im ε−1(k,ω)

b(β�ω)
dω,

(22)

where α±(k) = ±kv + �k2/2M(v) and M(v) is the mass of
the projectile with a speed v. What matters is that the above
expression involves the target medium (inverse) dielectric
function ε−1(k,ω), which is a genuine response function.
Two essential physical restrictions are imposed by applying
formula (22). First of all, no magnetization effects are taken
into account, so the plasma dielectric function depends on
the wave-vector modulus. Second, the interaction between
the projectile and the plasma medium is treated in a linear
approximation. Notice that, e.g., the Z3

p Barkas contribution to
the stopping power [59] identically vanishes in a fully ionized
plasma [60].

In the past, the polarization stopping power was quite
extensively studied in the literature. The problem was thor-
oughly analyzed within the RPA [54,55,61–63] and beyond
by introducing an analytical formula for the LFC [54,64–67],
derived within the T -matrix approach [57,68], the method
of effective potentials [69], or using the Mermin or more
sophisticated models for the dielectric function [27] to name a
few.

Though the coupling between the projectile and the target
plasma is treated perturbatively, no further restriction is
imposed here on the value of the plasma coupling parameter
	. The only limitation left is that the plasma must remain in
the liquidlike phase, although the modeling of its dielectric
properties remains a sophisticated problem since its charac-
teristic lengths, i.e., the Wigner-Seitz radius and the Debye
length λD = (4πnee

2β)−1/2, are to be of the same order of
magnitude. Note that in the nonideal plasma of interest herein,
	 = a2/3λ2

D � 1, which invalidates mean-field theories, such

as the RPA and other analogous perturbative approaches, and
at the same time requires the electronic subsystem to be
considered as degenerate.

If single-particle effects can be neglected (see, nevertheless,
[54] for the corrections), the general expression for polariza-
tion losses simplifies as(

dE

dx

)pol

= 2

π

(
Zpe

v

)2 ∫ ∞

0

dk

k

∫ kv

0
ω Im

( −1

ε(k,ω)

)
dω.

(23)

As we have mentioned, in a two-component plasma the
asymptotic form (21) is modified [29] as(

−dE

dx

)pol

�
v→∞

(
Zpeωp

v

)2

ln
2mev

2

�ωp

√
1 + H

, (24)

where

H = 1

6π2√neni

∫ ∞

0
p2Sei(p)dp (25)

is determined by the long-wavelength asymptotic value of the
(TCP) loss function fourth frequency moment

H = lim
k→0

(
1

πω4
p

∫ ∞

−∞
ω4L(k,ω)dω − 1

)
.

The correlation correction is important when the electron-
ion correlations do matter, i.e., when the plasma coupling
parameter 	 � 1. The partial static structure factors Sab(p) can
be computed independently, e.g., by the method of hypernetted
chains taking the correlations (but not the quantum effects) into
account [70].

A semiqualitative estimate for the correction (25) was
obtained in a modified RPA that interpolates the long- and
short-wavelength asymptotic forms of the static polarization
operator of a hydrogenlike plasma with ne = Zni [71]:

H1 = 4
3Zrs

√
	[3Z	2 + 4rs + 4	

√
3(1 + Z)rs]

−1/2. (26)

In weakly coupled plasmas with 	 −→ 0, H1 � (2Z/3)
√

rs	.

II. ELECTRON FLUID DF ASYMPTOTIC EXPANSION
AND SUM RULES

A. Zeroth moment in the RPA, Mermin approximation,
and FCDF approximation

The relation of the loss function zeroth moment to the static
value of the plasma IDF is applicable to systems with an
arbitrary number of components. Within the RPA the static
dielectric function is defined as

εRPA(k,0) = 1 + 4

πaBk3

∫ ∞

0
pfFD(p) ln

∣∣∣∣k/2 + p

k/2 − p

∣∣∣∣dp.

Here

fFD(p) = fFD(p) = {exp[βE(p) − η] + 1} −1

is the Fermi-Dirac distribution density with E(p) = E(p) =
�

2p2/2m. The dimensionless chemical potential η = βμ is
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defined by the normalization equation F1/2(η) = 2D3/2/3 with

Fν =
∫ ∞

0

xνdx

exp(x − η) + 1
,

D = βEF = βmv2
F /2 = β�

2k2
F /2m

= β�
2(3π2n)2/3/2m, (27)

where Fν(η), EF , vF , and kF are the νth-order Fermi integral,
Fermi energy, velocity, and wave number, respectively.

In the Mermin approximation εM(k,ω = 0) = εRPA(k,0),
i.e., the zeroth sum rule is not satisfied since the real static IDF
ε−1(k,0) takes the correlations into account while εRPA(k,0)
does not. Indeed, by virtue of the fluctuation-dissipation
theorem,

ε−1(k,0) = 1 − βφ(k)
∫ ∞

−∞
b(β�ω)S(k,ω)dω.

In particular, in the classical approximation with � → 0,

ε−1(k,0) = 1 − (
k2
D/k2

)
S(k). (28)

Here k2
D = 4πne2β, S(k,ω) is the (charge-charge) dynamic

structure factor, and

S(k) = 1

n

∫ ∞

−∞
S(k,ω)dω

is the system static structure factor (SSF).
It is easy to observe that within the FCDF model [see

[27(d)]],

εFC(k,ω) = 1 + φ(k)
�0 + E

1 + F
, (29)

we still have that εFC(k,ω = 0) = εRPA(k,0). Here

�μ(k,w) = 2
∫

dp|p|μ
(2π )3

fFD(p+k/2) − fFD(p−k/2)

�w − [E(p+k/2) − E(p−k/2)]
,

Bμ(k) = −�μ(k,w = 0),

Dμ(k,ω) = (iν�μ − ωBμ)/w,

E(k,ω) = −iv�2

w

�2B0 − �0B2

D4B0 − B2D2
,

F (k,ω) = iν

w

(
D2�2 − D4�0 − iξ�2(�2B0 − �0B2)

D4B0 − B2D2
− 1

)
+ iξ�0,

and ξ = ωνm/nk2. In particular,

�0(k,w) := �(k,w)

= 2
∫

dp
(2π )3

fFD(p + k) − fFD(p)

�w − E(p + k) + E(p)
(30)

is the (retarded) polarization operator (a simple loop) deter-
mined as in [72] (see Sec. IIB1). In Sec. V A we estimate the
values of the zeroth moment in different approximations and
show that they are in agreement with the above results.

For reference, we provide here an exact explicit expression
for the fourth moment. In a coupled electron fluid (see [4–6,6–
8,73] and references therein)

COCP
4 (k) = ω4

p[1 + W0(k)] (31)

and the correction of the fourth moment contains only two
contributions

W0(k) = V (k) + U (k). (32)

The first contribution is produced by the kinetic term of the
system Hamiltonian. In the classical case, V (k) coincides with
the well-known Vlasov contribution to the dispersion relation
V (k) = 3k2/k2

D . In a degenerate system

V (k) =
〈
v2

e

〉
k2

ω2
p

+
(

�

2m

)2
k4

ω2
p

, (33)

where the average of the square of the (electron) velocity is ex-
pressed as 〈v2

e 〉 = 3F3/2(η)/mβD3/2. The second contribution
to the fourth moment stems from the interaction contribution
to the system Hamiltonian

U (k) = 1

2π2n

∫ ∞

0
p2[S(p) − 1]f (p,k)dp, (34)

where we have introduced the angular factor

f (p,k) = 5

12
− p2

4k2
+ (k2 − p2)2

8pk3
ln

∣∣∣∣p + k

p − k

∣∣∣∣.
To describe experimental and simulation data within the
moment approach, one should specify the characteristic
frequencies (10) and the Nevanlinna parameter function (see
below, Sec. III A, and [4–6,6–8]). However, to apply the Mer-
min approximation, one first has to study other construction
elements of (17).

B. The RPA DF analytic prolongation onto the upper half plane

1. Polarization operator

By definition

εRPA(k,w) = 1 + φ(k)�(k,w). (35)

Let us now reduce (30) to the convenient Arista-Brandt form
[26]. Notice that the static polarization operator

�(k,0) = m

π2�2k

∫ ∞

0
qfFD(q) ln

∣∣∣∣k + 2q

k − 2q

∣∣∣∣dq > 0 (36)

and when k → 0,

�(k → 0,0) = m

π2�2

∫ ∞

0
fFD(q)dq.

2. The Arista-Brandt form of the DF

The analytic extension of the well-known and generally
employed expression for the polarization operator �(k,ω) on
the real axis [26] can be obtained by direct calculation

�(k,w) = �0(k,ω)

= 3mn

4z�2k2
F

[G1(σ1) − G1(σ2)], Im w � 0. (37)

Similarly, for other construction elements of the FCDF, we
have obtained the following necessary prolongations onto the
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upper half plane:

�2(k,w) = mn

�2

(
2 + 3z[G1(σ1) − G1(σ2)]

4

− 3[σ1G1(σ1) + σ2G1(σ2)]

2

+ 3[G3(σ1) − G3(σ2)]

4z

)
, (38)

�4(k,w)

= mnk2
F

�2

[
2

(
3F3/2(η)

D5/2
− 2zu

)

+ 3

4z
[G5(σ1) − G5(σ2)] + 3

2
{3z[G3(σ1) − G3(σ2)]}

− 3[σ1G3(σ1) + σ2G3(σ2)] + 3z3

4
[G1(σ1) − G1(σ2)]

− 3z
[
σ 2

1 G1(σ1) − σ 2
2 G1(σ2)

]
− 3z2[σ1G1(σ1) + σ2G1(σ2)]

]
. (39)

Here

Gl(σ ) =
∫ ∞

0

yldy

exp(Dy2 − η) + 1
ln

σ + y

σ − y
,

l = 1,3,5, Im σ � 0 (40)

and the expression (37) is that for the real part of �(k,ω) but
with the extended argument of the logarithmic integrand factor
and with

u = ω

kvF

→ w

kvF

= ω + iν

kvF

= u + iγ,

σ1,2 = w

kvF

± z, z = k

2kF

.

Observe that when β−1 → 0, (37) reduces to the zero-
temperature form of the polarization operator obtained in [35]:

lim
β→∞

H1(σ ) = σ + 1

2
(1 − σ 2) ln

σ + 1

σ − 1
. (41)

Note also that any branch of the complex logarithm function
can be used in (40) and (41).

3. Limiting properties

Certainly, when γ ↓ 0, we return to the standard form of
the polarization operator or the dielectric function [26]. For the
real part of (37) this transition is obvious and for the imaginary
part, due to the Dirac formula, we have

Im � (k,ω + iν)

= 2 Im
∫

dp
(2π )3

fFD(p + k) − fFD(p)

�ω + i�ν − E(p + k) + E(p)

= J (u + z) − J (u − z), (42)

where we have introduced the auxiliary function

J (x) = mk2
F

2π�2k

∫ ∞

0

y2dy

exp(Dy2 − η) + 1

∫ +1

−1
δ(x − ys)ds

= mk2
F

4πD�2k
ln[exp(η − Dx2) + 1].

Note that only one of the Dirac δ functions can contribute in
(42). Hence, since

lim
η↓0

ln

(
x + iγ + y

x + iγ − y

)
= ln

∣∣∣∣x + y

x − y

∣∣∣∣ − 2iπyδ(x2 − y2),

Im εRPA(k,ω) = k2
F

Dk3aB

ln

(
exp[η − D(u − z)2] + 1

exp[η − D(u + z)2] + 1

)
.

Finally, the classical form of the polarization operator in terms
of the plasma dielectric function [74,75] is recovered when
� → 0.

C. Higher-order sum rules

In this section we study the nonzero power moments of the
OCP model dielectric functions named in the Introduction.

1. The RPA dielectric function

Consider, first, for the reference and for Im w � 0,

εRPA(k,w) = 1 + 1

4πaBkF

(
2kF

k

)3[
G1

(
w

kvF

+ k

2kF

)

−G1

(
w

kvF

− k

2kF

)]
. (43)

When w → ∞ along any ray in the upper half plane,[
G1

(
w

kvF

+ k

2kF

)
− G1

(
w

kvF

)]

−
[
G1

(
w

kvF

− k

2kF

)
− G1

(
w

kvF

)]

� 2G′
1

(
w

kvF

)(
k

2kF

)
+ 1

3
G′′′

1

(
w

kvF

)(
k

2kF

)3

+ · · · .

The derivatives of G1(σ ) can be easily calculated to give

εRPA(k,w → ∞) � 1 − ω2
p

w2

[
1 + A2(k)

(
kvF

w

)2

+A4(k)

(
kvF

w

)4

+ O

((
kvF

w

)6
)]

,

(44)

where [26] [using (33) and (27)]

A2(k) = 3

2

F3/2(η)

D5/2
+ �

2k2

4m2
ev

2
F

= ω2
p

k2v2
F

V (k),

A4(k) = 3

2

F5/2(η)

D7/2
+ �

2k2

4m2
ev

2
F

5F3/2(η)

D5/2
+ 15

4

�
4k4

m4
ev

4
F

, . . . .
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Asymptotically, we have

εRPA(k,w → ∞) � 1 − ω2
p

w2

(
1 + ω2

p

w2
V (k) + · · ·

)
. (45)

We conclude that, as expected, within the RPA the sum rule
(31) is satisfied only partially, without taking the correlation
contribution U (k) into account.

2. Mermin dielectric function

Static collision frequency. The Mermin loss function sat-
isfies the f -sum rule by construction. The situation with the
fourth sum rule is quite different. It is not very difficult to
calculate the high-frequency limit of the fourth-power-moment
integrand to see that if the collision frequency is kept constant,

lim
ω→∞

(
− ω3 Im ε−1

M (k,ω)

ω3
p

)
= ν

ωp

,

which means that in the classical Mermin approximation (17)
the fourth power moment of the loss function diverges and
the corresponding sum rule (31) is not satisfied at all. In other
words, the asymptotic expansion of the Mermin model DF
with a constant collision frequency is just εM(k,w → ∞) �
1 − ω2

p/w2.
This behavior takes place because at high frequencies

the imaginary part of the Mermin DF is determined by the
imaginary part of the product (1 + iν/ω)[εRPA(k,ω + iν) − 1]
and is reduced to the fractional form −νω2

p/ω3, which
significantly differs from the corresponding exponential factor
characteristic for the RPA. This latter factor with the zero
asymptotic expansion guarantees the convergence of all power
moments of the RPA loss function to their collisionless values,
while in the Mermin approximation only the second power
moment survives.

Dynamic collision frequency. Consider the Born-Mermin
approximation introduced in [35], i.e., the generalization of the
Mermin model with the dynamic collision frequency included.
We know that if the dielectric function is a response function,
from (13) we have, for the electronic liquid,

εe(k,w → ∞) � 1 − ω2
p

w2
− ω2

p�2

w4
− · · · , (46)

where

�2 = ω2
2(k) − ω2

p = ω2
pW0(k) = ω2

p[V (k) + U (k)], (47)

with the same kinetic contribution (33), but with the correlation
corrections U (k) (34) present. On the other hand, in the RPA,
from (44)

εRPA(k,w → ∞) � 1 − ω2
p

w2
− ω2

p�2
RPA

w4

− ω2
pϒ4

RPA

w6
− O

((
kvF

w

)8
)

· · · , (48)

with

�2
RPA = (kvF )2A2(k) = ω2

pV (k),
(49)

ϒ4
RPA = (kvF )4A4(k), . . . .

Hence, the asymptotic expansion of the dynamic collision
frequency (20) imaginary part takes the following form:

Im ν(ω → ∞) � iν1

ω
+ O

(
i

ω3

)
+ · · · ,

with

ν1 = ni

6π2m2
eω

2
p

∫ ∞

0
q6V 2

D(q)Sii(q)[εRPA,e(q,0) − 1]dq.

(50)

Thus, in the Born-Mermin (BM) approximation with the
dynamic collision frequency ν(ω) defined as in [30] (see also
the references therein),

εBM(k,ω → ∞) � 1 − ω2
p

ω2
− ω2

p�2
BM

ω4
− O

(
1

ω6

)
,

where

�2
BM = �2

RPA + ν1 
= �2, (51)

which of course does not include the correlation corrections.
It is important that, as established in [21], within the Born-
Mermin approximation the real part of the collision frequency
at high frequencies tends to zero as ω−3/2 and thus the
corresponding loss function has only the second correct and the
fourth incorrect convergent power moments (see Sec. V A). It
is important also that the electronic fluid correlation correction
U (k) depends on the static structure factor See(q), while the
ion-ion SSF Sii(q) would appear in the expression for the TCP
fourth moment only in the first order in me/mi , mi being the
ion mass [4–8].

D. Extended RPA and Mermin approximation

The extended Mermin approximation was suggested in
[27(b)] and [35]. The extension consists in the introduction
into the RPA dielectric function εRPA(k,w) of the dynamic
local-field correction (DLFC),

εXRPA(k,w) = 1 + φ(k)�(k,w)

1 − φ(k)G(k,ω)�(k,w)
, (52)

εXRPA(k,0) = 1 + φ(k)�(k,0)

1 − φ(k)G(k)�(k,0)
, (53)

where G(k) = G(k,ω = 0) is the static local-field correction
(SLFC), so that the extended Mermin dielectric function takes
the following form:

εXBM(k,ω) = 1 + wφ(k)�(k,w)�(k,0)

ω�(k,0)[1 − φ(k)G(k,w)�(k,w)] + iν(ω)�(k,w)[1 − φ(k)G(k)�(k,0)]
. (54)
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General properties and in particular the asymptotic expansion
of the DLFC were studied in detail by Kugler [73]. At least,
within the interpolation model for the DLFC approximation
[67] employed in [35], the odd-order power moments of the
DLFC diverge while the even-order moments vanish:

G(k,w) = G(k,∞) + 1

π

∫ ∞

−∞

Im G(k,ω)

ω − w
dω

�
w→∞ G(k,∞). (55)

The latter characteristic, in electron fluids without the self-
energy and effective mass corrections [23], equals −U (k)
[7,19] (see Appendix B). In our calculations we have employed
the SLFC model suggested in [76].

Consider now the asymptotic expansion of the extended
RPA dielectric function

εXRPA(k,w → ∞) � 1 − ω2
p

w2
− ω2

p�2

w4
− O

(
1

w6

)
,

Im w � 0,

which coincides with (46), i.e., the extended RPA dielectric
function (if it is a response function), and satisfies the second
and the fourth sum rules, while the corresponding function
(14) satisfies the moment conditions (15). Moreover, the
corresponding electron fluid IDF, which is always a response
function, satisfies, as long as the static DF or the SSF is correct,
all three nonzero convergent sum rules (5).

The extended Mermin approximation loses this advantage
of the RPA. Precisely, if the collision frequency is considered
constant, as in [27(b)], still the extended Mermin approxima-
tion DF does not satisfy the fourth sum rule independently
of the form of the DLFC considered in this work or in [35].
Nevertheless, in the extended Born-Mermin approximation the
fourth power moment converges, but we obtain the following
expansion for the DF:

εXBM(k,w → ∞) � 1 − ω2
p

w2
− ω2

p(�2 + ν1)

w4
− O

(
1

w6

)
,

Im w � 0. (56)

We might say that the frequency-dependent collision fre-
quency spoils the ability of the Born-Mermin model DF to
satisfy the fourth sum rule. The above results on the OCPs are
corroborated by the numerical results provided in Sec. V A.

E. The FCDF model

The FCDF model has not been extended in the above sense
yet and one can observe, using the prolongations (38) and (39),
that the asymptotic expansion of εFC(k,w) coincides with that
of the RPA DF (48). We point out that the OCP stopping power
computed in [27(d)] in the FCDF approximation is practically
indistinguishable from that calculated in the RPA. In Sec. IV
we will also see to what extent other details discussed in this
section influence the plasma stopping power.

III. TWO-COMPONENT PLASMAS

Let us generalize now the above results to TCPs (multi-
component plasma characteristics can be described in a similar
way).

A. Moment approach

The asymptotic form (8) explicitly implies that in two-
component or multicomponent plasmas the loss function
power moments of even order higher than four diverge though
the odd-order moments vanish. Thus, within the MM approach
we consider now the same moment set (9), but with the mo-
ments specified for the system under consideration. This set is
still positive definite, the corresponding (Hamburger) moment
problem is solvable, and the condition of non-negativity of
the corresponding loss function is also guaranteed. We will
benefit from the advantage of this method: The corresponding
expression for the IDF satisfies the sum rules automatically
and it is applicable for any coupling or degeneracy in a liquid
Coulomb system until crystallization takes place.

The moment problem corresponding to the TCP set
{C0(k),0,C2,0,C4(k)} possesses [2,3] two families of solu-
tions: the canonical and noncanonical solutions. A canonical
solution of the moment problem has the form of a linear
combination of weighted Dirac δ functions similar to the
Feynman model for the liquid dynamic structure factor and
provides good insight into the system dynamic properties
[77]. Precisely the specific canonical solution of the moment
problem

L(k,ω)

πC0(k)
= ω2

2(k) − ω2
1(k)

ω2
2(k)

δ(ω)

+ ω2
1(k)

2ω2
2(k)

[δ(ω − ω2(k)) + δ(ω + ω2(k))] (57)

was employed in [29] to find the correction to the Bethe-Larkin
stopping power asymptotic form and in [52] to estimate the
relativistic corrections to the hydrogenlike nonideal plasma
stopping power, which we have referred to above. From
the physical point of view, the canonical solution describes
nondecaying diffusive and Langmuir collective modes.

Noncanonical continuous solutions of the moment problem
have been constructed in a number of publications (for mathe-
matical details see [4–8], references therein, and also [39,78]).
They can be easily obtained from the Nevanlinna theorem,
which establishes a biunivocal correspondence between these
solutions, particularly all (integrable) non-negative functions
L(k,ω) that possess the given moments {C0(k),0,C2,0,C4(k)}
defined as in (5) (for κ = 2),

Cl(k) = 1

π

∫ ∞

−∞
ωlL(k,ω)dω := 〈ωl,1〉,

l = 0,1, . . . ,2κ, κ = 0,1,2, . . . , (58)

and a set of NPFs Qκ (k,w),

1

π

∫ ∞

−∞

L(k,ω)

w − ω
dω =

〈
1

w − ω
,1

〉
= Eκ+1 + QκEκ

Dκ+1 + QκDκ

. (59)

The coefficients of the fractional-linear transformation of the
NPF in (59) are orthogonal polynomials with exceptionally
real and alternating zeros completely defined by the moments;
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they can be easily constructed from the canonical basis of poly-
nomials {1,ω,ω2,ω3, . . .} by the Gram-Schmidt procedure

D0 = 1, D1 = ω, D2 = (ω2 − ω2
1),

D2 = ω
(
ω2 − ω2

2

)
,

Eκ (w) =
〈
Dκ (k,ω) − Dκ (k,w)

ω − w
,1

〉
,

E0 = 0, E1 = C0(k), E2(ω) = ωC0(k),

E3(ω) = 〈
ω2 + ωw + w2 − ω2

2,1
〉

= C2(k) + (
w2 − ω2

2

)
C0(k).

We have that

〈Dκ,Dκ ′ 〉 = ‖Dκ‖2δκκ ′ ,

〈Eκ,Eκ ′ 〉 = ‖Eκ‖2δκκ ′ , κ,κ ′ = 0,1,2,3.

The NPF Qκ (k,w) for any truncated moment problem of
reconstruction of a response function that satisfies 2κ + 1 sum
rules {C0,0,C2,0, . . . ,C2κ}, as well as the response function,
e.g., the IDF, belongs to the Nevanlinna class of functions (i.e.,
it is analytic in the half plane Im w > 0 and possesses there a
non-negative imaginary part) and, additionally, it is such that
in the same half plane and along any ray

lim
w→∞ Qκ (k,w)/w = 0. (60)

By virtue of the latter property of Qκ (k,w), the loss function
L(k,ω) and thus also the response function ε−1(k,ω) satisfy
the sum rules (9) irrespectively of our choice of the parameter
function Qκ (k,w), but this cannot be said a priori about the
model expressions considered in Sec. I B.

1. Five-moment model

The sixth, divergent moment in the norm ‖D3‖ is the so-
called immaterial element of the set {C0(k),0,C2,0,C4(k)}; it
does not prevent us apply the Nevanlinna formula (59). Indeed,
for the above set of loss function moments (9), it stems from the
Kramers-Kronig relations (3) that, due to this formula [6–8],

ε−1
MM2(k,w) − 1 = w

E3 + Q2E2

D3 + Q2D2
− C0(k)

= ω2
p[w + Q2(k,w)]

w
(
w2 − ω2

2

) + Q2(k,w)
(
w2 − ω2

1

) ,

Im w � 0, (61)

and this latter expression permits us to include the decay
processes into consideration via the NPF. For any NPF of the
above mathematical class any solution of the truncated moment
problem {C0(k),0,C2,0,C4(k)} possesses all five convergent
power moments of the given set by construction (see Sec. V A
for numerical details). In addition, by virtue of the condition
(60), i.e., without violating the sum rules, in a two-component
plasma we can make use of the exact asymptotic form (8) of
the DF imaginary part obtained by Perel’ and Eliashberg [20]
and model the parameter function Q2(k,w) as [11]

Q2(k,w) =
A

√
ω5

pw(1 + i)

ω2
2(k) − ω2

1(k)
+ i

ω2
2(k) − ω2

1(k)

ν

:= B(k)
√

w(1 + i) + ih(k). (62)

Notice that (62) maintains the parity of the parameter function
on the real axis:

Q2(k,ω) = B(k)
√

|ω|[sgn(ω) + i] + ih(k). (63)

Observe also that by virtue of the Cauchy-Schwarz inequality
(see Appendix A) ω2

2 > ω2
1 and that if we choose the (transport)

static collision frequency ν to be equal to ω2
p/4πσ0, we could

satisfy the limiting property

σ0 = lim
ω→0

lim
k→0

ω

4πi
[εMM2(k,ω) − 1], (64)

which defines the static conductivity σ0. Thus, the expressions
(61) and (62) provide an interpolation (in the class of response
functions) between the high-frequency asymptotic expansion

ε−1
MM2(k,w → ∞) � 1 + ω2

p

w2
+ ω2

pω2
2(k)

w4

−A

(
ωp

w

)9/2

(1 + i) + O

(
1

w11/2

)
· · · ,

(65)

which satisfies the asymptotic form (8), and the low-frequency
form (64). Note also that the real correction of the order
(ω/ωp)−9/2 is negligible in (65) on the real axis with respect
to other real contributions in this asymptotic expansion, while
the same order imaginary contribution is the largest on the real
axis (see also [71]).

As we have mentioned, it was shown in [21(a)] that
Re ν(ω → ∞) � ω−3/2 in the degenerate as well as the
nondegenerate plasmas. Since the asymptotic expansion of
the generalized DF reads

εGDL(0,ω → ∞) � 1 − ω2
p

ω2
+ iω2

pν(ω)

ω3
− · · · ,

we get Im εGDL(0,ω → ∞) � ω−9/2. Thus we point out that
the generalized Drude-Lorentz model with the Born dynamic
collision frequency (20) and the above BM approximation
satisfy the asymptotic form (8). In addition, the interpolation
form suggested in [67] for the dynamic local field correction
at T = 0 and employed in [35] complies with it as well.

Due to the above asymptotic behavior of the DCF we cannot
just replace the SCF in (62) by the static collision frequency in
the Born approximation (20) ν(ω). However, we will satisfy
the asymptotic form (8) and will not modify the values of the
convergent moments if we consider the model NPF

QDCF(k,w) =
A

√
ω5

pw(1 + i)

ω2
2(k) − ω2

1(k)

+ i
ω2

2(k) − ω2
1(k)

ν(w) + ωp(wτ )r [1 − i tan(πr/2)]
, (66)

where r ∈ (0,1) and, for example,

τ = (β�)−1 = 	

ωp

√
3

rs

or just τ = ω−1
p . Finally, the sum rules satisfied by the five-

moment model IDF (61) are [6,7] the zeroth sum rule

C0(k) = CTCP
0 (k) = 1 − ε−1

TCP(k,0), (67)
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discussed in Sec. II A but with ε−1
TCP(k,0) now being the static

value of the TCP IDF, the f -sum rule, and the TCP fourth
loss function power moment, which takes into account the
electron-ion correlations (25) [4,5]:

C4(k) = CTCP
4 (k) = ω4

p[1 + V (k) + U (k) + H ]. (68)

The presence of the correction (25) to the fourth moment
implies that if we apply the Mermin model to a two-component
plasma using the mixing rule [79], both SSFs See(q) and Sii(q)
will be involved, but not the SSF Sei(q), which determines the
H contribution to the fourth moment. Furthermore, as it was
observed, precisely the latter contribution modifies the high-
projectile-velocity asymptotic form of a TCP (polarization)
stopping power [29,49].

2. Three-moment model vs the generalized Drude-Lorentz model

If we take into account only the moments {C0(k),0,C2}, the
Nevanlinna formula immediately gives for the IDF

ε−1
MM1(k,w) = 1 + ω2

p

w2 − ω2
1(k) + wQ1(k,w)

, Im w > 0.

(69)

We observe that in the long-wavelength approximation, when
ω1(k → 0) � ωp, this expression (69) reduces to the gener-
alized Drude-Lorentz model (19) if we choose Q1(k,w) =
Q1(0,ω) = iν(ω) and that this model is unable to incorporate
the asymptotic form (8), i.e., we have that ε−1

MM1(k,w →
∞) � 1 + ω2

p/w2 + · · · . Certainly, for a constant collision
frequency or with Q1(k,w) = Q1(k,w = 0) = ih(k), h(k) >

0, the fact that the loss functionL1(k,ω) = − Im ε−1
MM1(k,ω)/ω

has finite moments {C0(k),0,C2} can be easily checked by
direct (analytic) integration. We have also calculated the
moments of the loss function corresponding to the third-
moment model IDF for two different models of the dynamic

collision frequency (see details in Sec. V A). It is clear that
neither (19) nor (69) satisfies the fourth sum rule C4(k).

B. Extended TCP RPA and Mermin approximation

Let us now generalize the Mermin approximation to two-
component plasmas using the mixing rule [79]

εMTCP(k,ω) = 1 + (ω + iν)[εRPA,e(k,ω + iν) − 1]

ω + iν
εRPA,e(k,ω+iν)−1

εRPA,e(k,0)−1

+ (ω + iνi)[εRPA,i(k,ω + iνi) − 1]

ω + iνi
εRPA,i(k,ω+iνi )−1

εRPA,i(k,0)−1

, (70)

where νi = ν
√

me/mi and for the ions we use the classical
RPA DF

εRPA,i(k,w) = 1 + (
k2
Di/k2

)[
1 + w

kvth
Z

(
w

kvth

)]
,

k2
Di = 4πni(Zni)

2, vth =
√

2/βmi ,

Z(ζ ) =
∫ ∞

−∞

ds√
π

exp(−s2)

s − ζ
, ζ ∈ C, Im ζ > 0.

We have used the asymptotic expansions at ω → ∞,
Akhiezer’s theorem [3], and direct calculations to establish
the following results for the TCP DF in the RPA, the extended
RPA, and the above Mermin model with both the classical and
extended εRPA,e(k,w). These results are quite similar to the
corresponding RPA data presented in Sec. II D. No local-field
corrections were introduced to the εRPA,i(k,w). We can now
summarize our numerical results:

(i) Due to the Kramers-Kronig relations, the value of
the zeroth moment is consistent with each corresponding
model expression for the static IDF, but, generally speaking,
we are not sure whether or not the best static DF available
accounts for the system quantum-mechanical and correlation

TABLE I. The results listed in Sec. V A are complemented for each case, respectively. The values of the loss function dimensionless fourth
moment c(kF ) = C4(kF )/ω4

p calculated for k = kF within different models of the plasma dielectric function are displayed in columns labeled for
the RPA, the extended RPA (XRPA), the Mermin model (M), the extended Born-Mermin model (XBM), and the dielectric function constructed
within the moment approach (MM), while different contributions to the fourth moment defined in (31) calculated in the hypernetted-chain
(HNC) approximation are presented for k = kF . In the TCP cases 5–8 and within the extended Born-Mermin model the fourth moment was
computed for two models of the DLFC [see Eq. (72)] and the T = 0 interpolation model of [67]. In the OCP cases 1–4 one observes very good
agreement between the exact MM and PRA values of the moment calculated as c(kF ) = 1 + V (kF ) (RPA) or c(kF ) = 1 + V (kF ) + U (kF )
(XRPA), which is not the case for other models considered. The first coefficient of the asymptotic expansion of the Born DCF ν1 defined in
(50) is the magnitude of deviation of the Mermin moment from the MM value. In the TCP cases 5–8 the electron-ion contribution H is taken
into account only within the moment approach; more details are provided in Sec. V A.

Case 	,rS RPA XRPA M XBM MM HNC: V (kF ),U (kF )
ν1,H

1 1,3.1545 5.2587 5.1124 6.1939 6.0473 5.1128 V = 4.2587,U = −0.1463

2 1,3.9431 5.1255 4.9792 6.3945 6.2480 4.9792 V = 4.1255,U = −0.1463

3 1.0776,2.5256 5.1790 5.0327 5.8135 5.6672 5.0327 V =4.17902, U=−0.146279
ν1=0.7579

4 3.5921,2.5256 3.0199 2.8166 3.7281 3.5248 2.8167 V =2.01991, U=−0.203236
ν1=0.7297

5 1,3.1545 5.2598 5.1815 6.1950 6.1165
6.1086 9.5178 V =4.25866, U=−0.0782938

H=4.33743

6 1,3.9431 5.1266 5.0519 6.3957 6.3209
6.3135 11.9288 V =4.1255, U=−0.07474

H=6.87822

7 1.0776,2.5256 5.1801 5.1187 5.8146 5.7531
5.7540 8.4227 V =4.1790, U=−0.06139

ν1=0.722609, H=3.3051

8 3.5921,2.5256 3.0210 2.9931 3.7292 3.7108
3.6966 8.2547 V =2.0199, U=−0.02787

ν1=0.7297, H=5.2628
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FIG. 1. (Color online) Loss function calculated for different
models of an electron fluid at 	 = 1, rs = 3.154 48, and (a) k = kF

and (b) k = 0.7kF .

effects correctly. On the other hand, if the SDF is estimated
as in (28), i.e., in terms of the SSF charge-charge dynamic
structure factor calculated in the HNC approximation, the
MM-generated forms for the IDF still satisfy this modified
zeroth sum rule by construction, but the RPA, Mermin, and
extended Mermin models do not.

(ii) The f -sum rule is fulfilled for all model forms of the
DF or IDF we consider.

(iii) If the collision frequency ν is kept constant, the Mermin
fourth moment diverges even for the extended Mermin model.
Indeed, when ω → ∞, the main contribution to Im εMTCP(k,ω)
is still νω2

p/ω3, so the integrand of the fourth moment becomes
constant at high frequencies.

(iv) If ν = ν(k,ω) is modeled as (20) or numerically, as in
[31,32], the RPA value for the TCP fourth moment is recovered
in the TCP RPA: CRPA TCP

4 (k) = ω4
p[1 + V (k)].

Mermin model with DCF
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FIG. 2. (Color online) Same as in (a) Fig. 1(a) and (b) Fig. 1(b)
but for 	 = 1 and rs = 3.9431.

(v) If, in addition, the dynamic local-field corrections are
employed in the electron contribution to the RPA DF, the fourth
moment is corrected by the electron-electron contribution U ,

CXRPA TCP
4 (k) = ω4

p[1 + V (k) + U (k)]. (71)

The values for the TCP Mermin DF in the extended Mermin
approximation give values that differ from those of (71). In
the BM approximation this difference is very close to the
dynamic collision frequency (20) first moment iν1 imaginary
part (50).

For the DLFC we have used the interpolation form [7,80]

GLFC(q,ω) = νGLFC(q) + iωU (q)

ν − iω
(72)

and the T = 0 interpolation model of [67]. Other T 
= 0 DLFC
models might be studied, though in our computations we have
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FIG. 3. (Color online) Same as in (a) Fig. 1(a) and (b) Fig. 1(b) but for 	 = 1.0776 and rs = 2.5256. (c) Same as in Fig. 1(a) but for
	 = 1.0776, rs = 2.5256, and k = 0.3kF . (d) Same as in Fig. 1(a) but for 	 = 0.107 76, rs = 2.5256, and k = 0.1kF .

not observed any significant dependence on the form of the
DLFC employed.

(vi) Neither one of the non-MM models considered here
satisfies the complete fourth sum rule (68), which includes the
electron-ion contribution (25).

The above sum rules are satisfied with a rather high
precision (see Sec. V A, where a small part of our numerical
data is provided to support the above statements). Certainly,
these data are compared to the results obtained in the MM
approximation. In particular, the fourth sum rule with the
electron-ion contribution H [Eq. (25)] is satisfied in the
MM approximation. One has to add also that, as we have
checked, the sum rules {C0(k),0,C2,0,C4(k)} are satisfied
in the MM approximation for any Nevanlinna parameter
function of the adequate mathematical class. The k dependence
of Q2(k,w) can be specified further from the analysis of
the x-ray-scattering data on the TCP collective or kinetic
properties [81].

IV. STOPPING POWER

We have calculated the polarization stopping power of
electron fluids and two-component plasmas for all models
we have considered above and compared the results of these
calculations to those obtained in the corresponding MM
approximations and the asymptotic forms (21) and (24),
respectively. The results are presented in detail in Sec. V B.
The overall conclusions are the following.

(a) We reproduce the numerical results obtained for
the stopping power of electron fluids in the papers by
Barriga-Carrasco [27]. The corresponding curves that repre-
sent the dependence of the electron fluid on the projectile
velocity always tend to the asymptotic form (21) from below.

(b) If we consider the stopping power of real, at least
two-component completely ionized hydrogenlike plasmas,
i.e., take into account the plasma ion component and the
electron-ion interactions in the target plasma, the stopping
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power is enhanced by them and the corresponding curves tend
to the asymptotic form (24) from above.

(c) As for the polarization stopping power of the same two-
component plasmas calculated within the dielectric formalism
with the loss function defined as in the models considered
above, such an enhancement is observed as well, but only in
the expanded RPA, while in the expanded Mermin model that
satisfies the fourth-moment sum rule worse than the former
one, the behavior of the stopping power with respect to the
modified Bethe-Larkin asymptotic form (24) is not definite.

V. NUMERICAL RESULTS

A. Values of the moments

In this section we provide some numerical data that confirm
the advantages and drawbacks of the models outlined above.
Certainly, we display only a small, most characteristic part of
the data we have obtained.

We have calculated the values of the electron fluid and TCP
loss function (1) power moments C0(k), C2, and C4(k) defined
in (5) within the RPA (43), the extended RPA (52), the Mermin
approximation (17), and the extended Mermin approximation
(54). They are compared to the corresponding results obtained
within the approach based on the method of moments (61). As
it is known, the values of the moments are independent of the
choice of the NPF Q2(k,w) from the adequate mathematical
class (see Sec. III A).

In our calculations of the electron fluid power moments we
have used

QOCP
2 (k,w) = i

ω2
2(k) − ω2

1(k)

ν
(73)

and we have estimated the static collision frequency as it was
suggested in [33],

ν

ωp

= 0.2387	3/2
∫ ∞

0

dk

k

See(k)Sii(k) − S2
ei(k)

1 + k2λ2
ei

, (74)

where λei =
√

β�2/2πme. In TCPs we possess additional
information stemming from the asymptotic form (8). Hence, in
TCPs we were able to complement the zero-frequency model
expression (73) and apply the interpolation form (63).

We have pointed out that within the Mermin model (17) with
a constant collision frequency ν the fourth power moment of
the corresponding loss function diverges in both electron fluids
and TCPs. Thus, for both types of media we have considered
two cases, with the dynamic collision frequency calculated in
the Born approximation (20) [in this case we were also able
to calculate the parameter ν1 of (50)] or numerically [31,32].
In electron fluids the static structure factors were found in the
hypernetted approximation using the bare Coulomb potential,
while in TCPs the static characteristics were determined
using the Deutsch [82] (without the exchange corrections)
and Kelbg (see [11] for some corrections and references)
pseudopotentials.

We provide the values of different contributions to the
fourth moment defined in (31) in Table I, where all results
are presented for k = kF . The graphs of the loss function
in eight cases 1–8 are presented in Figs. 1–8 for different
wave-number values, respectively. In these figures the (navy
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FIG. 4. (Color online) Same as in Fig. 1(a) but for (a) 	 =
3.592 07 and rs = 2.5256 and (b) 	 = 3.592 07, rs = 2.5256, and
k = 1.2kF .

blue) long-dashed line provides the RPA results, the (light
green) dot-dashed line stands for the extended RPA data, the
(navy blue) dotted line corresponds to the Mermin model, the
(pink) dashed line corrections to the extended Mermin one, and
the (black) solid line depicts the results of the MM approach.
The dynamic collision frequency is that of [31,32] (cases 1
and 2 and cases 5 and 6, which correspond to the Figs. 1 and 2
and Figs. 5 and 6) or of (20) (the Born-Mermin model, the
rest of the cases) and the DLFC is given in (72). The MM loss
function proves to be physically more consistent since, due to
the fluctuation-dissipation theorem, it is directly proportional
to the dynamic structure factor, the form of which suggests
the presence in the system of a collective Langmuir mode
whose frequency is upshifted from the plasma frequency by
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FIG. 5. (Color online) Loss function calculated for different
models of a hydrogenlike plasma at 	 = 1, rs = 3.15448, and (a)
k = kF and (b) k = 0.7kF . (c) Same in (b) but without the MM
model graph.
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FIG. 6. (Color online) Same as in (a) Fig. 5(a) and (b) Fig. 5(b)
but for 	 = 1 and rs = 3.9431.

the kinetic and correlation contributions present in ω2(k) and
downshifted by the NPF real part.

1. The OCP moment values

Case 1. In the case with T = 100 000 K, rs = 3.154 48,
D = 0.584 42, and 	 = 1 we were using the numerical data
on the dynamic collision frequency (DCF) taken from [31,32]
and the DLFC given in (72). Some of the graphs of the loss
function are provided in Fig. 1. The theoretical value of the loss
function dimensionless fourth moment c(kF ) = C4(kF )/ω4

p is
just 1 + V (kF ) + U (kF ) = 5.1128, which coincides with the
value of c(kF ) evaluated numerically. Notice that 6.047 26 −
6.193 94 ≈ U (kF ).

Case 2. In the case with T = 80 000 K, rs = 3.9431, D =
0.4670, and 	 = 1 we have again used the data from [31,32].
The results confirm the same interrelations. The graphs of the
loss function are displayed in Fig. 2.
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FIG. 7. (Color online) Same as in (a) Fig. 5(a) and (b) Fig. 5(b) but for 	 = 1.0776 and rs = 2.5256. (c) Same in Fig. 5(a) but for
	 = 1.0776, rs = 2.5256, and k = 0.3kF . (d) Same as in Fig. 5(a) but for 	 = 0.107 76, rs = 2.5256, and k = 0.1kF .

Cases 3 and 4 correspond to the Born-Mermin model with
the collision frequency (20) so that we were able to estimate,
in these cases, the parameter ν1 defined in (50).

Case 3. When T = 10 eV, rs = 2.5256, D = 0.7858, and
	 = 1.0776, we have that 5.179 02 = 1 + V (kF ), 5.032 73 =
1 + V (kF ) + U (kF ), 5.813 53 ≈ 5.032 74 + 0.757 858, and
5.667 16 ≈ 5.813 53 − 0.146 279.

Case 4. Finally, when T = 3 eV and the number density of
electrons is once more equal to ne = 1023 cm−1, rs = 2.5256,
D = 2.61923, and 	 = 3.59207, the values of the dimension-
less moment once more verify the above interrelations with
sufficient precision.

2. Values of the TCP moments

In two-component plasmas the electron contribution to (70)
was estimated as in the case of the electron fluid, but the

static characteristics were calculated as we have outlined, using
the Deutsch and Kelbg effective potentials, respectively. The
results are quite similar to those of cases 1–4 and the conditions
are, respectively, the same. The only difference is that now the
electron-ion contribution to the fourth moment is present and
a very good agreement between the values for this moment
obtained within the MM approach and the extended RPA, i.e.,
using the DLFC, is violated.

Case 5. For the conditions outlined in case 1 we have that
1 + V (kF ) + U (kF ) + H = 9.517 796. Note that 6.1165 −
6.194 97 ≈ U (kF ), but 9.517 796 − 5.181 46 ≈ H. Addition-
ally, the generalized Drude-Lorentz model gives in this case
the value of c(kF ) = 2.552 04.

Case 6. For the generalized Drude-Lorentz model c(kF ) =
2.870 62.

Case 7. In this case, for the generalized Drude-Lorentz
model c(kF ) = 2.314 82.
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FIG. 8. (Color online) Same as in Fig. 5(a) but for (a) 	 =
3.592 07 and rs = 2.5256 and (b) 	 = 3.592 07, rs = 2.5256, and
k = 1.2kF .

Case 8. Now for the generalized Drude-Lorentz model
c(kF ) = 1.983 31.

The interrelations outlined above are verified in the cases
5–8 with good precision as well.

The wave-number dependence of the loss function can be
observed in the figures as well. We see that the MM approach
takes the collisional decay of the Langmuir mode into account
at any value of the wave number, while within other models the
RPA-generated singularity of the Fermi wave number persists.
The position of the peak depends weakly on the model of
the NPF, the contribution related to the static or dynamic
collision frequency playing the decisive role. Notice also that,
as expected, there is a significant decay of the Langmuir mode
at k = kF .

We have observed very similar results in many other cases
we have considered.

Mermin model with DCF

Mermin model with DCF and DLFC

RPA model

RPA model with DLFC

Method of moments

5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

1.2

v vF

dE
dx

βa

FIG. 9. (Color online) Electron fluid dimensionless polarization
stopping power for different IDF models discussed in the paper for
rs = 2.5256. For the upper set of data 	 = 10.7725 and for the lower
	 = 1.0773. The dashed line stands for the Bethe-Larkin asymptotic
form (21).

B. Stopping power data

We confirm the results of [27] (see, for example, Fig. 9).
We obtain some enhancement for the stopping power when
we apply the method of moments with the interpolation
Nevanlinna parameter function (63) and effectively repro-
duce the asymptotic form (24) if we limit ourselves to the
model NPF Qas

2 (k,ω) = B(k)
√|ω|[sgn(ω) + i], while if we set

Qstatic
2 (k,ω) = ih(k), the results practically coincide with those

corresponding to the full Q2(k,ω) = B(k)
√|ω|[sgn(ω) + i] +

ih(k). We have recalculated the TCP stopping power for the

Mermin model with DCF

Mermin model with DCF and DLFC

RPA model

RPA model with DLFC

Method of moments

5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

v vF

dE
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βa

FIG. 10. (Color online) Hydrogenlike plasma stopping power for
different IDF models for rs = 2.5256. For the upper set of data
	 = 1.077 62 and for the lower 	 = 0.107 76. The solid line is the
asymptotic form (24), while the (brown) dashed line stands for the
Bethe-Larkin asymptote (21).
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model NPF (66), but no significant changes that could be
detected experimentally have been observed.

The results of alternative models of the IDF qualitatively
confirm the enhancement effect (see Fig. 10). Notice that in
recent studies of the TCP stopping power [83] the dielectric
function was modeled in the RPA and a similar effect was
observed.

VI. CONCLUSION

We have analyzed the widely used models of the unmag-
netized one- and two-component completely ionized plasma
longitudinal dielectric function and compared them to the one
generated by the method of moments, which takes into account
all known sum rules and other exact relations automatically,
by construction. The advantage of the extended random-phase
approximation, i.e., the RPA including two different models
of the dynamic local-field correction, with respect to the
Mermin and FCDF models has been pointed out. Precisely,
it has been shown that in electron liquids the extended
RPA satisfies all sum rules we take into account, while the
Born-Mermin model deviates from the sum rule that contains
the electron-electron correlation contribution. This deviation
is related to the employed Born model of the dynamic collision
frequency.

In two-component plasmas only the method-of-moments
(inverse) dielectric function satisfies all sum rules, particularly
the (fourth) sum rule, which contains, in addition to the
electron-electron correlations, the contribution determined by
the electron-ion static structure factor. In addition, within all
models we consider, we have calculated the plasma (polariza-
tion) stopping power and have observed its enhancement in
two-component systems where the electron-ion correlations
in the target are taken into account. The plasma straggling
[54,62] can be analyzed in the same way, but it is beyond the
scope of the paper.

Our theoretical results were confirmed by numerical esti-
mates with the plasma static characteristics evaluated in the
HNC approximation. A recent model by Nersisyan et al.
[84] from the point of view of the sum-rule approach does
not go beyond the Drude-Lorentz model, i.e., it accounts for
the zeroth sum rule only [see (6) and Sec. II A]. The same
can be said about Ref. [83(b)]. The latter model of [84]
contains two adjustment parameters and it is curious that
in that work the interpolation with the static conductivity is
also involved, like we do when we construct the Nevanlinna
parameter function of the method of moments on the basis
of an interpolation between the Perel’-Eliashberg asymptotic
form of the two-component plasma dielectric function and its
static conductivity. Finally, the data on the molecular-dynamics
simulations of the classical stopping power [85] is interesting
from a methodological point of view, but the thermodynamic
conditions modeled in this work actually do not correspond to
those of classical plasmas.
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APPENDIX A: CAUCHY-SCHWARZ INEQUALITY IN L2

The Cauchy-Schwarz inequality in L2 states that∣∣∣∣
∫ ∞

−∞
f (ω)g(ω)dω

∣∣∣∣
2

�
∫ ∞

−∞
|f (ω)|2dω

∫ ∞

−∞
|g(ω)|2dω.

We choose |g(ω)| = √
L(k,ω)/π and |f (ω)| =

ω2√L(k,ω)/π to get

C2
2 =

( ∫ ∞

−∞
ω2L(k,ω)

dω

π

)2

�
( ∫ ∞

−∞
ω4L(k,ω)

dω

π

)

×
( ∫ ∞

−∞
L(k,ω)

dω

π

)
= C4(k)C0(k).

APPENDIX B: HIGH-FREQUENCY ASYMPTOTIC
VALUE OF THE DLFC

Let us presume that the DLFC in an electron fluid can be
chosen for the corresponding DF or rather the IDF to satisfy
all five sum rules {C0(k),0,C2,0,C4(k)}. In this case one can
easily prove that the DLFC limiting value

G(k,∞) = −U (k).

To this end it suffices to compare the expressions

ε−1
XRPA(k,w) = 1 − φ(k)�(k,w)

1 − φ(k)[1 − G(k,ω)]�(k,w)
(B1)

and (61):

φ(k)�(k,w)

φ(k)[1 − G(k,ω)]�(k,w) − 1

= ω2
p[w + Q2(k,w)]

w
(
w2 − ω2

2

) + Q2(k,w)
(
w2 − ω2

1

) . (B2)

Then the electron fluid DLFC and the (five-moment) Nevan-
linna parameter function Q2(k,w) can be interrelated directly:

Q2(k,w)

w
= −R2(k,w) + G(k,w)

R1(k,w) + G(k,w)
, (B3)

where

Rj (k,w) = w2 − ω2
j (k)

ω2
p

+ 1

φ(k)�(k,w)
− 1, j = 1,2.

Further, we take into account the asymptotic form of the
RPA polarization operator

�(k,w → ∞)�− ω2
p

φ(k)w2

[
1+ ω2

p

w2
V (k) + O

((
kvF

w

)4
)]

,

(B4)
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which is equivalent to (45), and find the limiting value of (B3)
when w → ∞:

lim
w→∞

Q2(k,w)

w
= ω2

p[G(k,∞) + U (k)]

ω2
2(k) − ω2

1(k) − ω2
p[G(k,∞) + U (k)]

.

(B5)

We know that along any ray in the upper half plane Im w >

0, limw→∞ Q2(k,w)/w = 0, and ω2
2(k) − ω2

1(k) > 0 for any
finite wave-number value, hence G(k,∞) = −U (k). This
general result implies that the influence of the self-energy
contribution to the system average kinetic energy with corre-
lations [73] is negligible, at least if we assume that the extended
RPA model loss function can possess all five convergent
moments.
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