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Soft mean spherical approximation for dusty plasma liquids: One-component Yukawa systems
with plasma shielding
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The structure and thermodynamics of strongly coupled dusty plasmas are investigated with the soft mean
spherical approximation. This integral theory approach is analytically solvable for Yukawa pair interactions
yielding a closed-form solution for the direct correlation function. The pair correlation function, the structure
factor, and basic thermodynamic quantities are calculated for a wide range of parameters. Exact consistency
between the “energy”-“virial” thermodynamic routes and approximate consistency between the “energy”-
“compressibility” paths is demonstrated. Comparison with extensive molecular dynamics results is carried out
and a remarkable agreement from the Coulomb limit to the strongly screened limit is revealed. The soft mean
spherical approximation is concluded to be particularly well suited for the study of dusty plasma liquids, uniquely
combining simplicity and accuracy.
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I. INTRODUCTION

Yukawa systems are pair-additive many-body systems,
where the pair-potential energy has the form U (r) =
(Q2/r) exp [−(r/λscr)], with Q the charge of the particles
and λscr a screening length accounting for the polarization of
the medium. A species constituting a multicomponent system
is considered strongly coupled when the mean pair-potential
energy starts exceeding the kinetic energy, which also implies
the onset of strong correlations and the existence of short- or
long-range order. Common realizations of strongly coupled
Yukawa systems include colloidal suspensions (complex flu-
ids) [1] and dusty plasmas (complex plasmas) [2].

For dusty plasmas, it has been extensively assumed in the
literature that the dust-dust interaction energy is of the Yukawa
type with λscr = λD, where λD is the plasma Debye length,
i.e., of the Debye-Hückel type. We point out that this might
hold approximately true in some parameter regimes [3], but it
is certainly not valid in all dusty plasma configurations, even
when they are isotropic [4]. Nevertheless, in the Debye-Hückel
case, the thermodynamics of strongly coupled dusty plasmas
can be conveniently described in terms of two dimensionless
quantities: the coupling parameter � defined roughly as the
ratio of the unscreened Coulomb potential energy at the
Wigner-Seitz radius to the kinetic energy, the normalized
screening parameter κ defined as the ratio of the Wigner-Seitz
radius to the plasma Debye length. Mathematically, we have

� = Q2
d

dTd
, κ = d

λD
, (1)

where d = (4πnd/3)−1/3 is the Wigner-Seitz radius with
nd the dust density, Qd is the dust charge, and Td is the
dust temperature in energy units. In what follows, we use
the dimensionless parameters (�,κ) instead of the quantities
(nd,Td) as independent thermodynamic variables. Throughout
this paper, we shall employ the broader term Yukawa for the
Debye-Hückel potential (λscr = λD).

Following the discovery of dusty plasma crystals [5,6],
a large number of experimental, numerical, and theoretical
investigations have focused on the static and dynamical

properties of strongly coupled dusty plasmas, mainly in
the crystal phase, for both finite and bulk systems, two-
dimensional or three-dimensional [2,4,7]. In the last years,
the interest in the properties of liquid dusty plasmas has also
been considerably growing [7,8].

In this work, we study the thermodynamics and structure of
Yukawa dusty plasma liquids by solving the Ornstein-Zernike
equation within the soft mean spherical approximation. This
analytical approach is known to uniquely combine accuracy
and simplicity. Thus, it appears to be well suited for an
extensive investigation of the parameter space of the Yukawa
potential. Such an investigation is particularly timely: the
Plasma Kristall Experiment-4 (PK-4) launch for the Interna-
tional Space Station (ISS) is scheduled within 2014 and the
first experiments will be carried out in the beginning of 2015
[9]. PK-4 experiments on dusty plasma liquids are considered
as prioritized basic experiments.

The paper is organized as follows: In Sec. II, we introduce
the theoretical model of the dusty plasma system and the
integral equation method known as soft mean spherical ap-
proximation. Within this approximation’s closure conditions,
the Ornstein-Zernike equation is analytically solved. It is
shown that the problem reduces to the solution of one
nonlinear equation and a detailed methodology is outlined
for its numerical solution that is valid in the entire (�,κ)
parameter space. In Sec. III, the pair correlation function is
numerically calculated and the structure factor is analytically
calculated. A rapidly converging and accurate numerical recipe
is suggested for the Laplace inversion necessary for the
pair correlation function computation. In Sec. IV, the basic
thermodynamic quantities are calculated. Comparison with the
most recent extensive molecular dynamics simulations reveals
a remarkable agreement in all the ranges where numerical
data are available. Moreover, we demonstrate an exact ther-
modynamic consistency between the “energy” and “virial”
thermodynamic paths and an approximate thermodynamic
consistency between the “energy” and “compressibility” paths.
In Sec. V, the Coulomb limit κ = 0 is considered. The limiting
solution is analytically acquired by means of successive Taylor
expansions, the pair correlation functions are numerically
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computed from the structure factor with the aid of Fourier
inversion, and a comparison with molecular dynamics results
once again reveals excellent agreement. In Sec. VI, we
discuss issues related to the existence of physical solutions
of the nonlinear equation, to the level of accuracy of the
soft mean spherical approximation results, to the validity of
the Yukawa potential for dusty plasmas and to experimental
results in microgravity. We also briefly compare our approach
with other integral theory methods that had been previously
applied to Yukawa dusty plasma systems. Finally, in Sec. VII
we summarize the advantages of the soft mean spherical
approximation.

II. SOFT MEAN SPHERICAL APPROXIMATION FOR
ONE-COMPONENT YUKAWA SYSTEMS

We shall consider an idealized model of the dusty plasma
medium. The system is assumed to be in thermodynamic
equilibrium. The dust grains are considered to be point
particles and when immersed in the medium they acquire
a constant nonfluctuating negative charge Qd = −Zde by
absorbing plasma fluxes. The system is quasineutral, i.e., ni =
ne + Zdnd. The plasma particles are solely responsible for the
screening with the resulting pair potential being of the Yukawa
type φ(r) = (Qd/r) exp [− (r/λD)], where λD is the plasma
Debye length λ−2

D = λ−2
De + λ−2

Di with λDe =
√

Te/(4πe2ne)
the electron Debye length and λDi =

√
Ti/(4πe2ni) the ion

Debye length. Moreover, the only strongly coupled element
of the system concerns dust-dust interactions. Therefore, in
this aspect, the system can be considered as one component.
We shall study its structure and thermodynamics by means of
integral equation theory [10].

Thermodynamic equilibrium implies that the system is
characterized by a single temperature Td = Ti = Te = T . (In
this work, the temperature is in energy units and β denotes
the inverse temperature.) However, in the one-component
system approximation, it is sufficient that the dust species is in
thermodynamic equilibrium and the plasma species can have
their own distinct temperatures. This is the standard situation
in dusty plasma experiments realized in gas discharges, where
the dust and ion species are equilibrated with the neutrals
Td = Ti = Tn, while the electron species is characterized by a
much higher temperature Te � Tn.

A. One-component system approximation

The Ornstein-Zernike (OZ) system of equations for multi-
component dusty plasmas has the general form [11]

hij (r) = Cij (r) +
∑

α

nα

∫
hiα(|r − r ′|)Cαj (r ′)d3r ′ ,

where {i, j, α} denote the different particle species {e, i, d} ,
Cij (r) is the direct correlation function between the “i-j”
species, hij (r) = gij (r) − 1 is the total correlation function,
and gij (r) is the pair correlation function also known as
radial distribution function. The OZ equations for the plasma
species can be dropped owing to the large value of the
plasma parameter, while hij (r) = hji(r) and Cij (r) = Cji(r)
due to action-reaction reciprocity. These arguments reduce
the OZ system to three equations for hdd(r), hdi(r), and

hde(r). When assuming gdi(r) = gde(r) = 1, the only strongly
coupled element of the system concerns dust-dust interactions
and the OZ system is self-consistently further reduced to
a single equation for the dust component. In such a three-
dimensional spherically symmetric one-component system,
the Ornstein-Zernike equation has the form [11,12]

h(r) = C(r) + nd

∫
h(|r − r ′|)C(r ′)d3r ′, (2)

where we introduced the compact notations Cdd(r) = C(r),
hdd(r) = h(r), and gdd(r) = g(r).

In a series of papers [13–16], Hamaguchi et al. per-
formed systematic and unprecedentedly accurate molecu-
lar dynamic simulations of strongly coupled dusty plasma
systems of the Yukawa type. Their simulations focused
on dust-dust interactions since for plasma-dust interactions
the linearized solution of the Poisson-Boltzmann system
was assumed in their electrostatic field calculations [13].
This assumption corresponds to the linear Debye-Hückel
approximation for electron-dust and ion-dust interactions, for
which we have gde(r) = 1 − βUde(r) , gdi(r) = 1 − βUdi(r)
with Ude(r) = −eφ(r) , Udi(r) = eφ(r). These pair correlation
functions lead to nonzero direct correlation functions Cde(r)
and Cdi(r), which implies a nonzero indirect plasma-dust
contribution to the dust-dust pair correlation function, that
is not accounted for in Eq. (2). In assuming a one-component
Yukawa system, we implicitly assume that the contributions
of the terms ne

∫
hde(|r − r ′|)Cde(r ′)d3r ′ and ni

∫
hdi(|r −

r ′|)Cdi(r ′)d3r ′ to dust-dust correlations are negligible. This is
a reasonable assumption, provided that dust-plasma coupling
can be regarded as considerably weak. We note that this as-
sumption had been followed by all integral equation theoretical
studies that compare their results with the Hamaguchi et al.
numerical experiments.

B. Soft mean spherical approximation

The Ornstein-Zernike equation can be viewed as the
definition of the direct correlation function. Apparently, Eq. (2)
cannot be simultaneously solved for both C(r) and g(r) and
an approximate closure scheme is necessary. We shall employ
the soft mean spherical approximation (SMSA) [17–20] which
can be considered as an adaptation of the mean spherical
approximation (MSA) of hard-core potentials [21–26] to
soft-core potentials. It comprises of three closure conditions.

(1) The hard-core condition. Since we address a system
consisting of charged point particles interacting via the Yukawa
pair potential, the dust grains are assumed to possess no
impenetrable core. However, dense systems always act as if
their pair potentials possess an effective hard-core diameter,
which we denote as Rh. Therefore, the system behaves as
if the pair potential has the form φ(r) = ∞ ,r < Rh and
φ(r) = (Qd/r) exp [− (r/λD)] ,r > Rh. The former branch is
equivalent to the closure condition g(r) = 0 ,r < Rh.

(2) The asymptotic condition. It can be shown from dia-
grammatic analysis that, for fluids away from their bulk critical
region, the decay of the direct correlation function follows the
relation limr→∞ C(r) = −βU (r) [27]. It is assumed that the
asymptotic form is valid in the whole region extending beyond
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the hard-core diameter. This leads to the closure condition
C(r) = −βU (r) ,r > Rh.

(3) The continuity condition. In contrast to genuine hard
spheres, owing to the smooth continuous nature of the Yukawa
pair potential, the pair correlation function should not possess
a jump discontinuity at the hard-core parameter. Consequently,
we have g(r = R+

h ) = g(r = R−
h ) which leads to the closure

condition g(r = R+
h ) = 0.

A fundamental result of diagrammatic analysis states
that the general closure relation for the OZ equation reads
as g(r) = exp [−βU (r) + h(r) − C(r) + B(r)], where B(r)
is the bridge function that corresponds to the sum of all
elementary diagrams in the cluster expansion [28]. It is
customary to differentiate between integral theory approaches
by their corresponding bridge function values. For instance,
in the hypernetted chain approximation, the contribution of
the elementary diagrams is neglected and BHNC(r) = 0 [29].
Within this context, it is straightforward to prove that the set
of SMSA closure conditions is equivalent to a bridge function
which diverges negatively for r � Rh and is given by [18]

BSMSA(r) = −h(r) + ln [g(r)] , ∀ r .

The first two closure conditions are sufficient for us to
acquire an analytical solution of the OZ equation. Actually,
these conditions constitute the MSA closure for hard-core
potentials. For such potentials, the hard-core diameter is
predefined, which is not the case for soft-core potentials.
Therefore, an additional condition is necessary to uniquely
determine Rh. Such is the continuity condition, first suggested
by Gillan [17].

In the limit of uncharged dust grains the mean spherical
approximation reduces to the Percus-Yevick (PY) approxima-
tion for the hard-sphere fluid [30]. In fact, the mathematical
methods we shall employ for the solution of the problem
are extensions of techniques originally developed for the
solution of the PY approach. We point out that, in the case of
hard-sphere fluids, the agreement of the MSA internal energy
with numerical simulation results is excellent at relatively
large densities. However, MSA suffers from thermodynamic
inconsistency [31]. As we shall see in the following sections,
this is not the case for the SMSA [32].

C. Dimensionless quantities for Yukawa interactions

We shall employ dimensionless spatial coordinates of the
form x = r/Rh. In this rescaled coordinate system, the closure
condition switching point lies at x = 1. Moreover, it is con-
venient to define the dimensionless quantity η = (π/6) ndR

3
h

that is known as the hard-sphere packing fraction. The physical
range of the packing fraction can be considered as η ∈ [0,1].
However, stricter upper limits can be found by considering
that the largest fraction of space that can be occupied by equal
rigid spheres is given by

√
2π/6 	 0.740 48.

The normalized Yukawa pair interaction energy βU (r) =
(Z2

de
2/T r) exp [−(r/λD)] can be rewritten as βxU (x) =

γ e−λx . The new dimensionless parameters are defined by
γ = (d/Rh) � and λ = (Rh/d) κ . They can be expressed as
functions solely of the packing fraction via

γ (η) = 1
2η−1/3� , λ(η) = 2η1/3κ .

Finally, we define the parameter k = √
24ηγ whose square

shall frequently appear in our calculations.

D. Analytical solution of the SMSA for one-component
Yukawa systems

The OZ equation with the above closure conditions can be
solved analytically either with the Wertheim [33–35] or with
the Baxter factorization methods [36–38]. The Baxter method
involves a transformation of the OZ equation with the aid of
Fourier analysis and the Wiener-Hopf factorization technique,
it is a powerful method especially when generalizations are
imperative [37,38], but it is rather complicated for simple
potentials. Therefore, we shall employ the Wertheim method,
which is based on Laplace transforms. Mathematically,
the method is intricate but the solution for Coulomb and
exponential-type interactions is quite established [19,24,39],
hence, we shall only sketch the main steps. We first define
the functions C0(x) = C(x) + βU (x), G(x) = xg(x), F (x) =
xC0(x), the Laplace transforms G̃(s) = ∫ ∞

1 e−sxG(x)dx,
F̃ (s) = ∫ ∞

1 e−sxF (x)dx, and the parameters vλ = −k2G̃(λ)
and Aλ = − (

λ2/k2
)
vλ(vλ + 2γ λ). Moreover, we employ the

compact notations Gn = G(n)(1+) and ϒn = F (n)(1−) for the
derivatives of the nth order, which implies that the continuity
condition can be rewritten as ϒ0 = 0. Finally, we define the
parameter

a = 1 − 24η

∫ ∞

0
x2C(x)dx . (3)

Employing azimuthally expanded two-center bipolar coordi-
nates for the convolution term and spherical coordinates for
the remaining terms, the Laplace transform of the OZ equation
can be compactly written as

s2K̃(s)G̃(s) = H̃ (s) ,

K̃(s) = 1 + 12η

s
[F̃ (s) − F̃ (−s)] − k2

s2 − λ2
, (4)

H̃ (s) = s2F̃ (s) + a − γ s2

s + λ
+ s2vλ

s2 − λ2
.

We proceed with introducing the function

L̃(s) = G̃(s)H̃ (−s) = H̃ (s)H̃ (−s)

s2K̃(s)
. (5)

By the analyticity properties of the Laplace transforms and the
evenness of L̃(s) it is inferred that the latter is a meromorphic
function with a double pole at s = 0 and single poles at s =
±λ. Subtracting from L̃(s) the principal part of its Laurent
series, we can construct a function that is holomorphic over
the whole complex plane

M̃(s) = L̃(s) − a

s2
− Aλ

s2 − λ2
.

The function M̃(s) is an entire function that behaves as a
constant at infinity, with a limit equal to −ϒ2

0 which under
the continuity condition is zero. Therefore, by an extension of
Liouville’s theorem, we obtain M̃(s) = 0 or, equivalently,

L̃(s) = a

s2
+ Aλ

s2 − λ2
. (6)
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For a Yukawa potential, employing ϒ0 = 0 and the evenness of
L̃(s) it is straightforward to prove that Gn = −ϒn for n � 6.
For Re{s} → ∞, Eqs. (5) and (6) can be expanded in even
negative powers of s to yield

L̃(s) ∼ ϒ2
1

s2
+ 2ϒ1ϒ3 − ϒ2

2

s4
+ ϒ2

3 − 2ϒ2ϒ4 + 2ϒ1ϒ5

s6
,

L̃(s) ∼ a + Aλ

s2
+ λ2Aλ

s4
+ λ4Aλ

s6
,

respectively, with the higher order terms involving unknown
functions Gn, n � 7. Equating the coefficients of equal powers
we end up with three equations that are complemented by the
continuity condition, i.e.,

ϒ2
1 = a + Aλ , 2ϒ1ϒ3 − ϒ2

2 = λ2Aλ ,
(7)

ϒ2
3 − 2ϒ2ϒ4 + 2ϒ1ϒ5 = λ4Aλ.

When considering the inverse Laplace transforms for x � 1,
products of the form G̃(s)f̃ (s) are encountered. Let f (x) be
a well-behaved function and f̃ (s) be its Laplace transform,
by the hard-core assumption we obtain L−1{G̃(s)f̃ (s)} =
0. Combining this property with Eqs. (4) and (5), we
have L−1{H (s)/s2} = L−1{− (

12η/s3
)
L(s)}, which can be

inverted to yield the direct correlation function for x � 1. The
final result in the whole range is

C(x) = −γ

x
e−λx, x � 1

C(x) = −a −
(

v2
λ

4γ λ
+ vλ

2

)
λx − 1

2
ηax3 − vλ

1 − e−λx

λx

+ v2
λ

2γ λ

cosh (λx) − 1

λx
, x � 1 . (8)

E. Simplification of the system of nonlinear equations

In order to complete the SMSA solution of the OZ equation,
we need to determine the unknowns (η , a , vλ). The equations
available are the definition of the parameter “a,” the continuity
condition, and the three asymptotic expansion equations. The
system of nonlinear equations appears to be overdetermined,
however, in the SMSA, only one of Eqs. (7) is independent.
Employing Eq. (3) which is linear in “a” we obtain a a(vλ,η)
expression. Combining with ϒ0 = 0, which is linear in “a”
and quadratic in vλ, we end up with an expression for vλ(η).
Therefore, we can acquire analytic expressions of the form
a(η) , vλ(η), thus reducing the problem to solving only one
nonlinear equation for η. The results can be conveniently
rewritten as

vλ = −B ± √
B2 − 4AC

2A
, a = a2v

2
λ + a1vλ + a0,

where for the quadratic coefficients we have

A =
(

1 + 1

2
η

)
a2 − cosh λ − 1

2γ λ2
+ 1

4γ
,

B =
(

1 + 1

2
η

)
a1 + 1 − e−λ

λ
+ λ

2
,

C =
(

1 + 1

2
η

)
a0 − γ e−λ,

while for the “a” coefficients we have

a0 = 1

1 − 8η − 2η2

[
1 + k2e−λ

λ

(
1 + 1

λ

)]
,

a1 = 24η

1 − 8η − 2η2

1

λ

[(
1 + 1

λ

)
e−λ

λ
− 1

λ2
+ 1

2
+ λ2

8

]
,

a2 = 12η

1 − 8η − 2η2

1

γ λ2

(
cosh λ − 1

λ2
− sinh λ

λ
+ 1

2
+ λ2

8

)
.

Despite these major simplifications, we point out the
remaining equation, one of Eqs. (7), is highly nonlinear in
η. This nonlinearity stems mostly from the λ(η) and γ (η)
dependencies. The solution of this equation will permit us to
find the packing fraction η for any given (�,κ) pair.

F. Solution of the nonlinear equation for the packing fraction

By inspecting the above equations, it is apparent that the
coefficients aj and thus the parameter “a” tend to infinity at
the roots ηc = −2 ± (3/2)

√
2 of the quadratic polynomial 1 −

8η − 2η2. Moreover, the positive root ηc = −2 + (3/2)
√

2 	
0.121 32 is a physically acceptable solution for η. As critical
coupling parameter �crit, we define the value of the coupling
parameter for which the packing fraction corresponds to
ηc. Owing to the simple pole at η = ηc, an exact relation
for �crit cannot be derived but its numerical value can be
approached with arbitrary precision. As will be explained later,
the importance of �crit lies in the fact that it provides a rule
that determines for which coupling parameters the quadratic
relation for vλ switches from the “+” to the “−” sign in front
of the discriminant.

For each screening parameter κ , there is a unique value of
�crit. For 0 � κ � 5, the corresponding values of �crit can be
found in Table I. In the same table, we quote the values of the
coupling parameter at the liquid-solid phase transition �melt as
found by molecular dynamics simulations [13–16]. The �melt

TABLE I. The coupling parameter at the melting point �melt as
found by molecular dynamics simulations for different κ [14–16]. The
critical coupling parameter �crit of the SMSA at the critical packing
fraction ηc.

κ �melt �crit

0.0 171.8 10.26786
0.2 173.5 10.36600
0.4 178.6 10.66366
0.6 187.1 11.1695
0.8 199.6 11.8984
1.0 217.4 12.8721
1.2 243.3 14.121
1.4 268.8 15.682
2.0 440.1 22.804
2.6 758.9 35.39
3.0 1185 48.61
3.6 2378 80.31
4.0 3837 113.7
4.6 8609 194.5
5.0 15060 279.2
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values will serve as the upper � limit in our calculations of
thermodynamic quantities.

Following, we present the most important constituents of
the systematic method we developed for the solution of the
nonlinear equation. (i) Consistency of the integral equation
solution. In the whole (�, κ) parameter space, use of any
of the nonlinear equations [see Eqs. (7)] leads to the same
η solution. In order to reduce the computation time, it is
preferable to use ϒ2

1 = a + Aλ due to its simplicity. (ii) The
packing fraction for � > �crit. Since η(�,κ) is a monotonically
increasing function of the coupling parameter, the physical
solution corresponds to η > ηc. It is found by employing
v−

λ , i.e., the vλ equation with the minus sign in front of the
discriminant, whereas, in this range, the v+

λ equation typically
leads to the unphysical solution ηc for η. Finally, note that the
numerical solution is nearly independent of the first guess ηin.
(iii) The packing fraction for � < �crit. The physical solution
corresponds to η < ηc. It is found by employing v+

λ , i.e., the
vλ equation with the plus sign in front of the discriminant,
whereas, in this range, the v−

λ equation typically leads to
unphysical complex solutions for η. For coupling parameters
corresponding to the liquid state, the numerical solution is
nearly independent of the first guess ηin. On the contrary,
for coupling parameters corresponding to the gaseous state,
the numerical solution depends on the first guess ηin. This
implies that multiple solutions exist in the acceptable interval
[0,1], the physical solution corresponds to the extremum of
the internal energy and always ensures that the monotonicity
of (η, vλ) with respect to � is preserved. (iv) The Coulomb
plasma case. In the κ → 0 limit, the quadratic expression for vλ

turns to linear, whereas all 1 − 8η − 2η2 denominators cancel
out. As a consequence, there is no sign-switching condition
to be determined by �crit and ηc no longer represents a pole.
Nevertheless, the �crit value is still provided in Table I since it
is essential for the determination of a fitted expression �crit(κ).
The Coulomb plasma limit will be examined separately in
Sec. V.

Employing the tabulated values, we can find a least-
square expression for �crit(κ). We use the notation
�crit(0) = �OCP

crit and seek for the best-fit parameters of the
expression

�crit(κ) = �OCP
crit

eκ

1 + bκ + (c/2)κ2
. (9)

This expression was chosen considering the expansion ex 	
1 + x + x2/2 + . . . due to the clustering of the results for
small κ around κ = 0. We end up with b = 1.339 42, c =
−0.179 331, and a mean absolute relative error er = 2.11 %.
The result is plotted in Fig 1. Surprisingly, �melt(κ) can be
shown to obey a similar functional dependence but with b′ =
1.206 71, c′ = −0.427 72, and e′

r = 4.96 %.
Finally, in Fig. 2 we plot η(�,κ). Notice that within

the range of parameters studied we always have η < 0.4 ,
i.e., the packing fraction is always smaller than the up-
per mathematical bound. Moreover, notice that for large
values of � close to the melting line the plots nearly
overlap.

0 1 2 3 4 5
0

50

100

150

200

250

κ

crit

FIG. 1. (Color online) Plot of the least-square fit for �crit(κ)
together with the numerical data of Table I.

III. CALCULATION OF REDUCED DISTRIBUTION
FUNCTIONS

A. Pair correlation function

The determination of the direct correlation function in the
whole range of x formally completes the solution of the
SMSA. This allows the computation of the pair correlation
function in the whole range. We first calculate the Laplace
transform of F (x) = xC0(x) . We rewrite the piecewise
function C(x) in terms of Heaviside step functions, i.e., C(x) =
C1(x)H(x − 1) + C2(x)H(1 − x), where C1(x) denotes the
upper branch and C2(x) the lower branch. This leads to
F (x) = x [C2(x) + βU (x)] [1 − H(x − 1)] and the Laplace
transform

F̃ (s) = −ηa

2

(
24

s5
−24e−s

s5
−24e−s

s4
− 12e−s

s3
− 4e−s

s2
− e−s

s

)

+ vλ

λ

(
−1

s
+e−s

s
−e−s−λ − 1

s + λ

)

+ v2
λ

2γ λ2

(
−1

s
+e−s

s
− e−s(s cosh λ+λ sinh λ)−s

s2 − λ2

)

5.0

1.0
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FIG. 2. (Color online) The packing fraction η as a function of
�/�melt, calculated with the SMSA. Results for different values of κ .
The lines switch from continuous to dashed at ηc, i.e., when the sign
in front of the discriminant of vλ switches. (The top curve corresponds
to κ = 5.0 and the bottom curve corresponds to κ = 1.0.)
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FIG. 3. (Color online) The pair correlation function g(r) for κ = 2.0 and varying values of � as a function of the distance normalized by
the hard-core diameter (r/Rh). See also Ref. [42]. (In the left column, the top curve corresponds to � = 50 and the bottom curve corresponds
to � = 0.6. In the right column, the top curve corresponds to � = 440 and the bottom curve corresponds to � = 70.)

−
(

v2
λ

4γ
+ λvλ

2

)(
2

s3
− 2e−s

s3
− 2e−s

s2
− e−s

s

)

− a

(
1

s2
− e−s

s2
− e−s

s

)
− γ

e−s−λ − 1

s + λ
. (10)

The Laplace transform of G(x) = xg(x) can now be found by
solving Eq. (4) for G̃(s):

G̃(s) = F̃ (s) + a
s2 − γ

s+λ
+ vλ

s2−λ2

1 + 12η

s
[F̃ (s) − F̃ (−s)] − k2

s2−λ2

. (11)

Finally, g(x) can be calculated by carrying out the inverse
Laplace transform

g(x) = 1

x
L−1{G̃(s)} = 1

2πıx

∫ γ+ı∞

γ−ı∞
esxG̃(s)ds . (12)

Unfortunately, a closed-form expression for Eq. (12) does
not exist. Therefore, a point-to-point Laplace inversion needs
to be carried out numerically. Owing to the complex nature
of the Bromwich contour, it is preferable to implement
specialized Laplace inversion algorithms rather than resort
to typical numerical integration routines. After trials with a

number of algorithms (Stehfest, Piessens, Crump methods,
etc.), the Durbin method [40,41] proved by far the most
successful, combining fast convergence with high accuracy in
the whole (κ,�) parameter space. Note that a reliable way to
check the efficiency of inversion comes from the hard-sphere
closure condition and the asymptotic behavior of the pair
correlation function of liquids. The density of the inversion
points was chosen to be equal to 1000 per one x unit, we also
have xin = 10−3 and �x = 10−3.

In Fig. 3 we plot the pair correlation function as a function of
the distance normalized by the hard-core diameter, for κ = 2.0
and varying values of � up to the melting point. See also
Ref. [42]. For all cases, the efficiency of the Laplace inversion
is apparent: there is no numerical noise, the condition g(r) = 0
for r < Rh is satisfied with high accuracy, and g(r) tends to
unity after a few hard-core diameters.

For the same parameters, in Fig. 4, we plot the pair
correlation function as a function of the distance normalized
by the cubic mean interparticle distance � = n

−1/3
d . See

also Ref. [42]. Such plots are preferred in strongly coupled
dusty plasmas experiments [43]. We notice the following:
(i) In the limit of vanishing coupling parameter, the hard-core
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FIG. 4. (Color online) The pair correlation function g(r) for κ = 2.0 and varying values of � as a function of the distance normalized by
the cubic mean interparticle distance (r/�). See also Ref. [42]. (In the left column, the top curve corresponds to � = 50 and the bottom curve
corresponds to � = 0.6. In the right column, the top curve corresponds to � = 440 and the bottom curve corresponds to � = 70.)
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diameter tends to zero and g(r) tends to unity in the whole
range, which is the classical non-interacting gas limit. (ii) For
low coupling parameters and as � increases, the hard-core
diameter rapidly increases and g(r) exhibits a clear nonlinear
Debye-Hückel plus correlation hole character. (iii) Further
increase of the coupling parameter leads to the formation
of a shallow global maximum. Moreover, oscillations start
to build up that are indicative of short-range order. (iv) For
larger coupling parameters, the oscillations become more
pronounced, namely, additional local maxima begin to shape,
while the first maximum remains the global one with its
amplitude slowly increasing. (v) For very large coupling
parameters up to the melting point, the hard-core diameter is
nearly constant and g(r) exhibits a rapidly decaying oscillation
pattern, a picture which persists also for � > �melt in the
supercooled liquid regime. (vi) Finally, for any � the position
of global maximum is located very close to the interparticle
distance r = �, always slightly exceeding it.

The behavior of g(r) with increasing � is similar regardless
of the value of κ . This has been confirmed by systematically
computing the pair correlation functions in the whole (κ,�)
parameter space. The observed similarity hints that for the
Yukawa-SMSA there probably exists a modified coupling
parameter whose value alone determines the pair correlation
function instead of the (�,κ) pair [44]. The task of identifica-
tion of such a parameter will be undertaken in future work.

B. Structure factor

The structure factor is defined by the relation S(k) = 1 +
nd

∫
[g(r) − 1] e−ık·rd3r = 1 + ndH̃ (k). Combining with the

three-dimensional Fourier transform of the OZ equation
H̃ (k) = C̃(k) + ndH̃ (k)C̃(k) and introducing the normalized
vector q = Rhk, it is straightforward to acquire

S(q) = 1

1 − ndC̃(q)
.

Employing spherical coordinates, carrying out the azimuthal
and polar integrations, and introducing dimensionless dis-
tances x, we end up with the expression

S(q) = 1

1 − (24η/q)
∫ ∞

0 xC(x) sin (qx)dx
. (13)

The structure factor can now be expressed via elementary
functions by substituting for the direct correlation function
[Eq. (8)] and carrying out the remaining integrations, which
are trivial. In Fig. 5, we plot the structure factor for κ = 2.0
and various values of �. Notice that the long-wavelength limit
of the structure factor S(0) = limq→0 S(q) is not zero and
depends on �. We will examine S(0) in more detail in the
next section, when calculating the inverse compressibility.

IV. CALCULATION OF THERMODYNAMIC QUANTITIES

The thermodynamic quantities of interest are the internal
energy (U ), the Helmholtz free energy (F ), the pressure (P ),
and the inverse isothermal compressibility (μT). Since it is
preferable to work with dimensionless intensive variables, we

20
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q

S q

FIG. 5. (Color online) The structure factor S(q) for κ = 2.0 and
varying values of � as a function of the normalized wave number
q = Rhk. (The top curve corresponds to � = 400 and the bottom
curve corresponds to � = 20.)

define the reduced counterparts of these quantities via

u = U

NT
, f = F

NT
, p = P

nT
, μp = μT

nT
.

Furthermore, it is convenient to define reduced excess quan-
tities by subtracting the ideal gas contribution, i.e., for a
thermodynamic quantity X we define its reduced excess
counterpart by xex = (X − Xid) /Xnorm.

We shall only focus on the aforementioned thermodynamic
quantities since we aim to perform a numerical study of the
thermodynamic consistency aspects of the SMSA. However,
we remind the reader that other intensive quantities such as
the reduced entropy (s), the specific heat capacities at constant
volume and constant pressure (cp, cv), or quantities such as
the high frequency bulk and shear modulus (B∞,G∞) can be
easily calculated through thermodynamic equations and pair
correlation functions, respectively [31,45].

A. Reduced excess internal energy due to dust-dust interactions

The reduced excess internal energy due to dust-dust inter-
actions is given by udd

ex = (1/2) βnd
∫

U (r)g(r)d3r . The intro-
duction of spherical coordinates, normalized distances, and the
Yukawa potential leads to udd

ex = (1/2) k2
∫ ∞

0 e−λxxg(x)dx =
(1/2) k2G̃(λ). Overall, we get

udd
ex(�,κ) = −vλ

2
. (14)

Since vλ is one of the unknowns of the SMSA system of
equations, udd

ex can be directly calculated without knowledge
of the pair distribution function.

Before proceeding to a comparison with the molecular
dynamics (MD) simulations of Hamaguchi et al. [13–16],
we need to consider the multicomponent nature of the
dusty plasma system in the same manner. Assuming the
validity of linear Debye-Hückel theory for electron-dust and
ion-dust interactions, we have gde(r) = 1 + eβφ(r) , gdi(r) =
1 − eβφ(r). As a consequence, the excess energy due to the
presence of dust can be decomposed in three terms ud

ex = udd
ex +

u
dp
ex + uds

ex, where udd
ex denotes the excess energy due to dust-dust

interactions, u
dp
ex = −(3/2)(�/κ2) the excess energy due to

dust interaction with the unperturbed quasineutral plasma
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FIG. 6. (Color online) The reduced excess internal energy due to
dust-dust interactions udd

ex normalized by the coupling parameter � as
a function of �/�melt , calculated with the SMSA. The data points
correspond to the MD results [14]. The vertical lines correspond to
� = �crit/�melt, in order to identify the sign switching of the closed-
form solution. Results for low κ .

background, and uds
ex = − (1/2) �κ the excess energy due to

dust interaction with the linear plasma sheath surrounding the
grains.

The MD results tabulated in Refs. [14–16] correspond to
ud

ex. Notice that udd
ex > 0, whereas u

dp
ex ,uds

ex ,ud
ex < 0, which

implies that the dust-plasma terms are always dominating
the dust-dust term. Therefore, only a comparison between
the udd

ex terms is meaningful. Such a comparison is carried
out in Figs. 6–8. The SMSA results exhibit a remarkable
agreement with MD simulations from the strongly screened
Yukawa regime up to the weakly screened Coulomb limit.

B. Reduced excess free energy due to dust-dust interactions

We begin with the Legendre transform definition of the
Helmholtz free energy F = U − T S, that in terms of reduced
quantities becomes f = u − s. Combining with the first order
thermodynamic equation for the entropy S = − (∂F/∂T )V,N
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FIG. 7. (Color online) The reduced excess internal energy due to
dust-dust interactions udd

ex normalized by the coupling parameter � as
a function of �/�melt , calculated with the SMSA. The data points
correspond to the MD results [14–16]. The vertical lines correspond to
� = �crit/�melt, in order to identify the sign switching of the closed-
form solution. Results for intermediate κ . (The top curve corresponds
to κ = 1.0 and the bottom curve corresponds to κ = 2.6.)
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FIG. 8. (Color online) The reduced excess internal energy due to
dust-dust interactions udd

ex normalized by the coupling parameter � as
a function of �/�melt , calculated with the SMSA. The data points
correspond to the MD results [16]. The vertical lines correspond to
� = �crit/�melt, in order to identify the sign switching of the closed-
form solution. Results for high κ . (The top curve corresponds to
κ = 3.0 and the bottom curve corresponds to κ = 5.0.)

it is straightforward to prove that u = −T (∂f/∂T )n. In-
troduction of the coupling parameter through the chain
rule together with ∂�/∂T = −�/T leads to the expression
uex = � (∂fex/∂�) with a dust-dust interaction part udd

ex =
�

(
∂f dd

ex /∂�
)
. Since f dd

ex (0,κ) = 0 by definition, the latter
becomes

f dd
ex (�,κ) =

∫ �

0

[
udd

ex(�′,κ)/�′]d�′ . (15)

The above formula is numerically implemented in the
following way: (i) Let �1 be the lowest coupling pa-
rameter for which the excess free energy is evaluated,
typically �1 = 10−4�melt. We choose �0 = 10−2�1 and
calculate f dd

ex (�,κ) = f dd
ex (�0,κ) + ∫ �

�0
[udd

ex(�′,κ)/�′]d�′ 	∫ �

�0
[udd

ex(�′,κ)/�′]d�′, which is a highly accurate approxima-
tion since f dd

ex (�,κ) > f dd
ex (�1,κ) � f dd

ex (�0,κ). (ii) Due to the
lack of a closed-form expression for udd

ex as a function of �, an
integrable interpolating function is constructed by piecewise
Hermite interpolation. The density of udd

ex(�i,κ) points is
chosen to be high, in order to ensure that the f dd

ex (�,κ) value
is independent of the interpolating polynomial employed. (iii)
The numerical integration is carried out with the Newton-
Cotes quadrature rule. Due to the polynomial nature of the
interpolation, all alternative integration algorithms that have
been tested, such as the trapezoidal rule or the Clenshaw-Curtis
quadrature, converged rapidly and yielded the same result.

It is important to compare the SMSA results with the
fitting formula suggested by Hamaguchi et al. [13–16] to
ensure that the very small deviations observed in the udd

ex
values do not propagate additively in the f dd

ex values owing
to the integration. Motivated by variational hard-sphere ap-
proaches, Hamaguchi et al. [14] suggested the fitting for-
mula ud

ex(�,κ) = a(κ)� + b(κ)�s + c(κ) + d(κ)�−s where
s = 1/3 and a(κ) = E(κ) + δa(κ) with E(κ) the reduced
Madelung energy. In order to avoid the divergence of the
free energy at � = 0, they employed f d

ex(�,κ) = f d
ex(1,κ) +∫ �

1 [ud
ex(�′,κ)/�′]d�′. Therefore, for the dust-dust part
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FIG. 9. (Color online) The reduced excess free energy due to
dust-dust interactions f dd

ex as a function of �/�melt as calculated
with the SMSA (solid line) and the Hamaguchi et al. fitting
expression (dashed line). The SMSA results for low κ are totally
indistinguishable from the MD results. (The top curve corresponds to
κ = 0.2 and the bottom curve corresponds to κ = 0.8.)

we acquire

f dd,MD
ex (�,κ) = f d

ex(1,κ) + a(κ)(� − 1) + b(κ)

s
(�s − 1)

+ c(κ) ln � + d(κ)

s
(1 − �−s) + 3

2

�

κ2
+ 1

2
�κ .

For k � 1, the coefficients a(κ) ,b(κ) ,c(κ) ,d(κ) are least-
square fitted by even quartic polynomials and the coefficient
E(κ) is fitted by an even sixth order polynomial [15]. For
k > 1, there exist no fitted expressions and the coefficient
values are tabulated for each κ [16]. [Alternative polynomial
fits for k � 1 have been proposed in Ref. [14]. We point out
that there are misprints in some polynomial coefficients of b(κ)
and d(κ): their sign is negative while it should be positive.]

The SMSA results for f dd
ex are presented in Figs. 9–11. They

are totally indistinguishable from the MD fitting expressions
for low and intermediate screening parameters. As κ > 3 some
very small deviations appear; these deviations seem to be
slowly increasing with κ .
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FIG. 10. (Color online) The reduced excess free energy due to
dust-dust interactions f dd

ex as a function of �/�melt as calculated with
the SMSA (solid line) and the Hamaguchi et al. fitting expression
(dashed line). The SMSA results for intermediate κ are totally
indistinguishable from the MD results. (The top curve corresponds to
κ = 1.0 and the bottom curve corresponds to κ = 2.6.)
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FIG. 11. (Color online) The reduced excess free energy due to
dust-dust interactions f dd

ex as a function of �/�melt as calculated
with the SMSA (solid line) and the Hamaguchi et al. fitting
expression (dashed line). The SMSA results for high κ are practically
indistinguishable from the MD results. (The top curve corresponds to
κ = 3.0 and the bottom curve corresponds to κ = 5.0.)

C. Reduced excess pressure due to dust-dust interactions

In the energy route to the equation of state, the starting point
is the first order thermodynamic equation for the pressure P =
− (∂F/∂V )T ,N . In terms of reduced excess quantities, this
expression can be rewritten as pex = n (∂fex/∂n). We change
to our dimensionless variables by using n (∂κ/∂n) = −κ/3
and n (∂�/∂n) = �/3. We also use Eq. (15) to end up with

pdd
ex (�,κ) = −κ

3

∂f dd
ex (�,κ)

∂κ
+ udd

ex(�,κ)

3
. (16)

Numerical calculation involves the computation of the first
derivative of f dd

ex with respect to κ . As demonstrated in the
previous subsection, we can use the MD fitting function for
f dd

ex (�,κ). However, the latter has a closed form with respect
to κ only for κ � 1. We shall restrict ourselves to this range,
when plotting results for the energy route equation of state.

In the virial route to the equation of state, the starting point is
the virial expression. The reduced excess dust-dust interaction
part reads as pdd

ex (�,κ) = −(1/6)βnd
∫

r (dU/dr) g(r)d3r .
Substituting for the interaction energy U (r) and em-
ploying x = r/Rh we have pdd

ex (�,κ) = (k2/6)
∫ ∞

0 [xe−λx +
λx2e−λx]g(x)dx. To further simplify this expression, it is
useful to recall that for liquids the asymptotic value of
the total correlation function h(x) = g(x) − 1 is zero, i.e.,
limx→∞ h(x) = 0. In the case of Yukawa interactions with
0 � κ � 5, h(x) drops to zero very rapidly, which implies that
the integral can be evaluated in a relatively small integration
range x ∈ [0,x0]. Numerical results indicate that for liquids
with �/�melt ∈ [10−4,1], we have x0 < 8. On the other hand,
for gases with �/�melt < 10−4, x0 can attain much larger
values due to the smallness of the hard-core diameter. Overall,
we have

pdd
ex (�,κ) = k2

6

∫ x0

0
[x + λx2]e−λxh(x)dx + k2

2λ2
. (17)

The above formula is numerically implemented in the follow-
ing way: (i) Since no closed-form expression exists for g(x), an
integrable interpolating function is constructed by piecewise
Hermite interpolation. Within our working precision, spline
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FIG. 12. (Color online) The reduced excess pressure due to dust-
dust interactions pdd

ex as a function of �/�melt calculated from the
virial route (solid line) and the energy route (dashed line), with the
SMSA. Results for low κ . The curves are indistinguishable. (The top
curve corresponds to κ = 0.2 and the bottom curve corresponds to
κ = 1.0.)

interpolation leads to exactly the same values for pdd
ex (�,κ) for

all the cases considered, thus, ensuring a sufficient density of
g(xi) points. (ii) The numerical integration is carried out with
the Newton-Cotes quadrature rule.

In the compressibility route to the equation of state,
the statistical mechanics formula for the inverse isothermal
compressibility is integrated with respect to the density to
yield the pressure. In order to avoid a tedious integration over
the dimensionless variables (�,κ), it is preferable to compare
the isothermal compressibilities as resulting from the different
thermodynamic routes since their calculation involves only
differentiations. Such a task is carried out in the following
subsection.

In Fig. 12 we plot pdd
ex from the “energy” and the

“virial” route. For arbitrary stable soft potentials, it has been
theoretically demonstrated that forcing the g(r) continuity
condition in the mean spherical approximation leads to
thermodynamic consistency between the virial and energy
equations of state [32]. This is confirmed in our numerical
results for Yukawa interactions, where the two curves are
indistinguishable for κ � 1. Such a comparison also serves as
an internal consistency check and verifies that our numerical
routines possess the desired accuracy. The virial equation of
state for larger screening parameters can be found in Figs. 13
and 14.

Finally, the reduced excess pressure due to the presence of
dust pd

ex = pdd
ex + p

dp
ex + pds

ex can be rewritten as pd
ex = pdd

ex −
(3/2)(�/κ2) since p

dp
ex = −(3/2)(�/κ2) and since, from the

energy route, pds
ex = 0. The overall attractive interaction of dust

with the plasma background is stronger in the whole parameter
range and hence the quantity pd

ex will always be negative.

D. Reduced excess inverse isothermal compressibility due to
dust-dust interactions

In the energy route to the compressibility, we begin
with the thermodynamic definition of the inverse isother-
mal compressibility μT = −V (∂P/∂V )T ,N or, equivalently,
μT = n(∂P/∂n)T . We denote the reduced inverse isothermal
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FIG. 13. (Color online) The reduced excess pressure due to dust-
dust interactions pdd

ex as a function of �/�melt calculated from the
virial route, with the SMSA. Results for intermediate κ . (The top
curve corresponds to κ = 1.0 and the bottom curve corresponds to
κ = 2.6.)

compressibility as μp. Clearly, we have μp = (1/T )(∂P/∂n)T
and a dust-dust interaction part given by μdd

p = pdd
ex +

n(∂pdd
ex /∂n)T . Using Eqs. (15) and (16), utilizing the Schwarz

theorem of commutative partial derivatives, and employing the
relations n(∂κ/∂n) = −κ/3 and n(∂�/∂n) = �/3, we end up
with

μdd
p (�,κ) = udd

ex(�,κ)

3
− 2κ

9

∂f dd
ex (�,κ)

∂κ
+ κ2

9

∂2f dd
ex (�,κ)

∂κ2

− 2κ

9

∂udd
ex(�,κ)

∂κ
+ �

9

∂udd
ex(�,κ)

∂�
. (18)

In the statistical route to the compressibility, we start with
the well-known formula T (∂n/∂P )T = 1 + n

∫
h(r)d3r .

From the definition of the structure factor and the Fourier
transform of the OZ equation, the formula can be rewrit-
ten as μp = 1/[1 + nd

∫
h(r)d3r] = 1/S(0) = 1 − ndC̃(0).

Employing Eq. (13), taking the long-wavelength limit
and using limq→0 [sin (qx)/q] = x, we have μp = 1 −
24η

∫ ∞
0 x2C(x)dx = a. In the ideal gas limit, we have h(x) =

0, which leads to μp = 1. Therefore, the above expression
incorporates the ideal gas contribution, and subtracting it
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FIG. 14. (Color online) The reduced excess pressure due to dust-
dust interactions pdd

ex as a function of �/�melt calculated from the virial
route, with the SMSA. Results for high κ . (The top curve corresponds
to κ = 3.0 and the bottom curve corresponds to κ = 5.0.)
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FIG. 15. (Color online) The reduced excess inverse isothermal
compressibility μdd

p (�,κ) as a function of �/�melt calculated from
the statistical route (solid line) and the energy route (dashed line),
with the SMSA. Results for low κ . The curves are practically
indistinguishable. (The top curve corresponds to κ = 0.2 and the
bottom curve corresponds to κ = 1.0.)

we get

μdd
p (�,κ) = a − 1 . (19)

Notice that since “a” is one of the unknowns of the SMSA
system of equations, μdd

p can be directly calculated without
knowledge of the direct correlation function.

In Fig. 15, we plot μdd
p from the energy and the statistical

route. It is clear that the two curves are practically indistin-
guishable for Yukawa interactions in the range κ � 1. We point
out that such a thermodynamic consistency is not valid for any
stable soft potential treated within the SMSA. Therefore, it
can be considered as a peculiarity of the Yukawa potential in
the range of κ studied. In Figs. 16 and 17, results for μdd

p that
correspond to larger screening parameters are plotted (derived
from the statistical route only).

Summing up, we have numerically demonstrated the
approximate equivalence of the “energy,” “virial,” and “com-
pressibility” routes to thermodynamics for the soft mean spher-
ical approximation in the case of Yukawa interactions. Triple
thermodynamic consistency is a highly desirable property that
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FIG. 16. (Color online) The reduced excess inverse isothermal
compressibility μdd

p (�,κ) as a function of �/�melt calculated from
the statistical route with the SMSA. Results for intermediate κ . (The
top curve corresponds to κ = 1.2 and the bottom curve corresponds
to κ = 2.6.)
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FIG. 17. (Color online) The reduced excess inverse isothermal
compressibility μdd

p (�,κ) as a function of �/�melt calculated from
the statistical route with the SMSA. Results for high κ . (The top
curve corresponds to κ = 3.0 and the bottom curve corresponds to
κ = 5.0.)

rarely occurs in integral equation approximations of the liquid
state theory. In fact, the results obtained via the three routes are
typically different and they sometimes exhibit large variations
[28].

V. CALCULATION OF THE COULOMB PLASMA LIMIT

Coulomb plasmas correspond to the κ = 0 limit of Yukawa
plasmas. These systems are also known as one-component
plasmas. Formally, they are defined as systems containing a
single species of point charges embedded in a rigid, uniform
background of neutralizing charges. Since the background
remains uniform, there is no sheath formation around the
point charges and the interaction potential is of the unscreened
Coulomb type. Such systems have been thoroughly studied
in the literature [31,46], hence, it is worth analyzing them
also with the SMSA. Instead of solving the OZ system for
the Coulomb potential, it is preferable to apply the limit of
infinite screening length (λ → 0) to the results of the previous
sections. The limiting procedure is not straightforward; one has
to deal with a number of removable divergencies that arise.

A. Direct correlation function

The direct correlation function in the Coulomb limit can
be calculated from Eq. (8) by successive Taylor expansions
with respect to the infinitesimally small parameter λ. First, we
need to expand the coefficients a0, a1, a2, A,B,C. In order to
retain the necessary number of terms in the series expansions,
it is useful to keep in mind that vλ is divergent with vλ ∝ λ−2:

a2 = − η

1 − 8η − 2η2

λ2

12γ

(
1 + λ2

40

)
,

a1 = 8η

1 − 8η − 2η2

(
1 + λ2

10

)
,

a0 = 1

1 − 8η − 2η2

k2

λ2

(
1 + λ2

k2
− λ2

2

)
,
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A = − 1 − 4η

1 − 8η − 2η2

λ2

48γ
− 2 − 10η − η2

1 − 8η − 2η2

λ4

2880γ
,

B = 1 + 2η2

1 − 8η − 2η2
+ 5 − 16η + 2η2

1 − 8η − 2η2

λ2

30
,

C = 1 + 1
2η

1 − 8η − 2η2

k2

λ2
+ 1 − γ + 1

2η − 4ηγ − 4η2γ

1 − 8η − 2η2
.

The parameter vλ corresponds to the solution of a quadratic
equation Av2

λ + Bvλ + C = 0, the ± sign in front of the
discriminant adds a degree of ambiguity to our limiting proce-
dure. Moreover, for λ → 0 we have A → 0 and the quadratic
equation turns into a linear equation. We recall that when
B > 0 the linear equation solution −C/B is recovered from
the plus sign quadratic solution, and when B < 0 the linear
equation solution −C/B is recovered from the minus sign
quadratic solution. In both cases, we have the same factorized
form vλ = −(B/2A)[1 − (1 − 4AC/B2)1/2]. Therefore, we
shall only consider the λ → 0 limit of this expression and
disregard the vλ = −(B/2A)[1 + (1 − 4AC/B2)1/2] solution.
After some tedious algebra, we end up with

vλ = − k2

λ2
− D,

D =
(
1 + 1

2η
)

(1 − η)(2η + 1)
− (5 + 45η + 3η2 + η3)

(2η + 1)

γ

5
.

Notice that all denominators of the form 1 − 8η − 2η2 cancel
out; this implies that ηc will not play any role in our solutions
in contrast to the Yukawa case. For our convenience we also
introduce the parameters F = −a − vλ and G = F + D:

F = −1

2

η

(1 − η)(2η + 1)
− (5 + 25η + 7η2 − η3)

(2η + 1)

γ

5
,

G = 1

(1 − η)(2η + 1)
− 2γ

1 + 7η + η2

2η + 1
.

We are now in the position to calculate the λ → 0 limit of
the direct correlation function C(x) for x � 1. A large number
of divergencies cancel out and we end up with

C(x) = −γ

x
, x � 1

(20)
C(x) = F + 1

6k2x2 + 1
2ηGx3 + 1

60ηk2x5, x � 1.

In order to complete the solution we also need to calculate
the λ → 0 limit of the system of equations [see Eq. (7)]. It is
straightforward to acquire

ϒ2
1 + G = 0 , 2ϒ1ϒ3 − ϒ2

2 + k2 = 0,
(21)

2ϒ1ϒ5 − 2ϒ2ϒ4 + ϒ2
3 = 0.

B. Pair correlation function and the structure factor

The quantity F̃ (s) can be determined either by Laplace
transforming Eq. (20) or by taking the λ → 0 limit of Eq. (10)
since the Laplace operator can be interchanged with the limit

operator. We have

F̃ (s) =
(

γ

s
+ F

s2
+ k2

s4
+ 12ηG

s5
+ 12ηk2

s7

)

−
(

γ + F + 1

6
k2 + 1

2
ηG + 1

60
ηk2

)
e−s

s

−
(

F + 1

2
k2 + 2ηG + 1

10
ηk2

)
e−s

s2

−
(

k2 + 6ηG + 1

2
ηk2

)
e−s

s3

− (k2 + 12ηG+2ηk2)
e−s

s4

− (12ηG + 6ηk2)
e−s

s5
− 12ηk2 e−s

s6
− 12ηk2 e−s

s7
.

(22)

We continue with the λ → 0 limit of Eq. (11) which yields

G̃(s) = F̃ (s) − γ

s
− F

s2

1 + 12η

s
[F̃ (s) − F̃ (−s)] − k2

s2

. (23)

We can now calculate the pair correlation function after
inverting the Laplace transform.

Surprisingly, for κ = 0, Laplace inversion of G̃(s) with the
Durbin method does not yield satisfactory results. We shall fol-
low an alternative approach based on Fourier inversion of the
structure factor. The S(q) expression is acquired by combining
Eq. (13) with (20) . Extra caution should be taken in the calcu-
lation of the quantity

∫ +∞
1 C1(x) sin (qx) because in this case

the λ → 0 operator cannot be interchanged with the improper
integral operator. Consequently, the integral

∫ ∞
1 γ sin (qx)dx

does not converge, whereas limλ→0
∫ ∞

1 γ e−λx sin (qx)dx =
γ e−λ(q cos q + λ sin q)/(q2 + λ2) = γ (cos q/q). Overall, we
have

S−1(q) = 1 − 24ηF

q
I1 − 4ηk2

q
I3 − 12η2G

q
I4

− 2η2k2

5q
I6 + k2 cos q

q2
, (24)

where we introduced the notation In = ∫ 1
0 xn sin (qx)dx.

These integrals can be computed via the recursive relation
In = [(n sin q − q cos q)/q2] − [n(n − 1)/q2]In−2 with initial
value I0 = (1 − cos q) /q.

We can now invert the three-dimensional Fourier transform
that defines the structure factor. After employing spherical
coordinates and carrying out the angular integrations, we end
up with

g(x) = 1 + 1

12ηπ

1

x

∫ ∞

0
q[S(q) − 1] sin (qx)dq. (25)

This integral cannot be analytically evaluated and we have
to proceed with numerical integration. However, we are
encountering a rapidly oscillatory integrand in an infinite
integration region. As a consequence, typical integration
strategies do not yield realistic results. We employ a variant of
the Levin collocation method [47] which proved to converge
rapidly for all values of the coupling parameter. Plots of the
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FIG. 18. (Color online) The pair correlation function g(r) for Coulomb interactions and varying values of � as a function of the distance
normalized by the hard-core diameter (r/Rh). See also Ref. [42]. (In the left column, the top curve corresponds to � = 10 and the bottom curve
corresponds to � = 0.2. In the right column, the top curve corresponds to � = 171.8 and the bottom curve corresponds to � = 14.)

g(r) as a function of r/Rh and r/� for various values of � can
be found in Figs. 18 and 19, respectively. See also Ref. [42].

C. Reduced excess internal energy due to the presence of dust

Combining vλ = −(k2/λ2) − D with Eq. (14), we end up
with the expression udd

ex = D/2 + (k2)/(2λ2) for the reduced
excess internal energy due to dust-dust interactions, which
tends to infinity. We notice that k2/2λ2 = (3/2)(�/κ2). Hence,
the divergence is canceled out exactly by the dust interaction
with the plasma background u

dp
ex = −(3/2)(�/κ2). There is no

sheath interaction term for a Coulomb plasma and the reduced
excess internal energy due to the presence of dust is given by
ud

ex = D/2 or, equivalently,

ud
ex(�) = 1 + 1

2η

(1 − η)(4η + 2)
− 5 + 45η + 3η2 + η3

(2η + 1)

γ

10
. (26)

Hamaguchi et al. have also carried out MD simulations for
Coulomb plasmas [14]. In Fig. 20, we plot both results. Once
again, the SMSA remarkably agrees with the MD simulations.

VI. DISCUSSION

A. On the existence of physically acceptable
hard-core diameters

Does the continuity condition of the SMSA guarantee the
existence of a single physical solution for the packing fraction?
Unfortunately, there is no guarantee that complementing the
MSA closure conditions with the continuity condition will
yield a physically acceptable solution for the packing fraction
[32]. Moreover, there is the possibility that multiple physical
solutions exist; in such a case, an additional criterion needs
to be formulated for singling out one solution. Recall that we
have encountered such a case for the Yukawa potential when
� � 1. We also point out that there is no way of postulating
a general criterion to be satisfied by arbitrary stable soft-core
potentials for a physical packing fraction to emerge.

It has been rigorously proved by Rosenfeld [48] that the
continuity condition is equivalent to an extremum condition
for the excess internal energy when regarded as a function
of the packing fraction. This had earlier been numerically
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FIG. 19. (Color online) The pair correlation function g(r) for Coulomb interactions and varying values of � as a function of the distance
normalized by the cubic mean interparticle distance (r/�). See also Ref. [42]. (In the left column, the top curve corresponds to � = 10 and
the bottom curve corresponds to � = 0.6. In the right column, the top curve corresponds to � = 171.8 and the bottom curve corresponds to
� = 14.)
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FIG. 20. (Color online) The reduced excess internal energy due
to the presence of dust ud

ex normalized by the coupling parameter �

as a function of �/�melt, as calculated with the SMSA for a Coulomb
plasma. The data points correspond to the MD results [14].

observed for Coulomb plasmas [19,49]. This is not a global
extremum condition, therefore, the possibility of no extremum
or multiple local extrema cannot be excluded.

As an example, let us consider a bi-Yukawa potential
with an attractive tail, which in dimensionless coordinates
has the general form βU (x) = (γ /x)(e−λ x − σe−μ x) with
λ � μ and 0 < σ � 1. The solution of the MSA for such
a potential has been derived in Ref. [39]. Complementing
the MSA with the continuity equation, we end up with four
unknowns (η, a, vλ, vμ) that satisfy four equations. Ultimately,
this system can be transformed in a system of three nonlinear
equations for (η, vλ, vμ). We have attempted to solve the
system, but physically acceptable solutions cannot be found
for η in the whole range of σ values.

B. On the level of accuracy of the SMSA

In Secs. IV and V, we showed that the SMSA solution
leads to an accurate calculation of thermodynamic quantities.
A pertinent question that arises concerns whether the level of
SMSA accuracy is sufficient enough to provide reasonable
results for �melt. A rigorous answer to this question is
formidable since it requires free energy calculations not only
from the liquid side of the phase transition, but also from the
solid side.

The answer can be sought in a less strict manner by
computing the values of common freezing indicators for
the SMSA at the exact values of �melt, as calculated by
Hamaguchi et al. [13–16]. Freezing indicators are quantitative
phenomenological criteria for estimating the liquid-solid phase
transition point and can be based on numerical simulations,
experimental results, or theoretical extrapolations [50–53].
They refer to specific patterns in quantities such as the
structure factor [54], the pair correlation function [55], the
bridge function [56], or the multiparticle excess entropy [57]
that remain nearly invariant along the liquid-solid coexistence
curve. We point out that these criteria are approximate and
there should be some skepticism concerning the existence of
melting-line invariants that consider only one of the phases
[58]. An extensive discussion on such criteria in the context of
Yukawa dusty plasmas can be found in Ref. [59].

TABLE II. The values of the Hansen-Verlet freezing indicator
Smax and the Raveché-Mountain-Streett freezing indicator R =
min g(r)/ max g(r) calculated with the SMSA structure factors and
correlation functions at the exact values of �melt.

κ Smax R

0.0 2.3776 0.3400
0.2 2.3774 0.3402
0.4 2.3765 0.3399
0.6 2.3735 0.3397
0.8 2.3697 0.3393
1.0 2.3685 0.3382
1.2 2.3773 0.3353
1.4 2.3569 0.3371
2.0 2.3858 0.3234
2.6 2.3949 0.3180
3.0 2.4246 0.3086
3.6 2.4432 0.2987
4.0 2.4414 0.2946
4.6 2.4921 0.2806
5.0 2.5275 0.2715

The Hansen-Verlet freezing rule [54] is widely employed
in the literature and is generally considered to be a robust
freezing indicator, despite the fact that it originated from
Monte Carlo simulations of Lennard-Jones fluids. It is based
on the oscillating behavior of the structure factor near the
liquid-solid phase transition and states that a three-dimensional
liquid freezes when the first maximum of S(k) exceeds 2.85.
Note that, for any constant screening parameter, Smax(�) is a
monotonically increasing function. In Table II, we give the
values of the SMSA Smax at the exact values of �melt. We have
Smax < 2.85 for all κ .

The Raveché-Mountain-Streett freezing rule [55] is another
freezing indicator that was proposed on the basis of Monte
Carlo results for classical Lennard-Jones fluids. It is based on
the oscillating behavior of the pair correlation function near the
liquid-solid phase transition and states that a three-dimensional
liquid freezes where the amplitude ratio of the first nonzero
minimum to the first maximum of g(r) becomes less than
0.2. Note that, for any constant screening parameter, R(�) =
min g(r)/ max g(r) is a monotonically decreasing function. In
Table II, we give the values of the SMSA ratio R at the exact
values of �melt. We have R > 0.2 for all κ .

Taking into account the results of Table II, we conclude
that the SMSA complies with these freezing criteria for values
of the coupling parameter much higher than the actual �melt

(see also Table III). This unsatisfactory performance indicates
that, despite its remarkable agreement with MD results and
thermodynamic consistency, the SMSA does not possess
the high accuracy required for the description of extremely
sensitive phenomena such as liquid-solid phase transitions.

C. On the application of advanced integral equation
approaches to Yukawa systems

It is worth comparing the SMSA approach with other
integral equation approaches. In particular, the hypernetted
chain approach [60] but also some of its advanced variants have
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TABLE III. The coupling parameter at the melting point as
found by molecular dynamics simulations and as found by applying
the Hansen-Verlet freezing indicator to the SMSA, i.e., �SMSA

melt =
arg� {Smax(�) = 2.85}.

κ �melt �SMSA
melt

0.0 171.8 256.1
0.2 173.5 258.7
0.4 178.6 266.6
0.6 187.1 280.2
0.8 199.6 300.1
1.0 217.4 327.4
1.2 243.3 363.5
1.4 268.8 410.3
2.0 440.1 644.1
2.6 758.9 1129
3.0 1185 1721
3.6 2378 3426
4.0 3837 5584
4.6 8609 12030
5.0 15060 20438

been successfully applied to one-component Yukawa systems.
Let us discuss these advanced approaches in further detail.

The empirically modified hypernetted chain approach,
EMHNC, assumes an empirical bridge function of the form
B(r) = BOCP(�,r)f (κ), where BOCP(�,r) is the OCP bridge
function as extracted from Monte Carlo simulations of one-
component plasmas [61] and f (κ) = exp (−κ2/4) quantifies
the effect of screening as determined through trial and error
comparisons with molecular dynamics simulations of Yukawa
plasmas [62]. Since the analytical form of the bridge function
is prescribed, the EMHNC approach has the same numerical
complexity with the HNC approach. It has been demonstrated
[62] that the EMHNC solution for Yukawa systems possesses
nearly exact thermodynamic consistency, exhibits excellent
agreement with the MD results of Hamaguchi et al. and leads to
calculated pair correlation functions nearly indistinguishable
from the MD simulation results.

The variational modified hypernetted chain approach,
VMHNC, is based on the hypothesis of approximate univer-
sality of the bridge functions, irrespective of the pair-potential
[63–65]. It employs the analytical hard-sphere Percus-Yevick
bridge function BHS

PY (r,η) with the value of the packing
fraction determined by minimizing an appropriate free energy
functional. Owing to this optimization procedure, the VMHNC
approach exhibits exact consistency between the “energy”-
“virial” thermodynamic routes and ensures that the “energy”-
“compressibility” consistency is obeyed to a high degree of
accuracy [66]. In contrast to the EMHNC approach, it is an
entirely first-principles approach avoiding any fine tuning with
the aid of simulation data. However, since the determination
of ηopt can only be carried out iteratively, the computational
load severely increases. It has been demonstrated [67] that
the VMHNC solution for Yukawa systems is characterized by
nearly exact thermodynamic consistency, excellent agreement
with MD simulations and a strong performance with respect
to the Hansen-Verlet freezing rule (Smax 	 3.05 ) and other

freezing indicators. It should be pointed out, though, that,
due to the high nonlinearity of the coupled set of equations
involved, the iterative scheme does not converge rapidly and
stably in the whole (�,κ) parameter range [67].

The EMHNC and VMHNC approaches are expected to
be more accurate than the SMSA, especially concerning
calculations of the pair correlation function. However, orig-
inating from the hypernetted chain approach, they cannot be
solved analytically. The analytically solvable SMSA can, thus,
be considered optimal for fast and reliable calculations of
thermodynamic quantities.

D. On realistic pair potentials for dusty plasmas

Our idealized model of the dusty plasma system assumes
pointlike grains, interaction via a single Yukawa pair potential,
screening provided only by the plasma particles and weakly
coupled plasma species. These assumptions are not strictly
valid for dusty plasmas. (i) Dust grains are not pointlike and
possess an actual hard-core diameter. Our SMSA solution
holds only when the effective hard-core diameter is larger
than the grain diameter, i.e., when Rh > 2a. (ii) Owing to
strong ion-dust coupling, in the closest vicinity of the grain
(for distances shorter than the nonlinear radius Rnl) screening
is nonlinear in character and the electrostatic potential can
deviate from the simple Yukawa form [68,69]. Therefore, the
present form of the SMSA is only valid when the nonlinear
region is incorporated within the hard-core diameter. This leads
to the condition Rh > 2Rnl. (iii) Within dense dust clouds,
physical processes such as plasma absorption, dust charge
fluctuations, and collisions with neutrals become collective in
character and significantly alter the polarization cloud around
each dust grain. These phenomena typically introduce a second
characteristic length scale in the interactions that is larger than
the Debye length: it leads to electrostatic potentials of the
bi-Yukawa type [70–74]. (iv) Dust grains are not only screened
by the plasma, but also participate in the shielding process;
this implies that the screening length(s) will also depend on
the coupling parameter. Equivalently, from a hydrodynamic
test particle theory point of view, dust density perturbations
have been shown to play an important role in determining the
screening length(s) of the electrostatic potential, but not its
functional form [75]. (v) For very large coupling parameters,
it is inevitable that both ions and electrons are strongly coupled
in their interactions with the dust grains. As a consequence,
ged(r) and gid(r) will not be of the Debye-Hückel type and
could have an important effect on the dust-dust pair correlation
function. This can only be tackled by considering the system
of three OZ equations (still neglecting the three “pure plasma”
OZ components).

Such an ideal picture of dusty plasmas was adopted in the
numerical experiments of Hamaguchi et al. We follow these
assumptions in order to perform a detailed comparison with
MD results. Having demonstrated the remarkable agreement
of the SMSA with MD, we can now reasonably assume that
the SMSA solution is accurate for more realistic dusty plasma
models, for which no numerical simulations exist. This shall
be the subject of future work.
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E. On experimental results for the pair correlation function

It is a well-known fact that ground experiments dedicated
on strongly coupled dusty plasmas are characterized by a high
degree of inhomogeneity and anisotropy, owing to the action of
gravity and the strong electric fields necessary to compensate
for it. On the other hand, under microgravity conditions,
three-dimensional quasi-isotropic dusty plasmas can form. In
principle, such experiments are ideal for direct measurements
of the pair correlation function by analyzing the grain motion
as recorded by CCD cameras. Microgravity investigations
of the structural properties of dusty plasma liquids have
been carried out in the ISS with the rf discharge Plasma
Kristall Experiment-3 (PK-3) [43,76,77]. In these works, pair
correlation functions were constructed from measurements.

The analysis of such experimental results is very chal-
lenging. In the rf discharge, an ellipsoidal void is formed
in the center and dust grains are confined in its exterior
regions. In these regions, the dust component can only be
considered homogeneous within a few interparticle distances.
Consequently, g(r) only makes sense up to r = 3� [76].
Moreover, there are uncertainties in the determination of the
Debye length and the dust charge, which lead to uncertainties
in the calculation of (�, κ). Thus, a straightforward comparison
with theory is a complicated issue.

Hopefully, the advanced particle manipulation capabilities
of the combined dc/rf discharge Plasma Kristall Experiment-4
(PK-4) will lead to more extended homogeneous dusty plasma
liquid regions [9,78,79]. The PK-4 launch for the ISS is
scheduled for the end of October 2014 and the first experiments
will be carried out in the beginning of 2015. Study of the
thermodynamics and structure of dusty plasma liquids is listed
as one of the prioritized basic experiments.

VII. SUMMARY AND CONCLUSIONS

In this work, we employed the soft mean spherical approxi-
mation in order to investigate the structure and thermodynam-
ics of dusty plasma liquids under conditions when they can
be considered as one-component Yukawa systems. Here, we
shall briefly summarize the basic advantages of the SMSA
application for Yukawa systems together with some of our
main results.

(1) Analytic solvability. For exponential-type screening
functions, the Ornstein-Zernike equation can be analytically

solved within the SMSA closure conditions either with the
Baxter or the Wertheim factorization techniques. For Yukawa
systems, we have shown that the problem reduces to solving
a 3×3 system of equations for the unknowns (a, vλ, η). This
system can be recast into a single nonlinear equation for the
packing fraction, for the solution of which a systematic method
has been developed.

(2) Straightforward calculation of thermodynamic quanti-
ties. Both the reduced excess internal energy and the reduced
excess inverse isothermal compressibility are simple algebraic
functions of the (a ,vλ) unknowns. Therefore, they can be
readily calculated without the need to determine the pair
correlation function or the structure factor.

(3) Fast and accurate numerical calculation of the pair
correlation function. Rapidly converging and precise numeri-
cal techniques have been employed for a reliable calculation of
the pair correlation function either by direct Laplace inversion
or by Fourier inversion of the structure factor.

(4) Triple thermodynamic consistency. The SMSA “virial”
and “energy” equations of state are identical, as theoretically
proven in Ref. [32] for arbitrary stable pair potentials and
numerically demonstrated here for Yukawa pair potentials.
The SMSA “compressibility” equation of state has also been
numerically demonstrated to be nearly identical to the other
thermodynamic paths. This approximate triple thermodynamic
consistency arises naturally without the need to artificially
introduce additional parameters enforcing consistency.

(5) Remarkable agreement with molecular dynamics sim-
ulations. Comparison of the SMSA excess internal energy
results with recent extensive molecular dynamics results,
revealed a remarkable agreement in the whole (�,κ) parameter
space, from the Coulomb plasma limit (κ = 0) to the strongly
screened Yukawa limit (κ = 5).

In conclusion, we have demonstrated that the soft mean
spherical approximation uniquely combines simplicity and
accuracy. Consequently, it is the proper integral equation
theory not only for an extensive investigation of the parameter
space of the Yukawa potential, but also for application to more
realistic strongly coupled dusty plasma models, for which no
numerical simulations for comparison exist.
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