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Control of flow around a circular cylinder for minimizing energy dissipation
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Control of flow around a circular cylinder is studied numerically aiming at minimization of the energy
dissipation. First, we derive a mathematical relationship (i.e., identity) between the energy dissipation in an
infinitely large volume and the surface quantities, so that the cost function can be expressed by the surface
quantities only. Subsequently a control law to minimize the energy dissipation is derived by using the suboptimal
control procedure [J. Fluid Mech. 401, 123 (1999)]. The performance of the present suboptimal control law
is evaluated by a parametric study by varying the value of the arbitrary parameter contained. Two Reynolds
numbers, Re = 100 and 1000, are investigated by two-dimensional simulations. Although no improvement is
obtained at Re = 100, the present suboptimal control shows better results at Re = 1000 than the suboptimal
controls previously proposed. With the present suboptimal control, the dissipation and the drag are reduced by
58% and 44% as compared to the uncontrolled case, respectively. The suction around the front stagnation point
and the blowing in the rear half are found to be weakened as compared to those in the previous suboptimal control
targeting at pressure drag reduction. A predetermined control based on the control input profile obtained by the
suboptimal control is also performed. The energy dissipation and the drag are found to be reduced as much as
those in the present suboptimal control. It is also found that the present suboptimal and predetermined controls
have better energy efficiencies than the suboptimal control previously proposed. Investigation at different control
amplitudes reveals an advantage of the present control at higher amplitude. Toward its practical implementation,
a localized version of the predetermined control is also examined, and it is found to work as effectively as the
continuous case. Finally, the present predetermined control is confirmed to work well in a three-dimensional flow
too.
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I. INTRODUCTION

Recent progress in numerical simulations, microelectrome-
chanical systems technologies, and control theories have led
to growing interests in flow control [1–4]. The most notable
example is the control of flow around a bluff body [5]. It
could contribute not only to a drag reduction but also to a
suppression of flow oscillations, both leading to mitigation of
environmental impacts.

Among the recent studies, the suboptimal control for a flow
around a circular cylinder by Min and Choi [6] is of great
importance in the sense that a practical control law can be
derived on a solid theoretical basis. Although the optimal
control, which attempts to minimize or maximize a cost
function in a relatively long time horizon, is theoretically more
rigorous, it usually requires an extremely high computational
cost for iteratively solving the forward and the adjoint
equations [7]. In contrast, the suboptimal control attempts
to minimize or maximize a cost function in a relatively
short time horizon, by which the iterative computations are
avoided.

For an active control to be practical, the total power, i.e.,
the summation of the propulsive (or pumping) power and
the actuation power, should be less than the propulsive (or
pumping) power of the uncontrolled case. The total power
is identical to the energy dissipation rate at the statistically
steady state. For drag reduction of a flow in a straight or a
constant-curvature duct, it has mathematically been proved [8]
the lowest total power is achieved when the flow takes the
Stokes flow profile. Although such a lower bound has not
been proved for an external flow, such as a flow around a
circular cylinder, it is still common that the energy dissipation
rate should be the most proper quantity to be reduced by an

active control. Intuitively speaking, the ultimate state may be a
state with no energy dissipation, where all the strain vanishes,
leading to no frictional or pressure drag; in such a state the
unsteadiness of flow and the associated aerodynamic noise
will also vanish.

In the present study, we attempt to reduce the energy
dissipation in the flow around a circular cylinder. Since the
energy dissipation rate is a quantity defined as a volume
integral, it cannot be directly measured by sensors placed
on the cylinder surface; namely, the energy dissipation rate
itself cannot be used as the cost function to be minimized.
Therefore, we first derive the mathematical relationship (i.e.,
identity) between the energy dissipation in an infinitely large
volume and the surface quantities, so that the cost function can
be expressed by the surface quantities only. Using the identity
derived, we derive the control law minimizing the cost function
following the suboptimal control procedure in Ref. [6]. The
performance of the present suboptimal control is evaluated
by two-dimensional numerical simulations of flows around
a circular cylinder. Toward its practical implementation,
we also examine the performance of a predetermined (i.e.,
open-loop) control using the control input profile obtained
by the suboptimal control and its localized version. Finally,
effectiveness of the present predetermined control is assessed
in a three-dimensional flow.

II. IDENTITY BETWEEN THE ENERGY DISSIPATION IN
AN INFINITE VOLUME AND THE SURFACE QUANTITIES

In this section, we first derive the mathematical relationship
between the energy dissipation in an infinitely large volume
and the surface quantities.
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FIG. 1. (Color online) Flow around a circular cylinder.

We consider a uniform flow around a fixed circular cylinder
of radius R, as shown in Fig. 1. The governing equations are
the incompressible Navier-Stokes equation,

∂u
∂t

= −∇ ·
[

uu + pI − 2

Re
s
]

, (1)

and the continuity equation,

∇ · u = 0, (2)

where u and p denote the velocity vectors and the pressure,
respectively; I and s are the unit dyadic and the strain-rate
tensor,

s = 1
2 [∇u + (∇u)T ]. (3)

All quantities are made dimensionless by the fluid density ρ,
the cylinder diameter, D, and the free-stream velocity, U∞; the
Reynolds number is defined as Re = U∞D/ν, where ν denote
the kinematic viscosity.

To derive the mathematical relationship, we consider a
control volume as shown in Fig. 2. The cylinder is at rest
in a uniform velocity of U∞ = U∞ex . We assume that the
flow is controlled by a zero-net-flux blowing and suction
continuously distributed over the surface; the surface velocity
is us(θ ) = φ(θ )n. We also assume that the outer boundary,
∂V2, is located infinitely far from the cylinder surface, ∂V1.

FIG. 2. (Color online) Control volume.

The key technique used to derive the cost function is to
introduce the deviation from the uniform velocity:

u′ = u − U∞ex. (4)

Then the velocity deviation on ∂V2 is zero and that on ∂V1 is
expressed as

u′
s = us − U∞ex = φn − U∞ex . (5)

By this, the present problem becomes similar to the classical
problem considering the drag exerting on a circular cylinder
moving in a quiescent fluid [9]. Note that the strain-rate tensor
based on the velocity deviation is identical to that based on the
velocity itself, s′ = s.

The equation for the energy balance based on u′ is derived
by taking an inner product between u′ and Eq. (1) expressed
by u′:

∂
(

1
2 u′ · u′)
∂t

= −∇ ·
[

1

2
(u′ · u′)(u′ + U∞ex) + pu′

]

+ 2

Re
u′ · ∇ · s′. (6)

The global energy balance is obtained by integrating Eq. (6)
in the volume. By using Gauss’s divergence theorem and by
noting u′ = 0 on ∂V2, the integration of the first term in the
right-hand-side becomes

−
∫

V

∇ ·
[

1

2
(u′ · u′)(u′ + U∞ex) + pu′

]
dv

=
∫

∂V1

[
1

2
(φ3 − 2φ2U∞ cos θ ) + (pφ − pU∞ cos θ )

]
ds.

(7)

By using some vector identities, the integration in the second
term yields [8]∫

V

u′ · ∇ · s′dv

= −
∫

V

s′ : s′dv −
∫

∂V1

n · s′ · u′ ds

= −
∫

V

s′ : s′dv −
∫

∂V1

n · s′ · (φn − U∞ex) ds

= −
∫

V

s : sdv +
∫

∂V1

(
1

R
φ2

)
ds + U∞

∫
∂V1

n · s · ex ds.

(8)

By rearranging the equations above, the global energy balance
is finally expressed as

ε = −
∫

V

∂
(

1
2 u′ · u′)
∂t

dv + U∞(FDP + FDF + FDφ) + Wid,

(9)

where the dissipation rate, ε, the pressure drag, FDP , the
friction drag, FDF , and the additional drag due to the blowing
and suction, FDφ , can be derived by taking an inner product of
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ex and a volume integration of Eq. (1), as

ε = 2

Re

∫
V

s : s dv, (10)

FDP =
∫

∂V1

(−p cos θ ) ds, (11)

FDF = 2

Re

∫
∂V1

n · s · ex ds, (12)

and

FDφ =
∫

∂V1

(−φ2 cos θ ) ds, (13)

respectively, and the ideal actuation power, Wid , is computed
as

Wid =
∫

∂V1

[(
p + 1

2
φ2

)
φ + 2

Re

1

R
φ2

]
ds. (14)

The first term (i.e., the time derivative term) in Eq. (9)
is exactly zero for a steady flow; it may also be neglected in
general if we take a reasonable time average, such as an average
in one period of vortex shedding. Hence, the energy dissipation
at the statistically steady (or quasisteady) state, the reasonably
time-averaged dissipation rate, ε, is finally expressed by using
the quantities on the surface only, as

ε = U∞
(
FDP + FDF + FDφ

) + Wid. (15)

III. A SUBOPTIMAL CONTROL LAW

To minimize the energy dissipation expressed above using
the surface quantities, we derive a control law by following
the suboptimal control procedure of Min and Choi [6].

Since this suboptimal control theory [6] utilizes the lin-
earization of the governing equations through their temporal
discretization, the control input depends on how they are
temporally discretized. In the present study, we apply an
explicit method for the nonlinear term and an implicit method
for the linear terms, which gives a temporally discretized form:

un+1 + �tc∇pn+1 − �tc

Re
∇2un+1 = Fn, (16)

∇ · un+1 = 0, (17)

where Fn is the explicit part of the Navier-Stokes equation
and the superscripts n and n + 1 denote the present and next
time steps, respectively; �tc denotes the time width of control,
which is an arbitrary parameter chosen independently of the
simulation time step. The boundary conditions are given as

ur (R,θ ) = φ(θ ), lim
r→∞ ur (r,θ ) = U∞ cos θ,

(18)
uθ (R,θ ) = 0, lim

r→∞ uθ (r,θ ) = −U∞ sin θ.

The original suboptimal control proposed by Choi et al. [10]
is based on the gradient descent method. At each time instant,
a cost function J can be reduced by an iterative algorithm
given by

φl+1 − φl = −ρ
DJ (φl)

Dφ
, (19)

where

DJ

Dφl
φ̃ = lim

h→0

J (φl + hφ̃) − J (φl)

h
(20)

is the Fréchet differential with φ̃(θ ) being a perturbation to
the control input φ(θ ); the superscript l denotes the iteration
index, and the parameter ρ is a positive number. However,
those authors [10] concluded from their numerical test that a
single iteration is sufficient in the case of suboptimal control.
Namely, the control input is simply obtained by a single
iteration starting from the initial value of φ0 = 0, which
reads

φ = −ρ
DJ (φ)

Dφ
. (21)

For the present cost function, i.e., J = ε (Eq. (15)), the
gradient DJ/Dφ can be computed as

DJ

Dφ
= 1

2π

∫ 2π

0

[
U∞{−
(r,τ − θ ) cos τ︸ ︷︷ ︸

pressure drag

}

+U∞
1

Re

∂

∂r
(ηr (r,τ − θ ) cos τ − ηθ (r,τ − θ ) sin τ )︸ ︷︷ ︸

friction drag

+{ur
(r,τ − θ ) + pηr (r,τ − θ )} + 3

2
ur

2ηr (r,τ − θ )︸ ︷︷ ︸
actuation power

− 4

Re

1

R
urηr (r,τ−θ )︸ ︷︷ ︸

actuation power

− 2urηr (r,τ−θ )U∞ cos τ︸ ︷︷ ︸
additional drag

]
r=R

dτ.

(22)

Here the label under each term corresponds to the gradient
of each term in the cost function (15). The functions, ηr (r,τ ),
ηθ (r,τ ), and 
(r,τ ), are the impulse responses given by the
solution to the following set of equations [11]:

η + �tc∇
 − �tc

Re
∇2η = 0, (23)

∇ · η = 0, (24)

with the boundary conditions

ηr (R,θ ) = δ(θ ), lim
r→∞ ηr (r,θ ) = 0,

(25)
ηθ (R,θ ) = 0, lim

r→∞ ηθ (r,θ ) = 0,

where δ(θ ) denotes the Dirac delta function. The solutions are
expressed in the Fourier space as


̂k=0 = 
̂r=R = const, (26)


̂k �=0 = 1

�tc

1

|k|
A

B

(
R

r

)|k|
, (27)

η̂r,k=0 = K1(mr)

K1(mR)
, (28)
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η̂r,k �=0 = A (R/r)|k| + R|k|K|k|(mr)

Br
, (29)

η̂θ,k=0 = 0, (30)

and

η̂θ,k �=0

= i|k|
k

−A(R/r)|k| + {R|k|K|k|(mr) − mRrK|k|+1(mr)}
Br

,

(31)

where

A = R|k|K|k|(mR) − mR2K|k|+1(mR), (32)

B = 2|k|K|k|(mR) − mRK|k|+1(mR), (33)

and

m =
√

Re

�tc
. (34)

Here k denotes the wave number in the circumferential
direction and K|k|(r) is the |k|th order modified Bessel function
of the second kind.

As is clear from the expressions above, the control input
depends on the arbitrary control interval, �tc, which should be
optimized to obtain the best result. We will discuss this point
in Sec. V.

IV. NUMERICAL PROCEDURE

For the present numerical simulations, the direct numerical
simulation code of Naito and Fukagata [12] is used. For the spa-
tial discretization, the second-order energy-conservative finite
difference method in the cylindrical coordinate system [13] is
used; for the temporal integration, the low-storage third order
Runge-Kutta/Crank-Nicolson scheme [14] is applied with the
higher-order fractional-step method [15] for the velocity-
pressure coupling. The pressure Poisson equation is solved by
using the fast Fourier transform in the circumferential direction
and the tridiagonal matrix algorithm in the radial direction.

The radius of the computational domain is set to be 70 times
of the cylinder radius, R. A uniform velocity, U∞, is imposed
at the inlet boundary (0 � |θ | � 3

4π ) and the convective
boundary condition is adopted at the outlet boundary ( 3

4π �
|θ | � π ). The number of computational points is Nr × Nθ =
220 × 256 in r and θ directions, respectively.

The present numerical code and the computational condi-
tions for the base flow (i.e., the uncontrolled flow) have been
verified and validated through an extensive comparison with
the literature [12].

In the numerical implementation of control input, actuators
and sensors of infinitesimal dimensions are assumed to be
continuously distributed over the entire cylinder surface. We
also apply a temporal filter (i.e., an exponentially weighted
moving average) to the control input to avoid numerical
instabilities, as φn = (7/10)φF + (3/10)φn−1, where n is the
simulation time step and φF is the input obtained in Eq. (21).

V. RESULTS AND DISCUSSION

A. Suboptimal control

Performance of the present suboptimal control is assessed
by numerical simulations. For comparison, we also perform
simulations using the suboptimal control of Ref. [6], which is
based on the cost functions J1 and J2. The first cost function,
J1, aims at minimization of the pressure drag,

J1 =
∫

∂V1

(−p cos θ ) ds. (35)

It gives an analytical solution for the control input,

φ(θ ) = −φmax cos θ, (36)

where φmax denotes the amplitude. The second cost function,
J2, aims at minimization of the difference between the actual
pressure distribution, p, and the target (i.e., inviscid) pressure
distribution, pt ,

J2 = 1

2

∫
∂V1

(pt − p)2 ds. (37)

In term of the drag (but not the total power or the dissipation),
Min and Choi [6] report that J2 gives the best result. Hereafter,
these controls are referred to as the J1 control and J2 control,
respectively.

In all cases, the coefficient ρ in Eq. (21) is determined so
as to have a given maximum amplitude, φmax. In this study, we
fix it to φmax = 0.4, where a complete suppression of vortex
shedding at Re = 100 has been achieved previously [6]. The
Reynolds numbers are Re = 100 and Re = 1000. Although
the actual flow at Re = 1000 should have three-dimensionality,
we first perform two-dimensional simulations to compare the
control performance with Re = 100 cases.

As noted in Sec. III, the control input depends on the arbi-
trary parameter, �tc. Therefore, first, we perform a parametric
study to determine the optimal value of �tc. The dissipation
rate is computed using Eq. (15) after the flow reaches its
statistically steady state. For the computational domain of a
finite size, a summation of the dissipation directly computed
inside the computational domain, i.e., (2/Re)

∫
V

(s : s) dv, and
the energy flowing out from the outflow boundary should
balance ε in Eq. (15). For the cases presented below, the error
in this balance has been verified to be sufficiently small.

The dissipation rate, ε, computed for different values of
�tc/T at Re = 100 and Re = 1000 are shown in Fig. 3. In all
cases the dissipation is found to be reduced as compared to
the uncontrolled case. When �tc/T is small, ε in the present
suboptimal control takes a similar value to that of the J1

control, e.g., ε = 0.378 at Re = 1000. This is because the
first term in Eq. (22) is dominant at �tc/T � 1; namely, the
cost function becomes similar to that minimizing the pressure
drag [Eq. (35)].

At Re = 100, the dissipation in the present control takes
similar values at a different value of �tc/T , and it is slightly
increased for longer control time steps. The statistics (not
shown) suggest that the actuation power is increased with
the increase of �tc/T , while the drag and the flow pattern
are nearly unchanged. Reference [6] reports that J2 control
gives the best result in terms of drag reduction at Re = 100.
In the present simulations as well, the drag was found to be
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FIG. 3. Parametric study: (a) Re = 100; (b) Re = 1000. The
dissipation rate ε is made dimensionless by ρ, U∞, and D.

the smallest in the J2-control case. However, the dissipation
turned out to be much larger than those of the J1 control and
the present suboptimal control due to a greater actuation power
required to enforce the pressure distribution to fit the target.

In the present simulation with J2 control at Re = 1000,
the error in the energy balance noted above was found to
be non-negligibly small due to numerical instabilities likely
inherent to the control law [hence not shown in Fig. 3(b)]. In
principle, however, the J2 control is expected to have a higher
energy dissipation rate than the J1 control due to its higher
actuation power required, as observed at Re = 100. In the case
with the present control at Re = 1000, dissipation is reduced
as the increase of �tc/T . The minimum value obtained at
�tc/T = 0.75 corresponds to 13.2% reduction compared to
that in the J1 control. In the followings, we discuss some details
in the case of �tc/T = 0.75 at Re = 1000, where the control
effect is maximized.

Figure 4 shows the profile of control input, φ(θ ′), i.e., the
radial velocity on the cylinder surface, ur |r=R , where θ ′ =
180◦ − θ denotes the angle from the front stagnation point.
Although the velocity distribution in the present suboptimal
control case is basically similar to that in the J1-control case,
the suction near the front stagnation point, θ ′ = 0◦, and the
blowing in the rear half, θ ′ = 180◦, are observed to have been
weakened in different manners.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-150 -100 -50  0  50  100  150

u r
| r

=
R

θ’

present control
J1

FIG. 4. Velocity distribution on the wall (Re = 1000). The hori-
zontal axis is the angle from the front stagnation point, θ ′ = 180◦ − θ .
The velocity ur is made dimensionless by U∞.

Figures 5(a) and 5(b) show the time traces of the dissipation
rate, ε, and the drag coefficient, CD:

CD = FD

1
2ρU 2∞DLz

, (38)

where FD = FDP + FDF is the total drag force and Lz = 1
is the unit spanwise cylinder length. In both cases, ε and CD

abruptly increase right after the control is turned on at t/T =
15 and monotonically decrease after that. As summarized
in Table I, the present suboptimal control results in higher
reduction rates of drag and dissipation rate than those in the
J1-control case.

Figure 5(c) shows the lift coefficient, defined as

CL = FL

1
2ρU 2∞DLz

, (39)

where FL is the lift force. In both cases, oscillations imme-
diately decay and eventually vanish, indicating that the flows
become steady.

The mechanism of drag reduction can be explained by
modifications of the pressure and the friction on the surface.
Figures 6(a) and 6(b) show the distributions of the pressure
coefficient, Cp, and the friction coefficient, Cf , defined using
the local mean pressure, pw, and the local mean friction,
τw, as

Cp = pw − p∞
1
2ρU 2∞

(40)

and

Cf = τw

1
2ρU 2∞

. (41)

The drag reduction is primarily due to the significant recovery
of pressure as compared to the uncontrolled case. As minor
effects, the pressure coefficient near the front stagnation point
is slightly decreased due to the nonzero velocity by the suction.
A significant difference between the J1 control and the present
control is also observed near θ ′ = 80◦, although this difference
contributes little to the pressure drag. As shown in Fig. 6(b), in
the controlled cases, the friction coefficient in the front half is
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FIG. 5. Time traces (Re = 1000): (a) energy dissipation, ε; (b)
drag coefficient, CD; (c) lift coefficient, CL. The dissipation rate ε is
made dimensionless by ρ, U∞, and D.

increased due to the suction. The amount of increase is less in
the present suboptimal control case due to a weaker suction.

The instantaneous energy dissipation rate fields are shown
in Fig. 7. In the uncontrolled case, a large energy dissipation
takes place in the shear layer involving vortex shedding. In
the controlled cases, in contrast, the dissipation due to vortex
shedding has disappeared. Although the dissipation fields in

two controlled cases are indistinguishable at a glance, the
boundary layer in the present suboptimal control case is found
to be slightly thicker than that in the J1-control case due to the
weaker suction.

B. Predetermined control

The results above imply that a similar control effect may
also be achieved by a predetermined (i.e., open-loop) control,
which does not require any sensors. In this subsection we
briefly present some of the results of a predetermined control.
In the present predetermined control, the control input is
given by the steady profile obtained in the suboptimal control
(Fig. 4).

In Fig. 8 the time traces of the energy dissipation rate
and the drag coefficient are compared with those of the
suboptimal control case. Although a small difference is
observed immediately after the control is turned on, the
variations in both cases are quite similar in the later period. An
excellent agreement can also be observed in the mean surface
pressure coefficient, as shown in Fig. 9.

From these results, we can conclude that a predetermined
control minimizing the energy dissipation rate is possible, and
it has almost the same effects as the suboptimal feedback
control.

C. Energy efficiency

In contrast to the ideal actuation power, Wid , given by
Eq. (14), the maximum possible actuation power can be
expressed as [5]

Wa =
∫ 2π

0

(
1

2
|φ3| + |pφ| + 2

Re

1

R
φ2

)
R dθ. (42)

Denoting the drag in the uncontrolled case by FD0, the ideal
energy efficiency is given by

γid = U∞(FD0 − FD)

Wid

, (43)

where the overbar denotes the time average. Similarly, the
lowest possible energy efficiency is given by

γa = U∞(FD0 − FD)

Wa

. (44)

Note that the actual energy efficiency takes a value between
γid and γa [5]. The mean drag coefficient, CD , the mean drag
force, FD = CD/2 (since FD is made dimensionless by U∞
and D), the mean dissipation, ε, the actuation powers, Wid , Wa ,
and the energy efficiencies, γid , γa , are tabulated in Table I.

The ideal power, Wid , takes negative values in all cases,
indicating that the control is achieved without an external
power if the actuators themselves are equipped with a function
that recycles the power received from the flow. This is what
is meant by the negative values of ideal power and efficiency.
From the viewpoint of net energy saving, one profits if the
energy efficiency is greater than unity. The lowest energy
efficiency, ηa , is below unity in the J1-control case. In
contrast, it is greater than unity in the present suboptimal and
predetermined controls.
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TABLE I. Drag, dissipation, input power, and energy efficiencies (Re = 1000, two-dimensional flow).

CD FD ε Wid Wa ηid ηa

No control 1.545 0.773 0.773
J1 control 1.037 0.518 0.378 −0.140 0.324 −1.807 0.784
Present suboptimal control (�tc/T = 0.75) 0.864 0.432 0.328 −0.104 0.202 −3.326 1.680
Present predetermined control 0.864 0.432 0.328 −0.105 0.203 −3.249 1.676
Localized predetermined control (Sec. VE) 0.940 0.470 0.367 −0.103 0.122 −2.945 2.479

D. Dependency on the control amplitude

So far the control amplitude has been fixed at φmax = 0.4
(made dimensionless by U∞). Here we examine different
values of control amplitude, φmax = 0.1, 0.2, 0.3, and 0.5,
to investigate its dependency on the control effect.

Figure 10(a) shows the total energy dissipation in the
optimum cases (with respect to the parameter �tc/T ) at
different control amplitudes. The results of the J1 control are
also plotted for comparison. Compared to the J1 control, the
energy dissipation is reduced more with the present control at
larger control amplitudes (φmax � 0.3), while it takes similar
values at smaller amplitudes (φmax � 0.2). This tendency can
be explained by Eqs. (11)–(15). When the control amplitude
is smaller, the contribution of FDφ and Wid to the present cost

(a)
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(b)
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f

θ’

no control
present control

J1

FIG. 6. Pressure and friction coefficients on the cylinder surface
(Re = 1000): (a) pressure coefficient, Cp; (b) friction coefficient,
Cf . The horizontal axis is the angle from the front stagnation point,
θ ′ = 180◦ − θ .

function become smaller. Moreover, since the contribution
of the friction FDF is small at this Reynolds number, the
contribution of the pressure drag FDP is dominant. Therefore,
the present cost function approaches the cost function J1 at
smaller control amplitudes.

The lowest possible energy efficiencies ηa at different
control amplitudes are plotted in Fig. 10(b). The tendency of
the energy efficiency is similar to that of the energy dissipation.
When the control amplitude is small, ηa in the present control

FIG. 7. Instantaneous energy dissipation field (Re = 1000): (a)
no control; (b) J1 control; (c) present suboptimal control (�tc/T =
0.75). The local dissipation rate is made dimensionless by ρ, U∞,
and D.
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FIG. 8. Time traces in the predetermined control case (Re =
1000): (a) energy dissipation, ε; (b) drag coefficient, CD . θ

′ =
180◦ − θ . The dissipation rate ε is made dimensionless by ρ, U∞,
and D.

takes similar values to those in the J1 control, while ηa in the
present control takes higher values at φmax � 0.3. Note that
the present control guarantees the energy profit (ηa > 1) at any
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θ’

no control
suboptimal control
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FIG. 9. Surface pressure coefficient in the predetermined control
case (Re = 1000). The horizontal axis is the angle from the front
stagnation point, θ ′ = 180◦ − θ .
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(b)
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present control

FIG. 10. Dependency on the control amplitude φmax (Re = 1000):
(a) energy dissipation ε; (b) lowest possible efficiency ηa . The
dissipation rate ε is made dimensionless by ρ, U∞, and D.

control amplitudes in contrast to the J1 control at φmax = 0.4
and 0.5.

E. Localized control

While the control was so far applied continuously on the
entire cylinder surface, it is considered difficult to implement it
in practice. Toward its practical implementation, we consider
here a predetermined control with localized actuation.

The localized control profiles are obtained by fitting
polynomials to the control input distribution shown in Fig. 11.
The polynomial and its range are determined so that the
zero net flux condition is satisfied. Here, as an example, a
quadratic function, φ(θ ′) = 0.4 − θ ′2, and a cubic function,
φ(θ ′) = −0.278 + 0.5252|θ ′ − π |3, are chosen in the range of
−0.2π � θ ′ � 0.2π and 0.77π � θ ′ � 1.23π , respectively.

The instantaneous energy dissipation field is shown in
Fig. 12. Even in the case where the actuation is applied locally
(about 40% of the entire surface), the vortex shedding is found
to disappear similarly to the continuous cases (Fig. 7).

The computed mean quantities are shown on the last line of
Table I. The drag of the present localized control is found
to be lower than those in the uncontrolled case and the
J1 control. Although the resultant energy dissipation of the
localized control is higher than that of the present suboptimal
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FIG. 11. Velocity distribution on the wall (localized control, Re =
1000). The horizontal axis is the angle from the front stagnation point,
i.e., θ ′ = 180◦ − θ . The velocity ur is made dimensionless by U∞.

and predetermined controls, the local control shows still better
performance than the J1 control on the entire surface. It is also
found that the lowest energy efficiency ηa is higher than the
present suboptimal and predetermined controls due to its lower
actuation power Wa . From the above, it can be said that the
present localized control works as efficiently as the continuous
case.

F. Control effect in three-dimensional flow

Finally, we examine the control effect in a three-
dimensional flow around a circular cylinder at Re = 1000. To
avoid the huge computational cost, we adopt the predetermined
control input obtained in the two-dimensional flow. For
comparison, we also perform the J1 control.

Figure 13 shows the instantaneous energy dissipation fields.
Similarly to the two-dimensional cases, both the J1 and the
present predetermined controls achieve complete suppression
of vortex shedding, and the wake region of the J1 control is
found to be slightly wider in lateral direction than that of the
present predetermined control.

The control effects are summarized in Table II. The present
predetermined control results in a lower energy dissipation
than the J1 control. The drag FD and the maximum possible

FIG. 12. Instantaneous energy dissipation field (localized control,
Re = 1000). The local dissipation rate is made dimensionless by ρ,
U∞, and D.

FIG. 13. Instantaneous energy dissipation field (Re = 1000,
three-dimensional): (a) no control; (b) J1 control; (c) present pre-
determined control. The local dissipation rate is made dimensionless
by ρ, U∞, and D.

power Wa of the present predetermined control are found to
be lower than those of the J1 control, which leads to a greater
value of ηa . Note that ηa of the present predetermined control
is greater than unity, while the J1 control is less than unity;
it indicates that the total power can be saved by the present
predetermined control, while not by the J1 control.

VI. SUMMARY

A blowing and suction control of a flow around a circular
cylinder has been conducted aiming at minimization of the
energy dissipation.

To minimize the energy dissipation rate in an infinitely
large volume, we have derived the proper cost function, which
is expressed by the quantities on the surface. The cost function
is then minimized by using the suboptimal control procedure
of Min and Choi [6].

Performance of the present suboptimal control has been
assessed using two-dimensional numerical simulations at
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TABLE II. Drag, dissipation, input power, and energy efficiencies in three-dimensional flow (Re = 1000).

CD FD ε Wid Wa ηid ηa

No control 1.141 7.165 7.165
J1 control 1.037 6.512 4.748 −1.764 2.456 −0.370 0.266
Present predetermined control 0.820 4.121 3.092 −1.029 1.553 −1.959 1.298

Re = 100 and Re = 1000. A parametric study has been
conducted for the arbitrary parameter contained in the
suboptimal control law, �tc. Although no improvement is
obtained at Re = 100, the present suboptimal control shows
better performance at Re = 1000 than the suboptimal controls
previously proposed. Suction near the front stagnation point
and blowing in the rear half are weakened in different manners
as compared to those in the suboptimal control targeting at
pressure drag reduction.

A steady predetermined control based on the suboptimal
control has also been performed. The results show that the
energy dissipation and the drag can be reduced similarly to
those in the suboptimal control. In terms of the lowest possible
efficiency, too, the present suboptimal and predetermined
controls are shown to have much higher efficiency than the
suboptimal control previously proposed.

The computations at different control amplitudes show that
the advantage of the present control becomes clearer at higher
control amplitudes, and this is explained by the form of the
cost function. A similar control effect is also obtained with a
localized control based on the obtained predetermined control.
Finally, the present predetermined control is shown to work
well in the three-dimensional flow at Re = 1000 too.
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