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Analytical asymptotic velocities in linear Richtmyer-Meshkov-like flows
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An analytical model to study the perturbation flow that evolves between a rippled piston and a shock is
presented. Two boundary conditions are considered: rigid and free surface. Any time a corrugated shock is
launched inside a fluid, pressure, velocity, density, and vorticity perturbations are generated downstream. As the
shock separates, the pressure field decays in time and a quiescent velocity field emerges in the space in front
of the piston. Depending on the boundary conditions imposed at the driving piston, either tangential or normal
velocity perturbations evolve asymptotically on its surface. The goal of this work is to present explicit analytical
formulas to calculate the asymptotic velocities at the piston. This is done in the important physical limits of
weak and strong shocks. An approximate formula for any shock strength is also discussed for both boundary
conditions.
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I. INTRODUCTION

Shock waves have been studied for approximately the past
200 years, with contributions coming from mathematicians,
engineers, and physicists alike [1]. During the past century,
the field of shock waves has seen a renewed interest because
of its capabilities of generating matter with extreme conditions
of pressure and temperature with different substances in the
gas, liquid, or solid phases. An important problem in this
field concerns the dynamics of corrugated shocks and the
corresponding flows that develop downstream. Rippled shocks
have been studied in different contexts and environments
since the middle of the past century [2–27]. Around 1950,
A. E. Roberts [2] was the first person to study the dynamics
of the flow induced by a two-dimensional corrugated shock
front in planar geometry with an analytic model, using
Laplace transforms. Some 20 years later, R. D. Richtmyer [3]
studied the problem of a planar shock crossing the corrugated
boundary between two ideal gases. He numerically solved
the fluid equations in order to follow the normal velocity
perturbations at the corrugated interface as a function of time.
He showed that, in this class of problems, the fluid velocities
(within the domain of validity of the linear theory), reached an
asymptotic value when the shock separated from the contact
surface a distance on the order of the perturbation wavelength.
Almost simultaneously, E. E. Meshkov in the former Soviet
Union [4] designed a series of experiments that confirmed,
at least qualitatively, the previous theoretical predictions of
Richtmyer. More or less at the same time, other researchers
were also studying this type of flow with the aid of shock tubes,
as, for example, in the works of Briscoe and Kovitz [5]. By
the end of the 1990s, the flows generated behind corrugated
shock waves (and also behind corrugated rarefaction waves)
began to be called Richtmyer-Meshkov-like flows (RM) [6].
Because of the rippled shape of the shock surface, velocity,
and pressure perturbations are created behind the wave which
affect the whole fluid downstream. As a consequence, as
the shock separates from the piston driving it, significant
hydrodynamic perturbations are generated behind it which
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may drive the compressed fluid into a state of turbulence
if it enters the nonlinear regime. This kind of flow occurs
in many different contexts, ranging from laboratory-created
experiments, as in the irradiation of inertial fusion targets,
to natural environments like astrophysical events after the
explosion of massive stars in the form of supernovas. Recently,
the use of corrugated shock waves has been suggested as an
important tool to diagnose material properties [7–9] within the
domains of high-energy-density physics (HEDP) experiments
or within the domain of geophysics or planetary sciences [10].
Therefore, analytical models that reveal the details of the linear
phase are extremely important in order to develop consistent
nonlinear theories of the perturbation evolution [11–13] or
helping in the design of experiments [9] and/or assisting
in the benchmarking of simulation hydrocodes dealing with
RM-like flows. The work shown here is a natural extension
of previous work on the subject [15,16] and the objective is
very specific: to obtain accurate analytical estimates of the
asymptotic velocities in an RM-like environment. The two
simplest cases with a single fluid are studied: corrugated rigid
piston and corrugated free surface. The free surface situation
was for the first time analyzed within the context of RM-like
flows in Ref. [17] and some years later it was studied again
in Ref. [18] for the particular case in which the shock is
infinitely strong and the fluid is extremely compressible. So
far, no theoretical work has yet examined the dependence of
the tangential and normal asymptotic velocities at the surface
of the piston (be it a rigid or a free surface) as a function
of the shock strength and fluid compressibility in the whole
range. The aim of this work is to show the scalings of those
velocities as a function of the shock Mach number and the
fluid isentropic exponent. Even though the main equations to
be used had already been obtained in a previous work [16], they
have never been used to study in detail the problems posed here.
These calculations would serve as a first step towards more
ambitious calculations aimed at obtaining similar formulas
to the asymptotic velocities in the general RM environment
dealing with two fluids for any shock Mach number and
arbitrary fluids compressibilities. We structure the work in the
following manner: In Sec. II we briefly review the linearized
equations of motion in the space between a piston and a
corrugated shock. They are necessary to settle the notation
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used in the rest of the work. The pressure-wave equation is
studied and the functional equation that governs the temporal
evolution of the pressure perturbations is presented. In Sec. III
the solutions for different boundary conditions at the piston
are shown: rigid and free surfaces. We show the asymptotic
velocities for different values of the shock Mach number and
fluid compressibility. An approximate analytical formula and
important scalings are obtained. In Sec. IV a brief summary is
presented. The reader who is only interested in the final results
may go directly to Sec. III. However, the notation and all the
analytical ingredients necessary to assimilate those results are
elaborated on with the corresponding depth in Sec. II.

II. LINEARIZED EQUATIONS

We consider an ideal gas with constant specific heat ratio γ ,
initial pressure p1, and mass density ρ1 bounded on the left by
a planar surface that acts as a piston (Fig. 1). The piston starts
to move at t = 0 to the right with speed +Ux̂ in the laboratory
reference frame. A shock moving with speed D is launched in
front of the piston. The pressure driving the shock is p2 > p1

and the density of the compressed fluid is ρ2 > ρ1. The sound
speed in front of the shock is c1 = √

γp1/ρ1. The compressed
fluid sound velocity is c2 = √

γp2/ρ2. The upstream shock
Mach number is M1 = D/c1 > 1 and the downstream shock
Mach number is M2 = (D − U )/c2 < 1.

A. Boundary conditions at the corrugated shock front

Compressed fluid quantities are connected with the up-
stream values through the Rankine-Hugoniot relationships
(conservation of mass, momentum, and energy) [19]. We have,
for the density ratio, the following:

R = ρ2

ρ1
= D

D − U
= (γ + 1)M2

1

(γ − 1)M2
1 + 2

, (1)

D-U

p p p

vy

vx
vys

FIG. 1. A corrugated piston drives a rippled shock inside an ideal
gas. The shock moves with speed D − U in the piston reference
frame. The downstream perturbations are indicated as well as the
tangential velocity fluctuations just behind the shock (δvys).

and for the pressure ratio,

p2

p1
= 2γM2

1 − γ + 1

γ + 1
. (2)

The ratio of sound velocities across the shock front is

c2

c1
=

√(
2γM2

1 − γ + 1
) [

(γ − 1)M2
1 + 2

]
(γ + 1)M1

, (3)

and the shock Mach number with respect to the compressed
fluid is therefore

M2 = D − U

c2
=

√
(γ − 1)M2

1 + 2

2γM2
1 − γ + 1

. (4)

The results shown in the previous equations relate the quanti-
ties at both sides of the shock wave assuming a planar shock,
without perturbations and, as such, they serve us as background
values. Our interest lies, however, in the situation in which the
piston surface is slightly rippled with perturbation wavelength
λ and an initial corrugation ψ0 � λ. As discussed in Sec. I, the
shock ripple will induce the generation of pressure and velocity
perturbations in the space between the piston and the shock
surface (see Fig. 1). We assume an initial piston corrugation of
the form ψp(0) = ψ0 cos ky, where ψ0 is the ripple amplitude
and k = 2π/λ is the perturbation wave number. From now on,
we study the problem in a reference frame that moves with the
piston. In the compressed fluid, perturbations in density (δρ),
velocity (δvx and δvy for the two components), and pressure
(δp) are generated. We use the following definitions for the
downstream perturbations:

δρ2

ρ2
= ρ̃(x,t) cos ky,

δp2

ρ2c
2
2

= p̃(x,t) cos ky,

(5)
δvx

c2
= ṽx(x,t) cos ky,

δvy

c2
= ṽy(x,t) sin ky.

The normalizations defined above are best suited for solving
the pressure-wave equation with the formalism presented here.
However, when analyzing the asymptotic velocities at the
piston, it will be useful to change the units of velocity. Each
situation will be discussed accordingly in Sec. III.

The shock corrugation is a function of time and of
the transverse coordinate: �s(y,t) = ψs(t) cos ky. The di-
mensionless shock ripple amplitude is ξs(t) = kψs(t). It
is clear that at t = 0, the initial shock ripple amplitude
coincides with the piston corrugation amplitude. That is,
ψs(t = 0) = ψ0. We define a dimensionless time τ = kc2t .
The different perturbed quantities just behind the shock front
are related with each other through the conservation equations
across the shock. Linearizing the conservation equations for
mass, x momentum, y momentum, and energy, we arrive
at the following relationships just behind the corrugated
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front [3,20]:

dξs

dτ
= Asp̃s, As = R

R − 1

M2
1 − 1

2M2
1 M2

, (6)

ṽxs = Axp̃s, Ax = M2
1 + 1

2M2
1 M2

, (7)

ρ̃s = Aρp̃s, Aρ = 1

M2
1 M2

2

, (8)

ṽys = Ayξs, Ay = M2(R − 1). (9)

An index “s” is always used to indicate that the quantity is
evaluated at the shock front position, as in ṽys , and so on.

B. Linearized fluid equations: Pressure-wave equation

At first, we write the linearized versions of the fluid
equations in the compressed fluid. We define the dimensionless
space coordinates as follows: x̃ = ky, ỹ = ky. The mass
conservation equation reads as follows:

∂ρ̃

∂τ
= −∂ṽx

∂x̃
− ṽy . (10)

The normal x̂-direction and tangential ŷ-direction momentum
equations are, respectively,

∂ṽx

∂τ
= −∂p̃

∂x̃
, (11)

∂ṽy

∂τ
= p̃. (12)

Finally, the energy equation reduces to the conservation of
entropy on the compressed fluid particles, as we assume an
adiabatic flow between piston and shock. The only source
of entropy perturbations lies at the shock surface. But once
entropy is generated, it remains frozen to the fluid elements.
In the reference frame used here, this condition leads us to the
following familiar relationship:

∂p̃

∂τ
= ∂ρ̃

∂τ
. (13)

The above equations can be recast into the familiar two-
dimensional (2D) wave equation for the pressure,

∂2p̃

∂τ 2
= ∂2p̃

∂x̃2
− p̃. (14)

The wave equation [Eq. (14)] has been solved in the recent
past in the context of the RM instability and in the interaction
of isolated shock fronts with upstream turbulent flows with the
aid of a very useful coordinate transformation [5,16,20–22].
We define the variables r and χ as follows:

x̃ = r sinh χ,
(15)

τ = r cosh χ.

Surfaces with χ = const represent planar fronts moving
behind the shock following the trajectory x̃ = τ tanh χ . All the
χ surfaces start to move at τ = 0 and spread as time evolves.
The shock front coordinate is defined by tanh χs = M2. At the
shock front, the value of r = rs is equal to τ

√
1 − M2

2 . After
some long algebra, the wave equation inside the compressed

fluid [Eq. (14)] can be rewritten in terms of the new coordinates
in the following convenient form [16,20]:

r
∂2p̃

∂r2
+ ∂p̃

∂r
+ rp̃ = ∂h̃

∂χ
, (16)

where the auxiliar function h̃ is

h̃ = 1

r

∂p̃

∂χ
. (17)

Following the procedure described in Ref. [16] the wave
equation can be reduced to a functional equation in the domain
of the Laplace variable s of the Laplace transform theory.
To this end, we define for any quantity φ(χ,r) its Laplace
transform (which will be indicated with capital letters) as

�(χ,s) =
∫ ∞

0
φ(χ,r) exp(−sr) dr. (18)

Thus, after some algebra, and making the variable change
s = sinh q, Eqs. (16) and (17) can be rewritten as follows:

∂

∂q
(cosh q P̃ ) + ∂H̃

∂χ
= 0,

(19)
∂

∂χ
(cosh q P̃ ) + ∂H̃

∂q
= 0.

Integration of the last equation by changing to the auxiliary
variables q + χ and q − χ leads us to the following decom-
position for the perturbations P̃ and H̃ :

P̃ (χ,q) = F1(q − χ ) + F2(q + χ )

cosh q
,

(20)
H̃ (χ,q) = F1(q − χ ) − F2(q + χ ),

where F1 and F2 are functions to be determined with the
boundary conditions at the shock and at the piston surface. In
the next subsection we write the appropriate form of the RH
boundary conditions at the shock in terms of the new variables
q and χ .

C. Laplace transform of the shock boundary conditions

In Ref. [3], Richtmyer combined Eqs. (7)–(9) into a pair
of first-order partial differential equations coupling the shock
ripple amplitude and the pressure perturbation behind the
shock front. The procedure is straightforward: We take the
total time derivative of Eq. (7) following the shock trajectory
and combine it with the remaining equations to obtain the
following:

−(M2 + Ax)
∂p̃

∂τ
= (1 + M2Ax)

∂p̃

∂x̃
+ M2Ayξs. (21)

The last equation is coupled to Eq. (6). The Laplace transform
of Eqs. (6) and (21) are written in the domain of the variable
q as

�s(q) = ξs0 + As cosh χsP̃s(q)

sinh q
,

(22)
H̃s(q) = −Ax sinh q P̃s(q) − M2Ay cosh χs �s(q).

The function �s(q) is the Laplace transform of the dimension-
less ripple corrugation ξs(rs). In addition, the initial value of the
pressure perturbation at the shock has been taken as p̃s0 = 0.
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In the cases of interest here, the shock surface and the piston
are infinitely near at t = 0 and it is reasonable to assume that
p̃s0 = 0 [3]. As the piston has an initial corrugation, the value
of ψs(0) �= 0 coincides with the piston corrugation at t = 0.
We have defined ξs0 = kψ0. After some additional algebra,
the last two equations can be solved for the shock pressure
perturbations as [16,22]

H̃s(q) = α1(q)P̃s(q) + α2(q), (23)

where

α1(q) = α10 sinh q + α11

sinh q
, α2(q) = α20

sinh q
, (24)

α10 = −Ax = −M2
1 + 1

2M2
1 M2

,

α11 = − 1

2M2
, (25)

α20 = −Ayξs0 sinh χs.

It is noted that, in the above equation, α20 is proportional to the
initial tangential velocity created behind the shock at t = 0:
ṽs0 = Ayξs0.

D. Boundary conditions at the piston surface and functional
equations for the shock pressure perturbations

1. Rigid piston

Equation (23) relates the pressure perturbations H̃s and P̃s ,
which is equivalent to relate the auxiliary functions F1 and
F2, presented in Eq. (20). Which set of unknown functions to
use is a matter of taste or convenience. In order to express the
boundary conditions at the piston (x = 0), it will be convenient
to deal with F1 and F2. As discussed in Ref. [16], if the shock
is driven by a rigid piston, the natural condition is that the
normal velocity is zero at x = 0 for any value of the time t .
When this is translated into the language of the χ , q variables,
requiring the vanishing of the normal pressure gradient there,
we get

F1(q) = F2(q) = F (q). (26)

Using this information, and going back to Eq. (20), together
with Eq. (24), we arrive after some calculations to the following
functional equation for the function P̃s(q):

P̃s(q) = λ1(q) + λ2(q)P̃s(q + 2χs), (27)

where

λ1(q) = α2(q) + α2(q + 2χs)

cosh q − α1(q)
,

(28)
λ2(q) = cosh(q + 2χs) + α1(q + 2χs)

cosh q − α1(q)
.

For an ideal gas equation of state (EOS), the denominator
of λ1,2 has no singularities in the complex plane, other than
branch points at s = ±i, where i is the imaginary unit.
This peculiarity explains the late time decay of the pressure
perturbations, as will be discussed in the next section. For
other substances, with nonideal EOS, the previous functional
equation and its solutions have been briefly studied in the
context of spontaneous acoustic emission of sound waves

[23]. The mathematical complexity of Eq. (27) has made
it impossible, up to now, to get an exact analytic solution
expressible in finite form, that is, a solution that involves
only a finite number of terms. We can only show, as in
Refs. [16,22,23], a solution given by the infinite series,

P̃s(q) = λ1(q) +
∞∑

n=1

λ1(q + 2nχs)
n−1∏
j=0

λ2(q + 2jχs). (29)

Equation (29) is a particular solution to Eq. (27). Besides, it can
be easily shown that the solution of the homogeneous equation
must be identically zero for an ideal gas EOS. Therefore,
Eq. (29) is the correct solution of the functional equation.
All the information about the perturbation fields (pressure,
velocity, etc.) of the whole compressed fluid can be obtained
from the above solution for P̃s . Indeed, getting P̃s as a function
of the Laplace variable q [or, equivalently, p̃s(τ ) in the domain
of the real time τ after a standard Laplace inversion] gives us
complete information on the shock perturbation dynamics.
Furthermore, knowing P̃s at the shock front allows us to
know P̃ at any other surface χ and hence in the whole fluid
downstream. As will be seen below, not only information on
the irrotational sound waves but also the exact information
about the asymptotic, steady-state, rotational velocity fields
is also contained inside P̃s . Unfortunately, in order to get
that amount of information, it is necessary to deal with the
functional equation Eq. (27) above, which does not admit, to
our knowledge, an exact solution expressible in finite terms.
The particular solution shown in Eq. (29) and the iterative
process described later are the only ways to analytically deal
with it. No other solution, so far, except Eq. (29), can be shown
at the moment. The number of factors that compose each of
the products increase with the index inside the summation.
In general, this should be important only for very critical
situations at high compressions and with fluids with γ very
near unity. Nevertheless, we can show approximate solutions
to the functional equation, which provide us with very accurate
results for the asymptotic velocities, even in situations where
high compression effects dominate, at the expense of not
approaching the boundary γ = 1 which would require the
infinite terms in the sum.

2. Free surface

The free surface boundary condition in the context of RM-
like flows was considered for the first time in Ref. [17] as a
particular case of the Riemann problem in a fluid. This situation
can be handled also within the formalism presented here by
choosing the appropriate relationship between the pressure
auxiliary functions F1 and F2, as briefly discussed in Ref. [16].
The boundary condition at x = 0 consists in requiring the
vanishing of the piston pressure fluctuations: p̃(x = 0,t) = 0.
In the language of the variables χ , q, this is fulfilled if we
require

F1(q) = −F2(q) = F (q). (30)

Correspondingly, the shock pressure perturbations Laplace
transform also satisfies a functional equation, identical in form
to Eq. (27) but with different functions λ1 and λ2. We write
below the corresponding functions λ1,2 that guarantee the free
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surface boundary condition as follows (we correct here a typo
in Eq. (44) of Ref. [16]):

λ1(q) = α2(q) − α2(q + 2χs)

cosh q − α1(q)
,

(31)
λ2(q) = −cosh(q + 2χs) + α1(q + 2χs)

cosh q − α1(q)
.

E. Useful approximations to Eq. (27)

Certainly Eq. (29) is the only exact solution known to date
for Eq. (27). Its predictions have been compared successfully
with the results of the linear simulations of Ref. [24] some time
ago [16]. However, as it is expressed by an infinite series of
very complicated terms (an iterative process to get its value is
also possible, see Ref. [16]), it is much more convenient to have
approximate analytical expressions that are easier to handle,
valid at least in different limits of physical relevance: weak or
strong shocks or high compression limits. The discussion that
follows is general and holds for both boundary conditions at
the piston. We start with the weak shock regime.

1. Weak shock limit

We need an expression for P̃s(q = χs). It is not difficult
to see that the solution to Eq. (27) can always be formally
expanded as a Laurent series in powers of s = sinh q in the
following form:

P̃s(q) = p̃s1

s2
+ p̃s3

s4
+ p̃s5

s6
+ O

(
1

s8

)
, (32)

for arbitrarily large values of s = sinh q. The coefficient p̃s1

is essentially the first time derivative of p̃s(rs) as a function
of the dimensionless time rs and the other coefficients will be
related to higher-order time derivatives of the shock pressure
perturbations at t = 0+. The values of p̃s1, p̃s3, and p̃s5 . . . can
be obtained by direct substitution inside Eq. (27) and equating
equal powers of 1/s. Once we have them, we substitute s =
sinh χs into the last equation above to obtain the value of
P̃s(χs). The resulting expression has to be expanded in powers
of M1 − 1 and we get the desired formula in the weak shock
limit. This will be done in the next section when studying the
asymptotic velocities. The number of coefficients that must be
included in each case depends on the order of accuracy we
want to achieve with this particular expansion. Retaining only
the first coefficient (p̃s1) gives a result that is accurate to the
third order in M1 − 1 (for the rigid piston asymptotic tangential
velocity). Retaining the following term will give a result which
is accurate up to the fourth order and so on. For the free
surface, instead, it will be seen that the first coefficient gives
an asymptotic velocity which is accurate only up to first order
in M1 − 1. Retaining p̃s3 will be accurate up to second order
and so on. Getting p̃sj for larger values of index j is tedious and
not useful, because 1/ sinh χs increases fast when the shock
Mach number increases. Expansions like Eq. (32) are useful
inside their circle of convergence which might decrease very
fast for moderate to strong shocks. Those limited expansions
are useful only for very weak shocks. As we cannot easily
get the general term psj in analytical form in order to apply
usual convergence tests, we can only compare the prediction
of the first few terms with the exact solution obtained from

the functional equation. As a general rule, we see that the
expansion shown in Eq. (32) is good up to M1 ≈ 1.4. Adding
a few more terms would not increase accuracy significantly
because of the very slow speed of convergence.

2. Strong shock limit

The expansion used in Eq. (32) is good for weak shocks,
because integer powers of 1/ sinh χs become very small in this
regime. The expansion shown in Eq. (32) is not practical for
stronger shocks (typically M1 � 1.5). We can circumvent this
difficulty by solving the functional equation in an approximate
way by iterating it one time, as was done numerically
in Ref. [16]. The iterated solution then may be expanded
analytically in powers of 1/M1 for sufficiently strong shocks
and the solution thus obtained compared with the complete
solution given by the whole series implied in Eq. (29). The
idea was proposed in Ref. [16], even though it was never used
to get approximate analytical estimates in this limit. We first
solve Eq. (27) for q � χs and obtain a seed function P̃ [0]

s (q)
as follows:

P̃ [0]
s (q) = λ1(q)

1 − λ2(q)
, (33)

and iterate upon it, using Eq. (27), thus getting an improved
estimate of the pressure as follows:

P̃ [1]
s (q) = λ1(q) + λ2(q)P̃ [0]

s (q + 2χs). (34)

This approximate choice gives enough accuracy for strong
shocks if γ is not very near unity. If the fluid becomes
very compressible, more iterations will be needed, because
in that limit, sound reverberations are more important, which
is manifested here in a significant number of shifts inside the
argument of P̃s . When evaluating the asymptotic velocity at
the piston surface, we only need to substitute q = χs inside
the result given in Eq. (34) above and expand in powers of
1/M1. This procedure will be done in the next section when
studying the rigid piston and free surface asymptotic velocities
separately.

F. Vorticity generated by the corrugated shock front

As the corrugated shock starts to move inside the fluid,
tangential momentum must be conserved at both sides of
the shock wave [19]. Because of this, a tangential velocity
perturbation is created just behind the shock, according to
Eq. (9) [3]. As discussed in previous works [16,20], the
velocity field behind the shock is the superposition of two
different fields: an irrotational part, created by the pressure
gradients radiated in the form of sound waves downstream,
and a rotational part, only created at the shock, due to the
conservation of the tangential velocity. In fact, the amount
of vorticity created at the corrugated shock can be easily
calculated taking into account this fact. The details are the
same whether the shock is isolated, as in Ref. [20], or not, as is
the case here. We briefly review the derivation of the vorticity
profile in order to settle the notation to be used in the next
section. In a planar problem we are only concerned with the ẑ

component of the vorticity. The ẑ component of the vorticity
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is defined by the following:

δω = ∂δvy

∂x
− ∂δvx

∂y
,

which in dimensionless form is as follows:

ω̃ = δω

kc2
=

(
∂ṽ

∂x̃
+ ũ

)
sin ky. (35)

Vorticity only can be generated behind the front. The second
term in the right-hand side of the last equation (ũ) can be easily
calculated by using Eq. (7). The first term has to be calculated
from Eq. (9). To this scope, we take the total time derivative
of Eq. (9) following the shock in its trajectory [15,20]. After
some algebra, we get the final result,

ω̃ = g(x̃) sin ky, g(x̃) = � p̃s

(
rs = x̃

sinh χs

)
, (36)

where it is seen that vorticity is only a function of the position
of the particle and does not change in time (because no
dissipative processes are assumed, in the absence of viscosity).
Furthermore, the amount of vorticity generated at position x

depends on the value of the shock pressure perturbation at the
time the shock arrived to that position in space. The quantity
� is dependent on the compressibility of the fluid and on the
shock strength and can be seen to be equal to the following:

� = Ax + AyAs − 1

M2

=
(
M2

1 − 1
)2

√
2γM2

1 − γ + 1

M2
1

[
(γ − 1)M2

1 + 2
]3/2 . (37)

As ω̃ is not time dependent, the rotational velocity field
associated to it does not depend on time either and is the
only velocity perturbation that remains in the fluid when the
shock moves very far from the piston. In fact, when the shock
is still very near the piston surface, its ripple oscillates and
radiates sound waves which modify the velocities. However,
when the shock is very far, the pressure perturbations would
have entered the asymptotic regime, becoming vanishingly
small, and then the steady-state velocity profile emerges (given
by the rotational part of the velocity field).

G. Velocity fields generated behind the corrugated fronts

After some algebra, the linearized equations of motion
[Eqs. (10)–(12)] can be combined into wave equations for
the velocity components as follows:

∂2ṽx

∂τ 2
= ∂2ṽx

∂x̃2
− ṽx + g(x̃),

(38)
∂2ṽy

∂τ 2
= ∂2ṽy

∂x̃2
− ṽy − g′(x̃),

where g′(x̃) is an abbreviated form indicating the derivative
dg/dx̃ in the last equation. As discussed in Ref. [20], the
solution to the previous equations is the superposition of a
rotational and an irrotational part,

ṽx = ur (x̃) + uirr(x̃,t),
(39)

ṽy = vr (x̃) + virr(x̃,t).

When the shock front is still near the piston, the influence of the
pressure waves reverberating inside the fluid gives rise to the
irrotational part of the velocity. As the shock separates and its
distance to the piston is larger than a perturbation wavelength,
the shock ripple decreases as does the pressure field. Hence,
the irrotational velocities tend to zero and the steady state,
asymptotic contribution (the rotational part) emerges. As
discussed in Ref. [16], the late time velocity components
satisfy the ordinary differential equations as follows:

d2ur

dx̃2
− ur = −g(x̃),

(40)
d2vr

dx̃2
− vr = g′(x̃).

Both equations can be integrated with the Laplace transform
technique, multiplying both sides by exp(−σ x̃) and integrating
in the interval 0 � x̃ < ∞. We only show the final result for
the function ur as follows:

Ur (σ ) =
∫ ∞

0
ure

−σ x̃ dx̃

= σup − vp − � sinh χsP̃s(s = σ sinh χs)

σ 2 − 1
, (41)

where up is the normal velocity (for t → ∞) and vp is the
asymptotic tangential velocity, both evaluated at the piston
surface. An index “p” is always used to indicate that the
corresponding quantity is evaluated at the piston surface. It
is noted that P̃s(s = σ sinh χs) in Eq. (41) above is understood
with P̃s as a function of the Laplace variable “s” and not
of “q = sinh−1 s.” The main objective of this work is to
characterize both piston velocities in the two cases of rigid
and free surface boundary conditions. As the function ur is
finite everywhere, the Laplace transform Ur must be finite for
σ = 1. This means that the numerator in the previous equation
must vanish for σ = 1. Hence, the characteristic equation that
determines the asymptotic velocities at the piston surface is
equal to the following:

up − vp = � sinh χsP̃s(q = χs). (42)

The equation above is the unique and exact contact surface
boundary condition to be used in any RM-like problem when
we want to determine the tangential and normal asymptotic
velocities at the piston (or contact surface in the more
general RM problem with two fluids). It becomes clear that
both velocities are never independent of each other. For the
boundary conditions considered in this work, their difference
is proportional to an integral of the pressure perturbations at
the shock front during its whole time history (or, equivalently,
to a special space average of the vorticity profile generated by
the shock). The value of up − vp is strongly influenced by the
compressibility of the gas and the shock strength. Each case,
rigid or free surface, deserves a separate discussion and the
study of the previous equation for different values of γ and
M1 is done in the following section.
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III. ASYMPTOTIC VELOCITIES: WEAK AND STRONG
SHOCK LIMIT EXPANSIONS

Within the range of validity of the linear theory (that
is, when the initial amplitude of the surface corrugation is
very small compared to the corrugation wavelength), the
conservation of tangential momentum across the shock is
the mechanism responsible for generating tangential velocity
perturbations behind the front which in turn drive a lateral
mass flow [14]. This transverse mass flow is essential to create
a modulated pressure perturbation profile just after the shock
front which radiates downstream in the form of sound waves
(see Fig. 1). These pressure fluctuations evolve in the whole
fluid between the shock front and the piston thus inducing
an irrotational velocity field everywhere, which is time and
space dependent. Besides creating the sound-wave field, the
conservation of tangential momentum across the shock wave
is also responsible for generating vorticity. If viscosity is
negligible, this vorticity field is conserved in the fluid elements
and becomes an important ingredient to correctly describe
the asymptotic evolution of the velocity field, even more so
in the high-compression limit. In fact, as will be discussed
later, vorticity generation is more important for strong shocks
and for fluids with high compressibility. Then, as the shock
travels farther from the piston surface, the velocity field that
develops in the whole fluid downstream can be decomposed as
the sum of an irrotational component (due to the fluid pressure
fluctuations) and a rotational part (due to the vorticity created
just behind the shock, that is, the divergence free perturbation
mode commented in Refs. [13,14]). As is known, a shock
moving inside an ideal gas is stable [23]; this means that
pressure perturbations downstream of the shock will be zero
for t → ∞. The shock becomes planar after it has traveled
several wavelengths from the piston. Therefore, asymptotically
in time, as the shock regains its planar shape and the pressure
field becomes vanishingly small, the fluid elements do not
experience any more accelerations due to the sound waves and
the asymptotic velocity field becomes steady. While the shock
is still near the piston, the sound waves radiated by the shock
reflect at the piston and go back to the shock surface. Thanks
to this reflection, the shock knows about the conditions on the
piston and, hence, consistently modifies the amount of vorticity
that is being continuously generated. The process repeats itself
as long as the shock travels away. We might expect a different
kind of solution to the velocity field, depending on whether
the piston is rigid. It is the main purpose of the work shown
here to obtain analytical approximations to the asymptotic
velocity field near the piston surface in two important kinds
of RM-like flows inside ideal gases: when a shock is driven
by a rigid piston and when it is driven by a free surface.
Even though they are the simplest cases to be considered for
a single shock moving inside a fluid, the mathematical details
are cumbersome and, therefore, they need some explanation
and will be provided later.

A. Rigid piston

For a rigid piston, we have δvx(x = 0) ≡ δvxp = 0. Hence,
we need only to determine the asymptotic tangential ve-
locity at x = 0. From Eq. (42) we need the value of

P̃s(q = χs),

vp = δvyp

kψ0c2

∣∣∣∣
τ→∞

= −� sinh χsP̃s(χs), (43)

where it is understood that δvyp ≡ δvy(x = 0). From di-
mensional arguments, we can always write the following
relationship:

vp = F(γ,p1,p2), (44)

where the function F is an unknown function that must be ob-
tained after solving the equations of motion with the boundary
conditions. It is clear that F is dimensionless. Hence, according
to the standard procedure in dealing with dimensional analysis
[28], we can substitute it by a dimensionless function of
dimensionless parameters. It is clear that p2/p1 is a function
of γ , M1. Hence, the governing dimensionless parameters are
γ and M1. Therefore, we write the previous relationship in the
following form:

vp = f (γ,M1), (45)

for some dimensionless function f . The exact calculation of
f in the range 1 � M1 < ∞ for any value of γ can be
accomplished by means of the infinite series provided by
Eq. (29) and the definitions of Eq. (28). For weak shocks, the
first term will be enough and as the shock strength increases,
more terms are needed. In Fig. 2 we show δvyp at the piston,
in units of kψ0c2, as in Eq. (43) above. The infinite sum
displayed in Eq. (29) has been used and the number of terms
used was varied according to the values of M1 and γ until
four significant digits were assured. We would be tempted to
assume complete similarity, as is usual in dimensional analysis
[28], and eliminate, for example, the Mach number M1 as an
argument of the function f for very strong shocks and hence
infer that the function f is only dependent on γ for M1 � 1.
The validity of this assumption can be confirmed by looking
at Fig. 2 in the strong shock limit. In Fig. 3 we show the same

FIG. 2. (Color online) The tangential velocity δvyp at the rigid
piston surface when the shock is very far away as a function of the
shock Mach number M1 for different values of γ . The perturbation
velocity is normalized in units of kψ0c2.
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FIG. 3. (Color online) The tangential velocity δvyp at the rigid
piston surface when the shock is very far away as a function of the
shock Mach number M1 for different values of γ . The perturbation
velocity is given in units of kψ0c1.

tangential velocity δvyp as a function of M1 for different values
of γ but in units of kψ0c1. This requires us to multiply the result
of Eq. (43) by the ratio c2/c1 given in Eq. (3). We see that all
the curves are parallel straight lines for strong shocks in the
logarithmic plot. This means that the dimensional velocity δvyp

is proportional to the shock speed D at high-enough values of
M1. The proportionality factor is dependent on the nature of
the fluid and will be estimated soon below in the strong shock
limit as a function of γ . In the following subsections, Eq. (43)
will be studied in the different relevant physical limits of very
weak and very strong shocks. The scaling seen in Fig. 3 at high
values of M1 can be easily deduced from the scaling obtained
in Fig. 2. In fact, we have written above the following:

δvyp

kψ0c2

∣∣∣∣
τ→∞

= f (γ,M1), (46)

for some dimensionless function f . For very strong shocks,
we know that M1 � 1 is not a relevant parameter and hence

f (γ,M1 � 1) ≡ g1(γ ), (47)

for some dimensionless function g1. Besides, it is easy to
see from Eq. (3) that c2 ∝ c1M1 in the strong shock limit.
Therefore, upon substitution in the equations above, we get
for the asymptotic velocity at the piston surface

δvyp

c2

∣∣∣∣
τ→∞

<
δvyp

c1

∣∣∣∣
τ→∞

∝ M1. (48)

If γ = 1, from Eq. (3) we see that c2 = c1, which explains the
behavior observed in Figs. 2 and 3.

1. Weak shock regime (M1 − 1 � 1)

The weak shock limit is interesting, as it requires the sim-
plest mathematical description and is more easily accessible
in laboratory experiments [5]. For very weak shocks, we get

from Eqs. (4), (15), and (37) the following:

sinh χs
∼= 1√

2
√

M1 − 1
+ (−5 + 3γ )

√
M1 − 1

4
√

2(γ + 1)

− (21 − 38γ + 5γ 2)(M1 − 1)3/2

32(
√

2(γ + 1)2)

+O[(M1 − 1)5/2],

� ∼= 4(M1 − 1)2

γ + 1
− 8(γ − 1)(M1 − 1)3

(γ + 1)2

+ (29 − 30γ + 5γ 2)(M1 − 1)4

(γ + 1)3
+ O[(M1 − 1)5].

(49)

For the value of P̃s(χs) we go to Eq. (32), substitute s =
sinh χs , and use the coefficients p̃s1, p̃s3, and p̃s5. These
coefficients have to be obtained directly from the functional
equation [Eq. (27)] and expand up to order 5 in powers of
M1 − 1. We only show the final results, as writing explicitly
the analytical formulas for psj is actually very lengthy and
does not clarify the physics much more here. We thus write
for vp the following:

vp = δvyp

kψ0c2

∣∣∣∣
M1−1�1

∼= 8(M1 − 1)3

(γ + 1)2

+ (25 − 39γ )(M1 − 1)4

(γ + 1)3

+ (71 − 190γ + 123γ 2)(M1 − 1)5

(γ + 1)4
+ O[(M1 − 1)6].

(50)

We can also express the tangential velocity in units of kψ0D,
which amounts to multiplying the above result by c2/D,

δvyp

kψ0D

∣∣∣∣
M1−1�1

∼= 8(M1 − 1)3

(γ + 1)2

+ (−31γ + 1)(M1 − 1)4

(γ + 1)3

+ 4(17γ 2 − 8γ + 7)(M1 − 1)5

(γ + 1)5

+O[(M1 − 1)6], (51)

or in units of kψ0U , after multiplying Eq. (50) by c2/U ,

δvyp

kψ0U

∣∣∣∣
M1−1�1

∼= 2(M1 − 1)2

γ + 1

+ (−19γ + 13)(M1 − 1)3

4(γ + 1)2

+ 47γ 2 − 146γ + 63

8(γ + 1)3
(M1 − 1)4

+O[(M1 − 1)5]. (52)

In Fig. 2 we have only shown the envelope of the above
equation for γ = 1 with the velocity normalized with c2. In
Fig. 4 we show δvyp in units of kψ0U for three different
gases with γ equal to 7/5, 5/3, and 3. Weak shock asymptotic
expansions [Eqs. (50)–(52)] are shown superposed to the exact
curves.
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FIG. 4. (Color online) The tangential velocity δvyp in units of
kψ0U at the rigid piston surface when the shock is very far away as
a function of the shock Mach number M1 for different values of γ .
The weak shock asymptotic from Eq. (52) is shown.

2. Strong shock limit (M1 � 1)

In this other regime, the plots look apparently different
depending on the normalization used. When using c2 as a
characteristic velocity, we see from the strong shock behavior
that the curves tend to a constant for M1 � 1, with the limiting
value being a function of γ . If we use c1 as the normalization
velocity, the plots look like straight parallel lines in the double
logarithmic plot. This means that the asymptotic velocity is

proportional to the shock speed and the proportionality factor
is a function of γ . In the ideal limit of γ → 1, this factor equals
unity. The limiting behavior for γ = 1 at very strong shocks
can be easily inferred from Eq. (27). At first we note that for
γ ≡ 1 and M1 � 1 it is as follows:

� ∼= M3
1

2
+ O

(
1

M2
1

)
,

(53)

sinh χs
∼= 1

M2
1

+ O

(
1

M3
1

)
.

The value of P̃s(q = χs) needs to be obtained from the
functional equation again. In this limit, we see that sinh χs ≈ 0,
hence it is enough to compute P̃s(0). The functions λ1 and λ2

must be evaluated at sinh q = 1/M1. Going back to Eq. (31)
and expanding in powers of 1/M1 we obtain the following:

λ1
∼= − 4

M1
,

(54)
λ2

∼= −1,

which gives, after substitution into Eq. (43),

ṽp(γ = 1,M1 � 1) ∼= M1. (55)

For other realistic values of γ > 1, the asymptotic velocity
at the piston is always proportional to D for strong shocks
(typically for M1 > 3). The proportionality factor depends on
γ and can be calculated with an appropriate expansion in
powers of 1/M1. We change the normalization velocity from
c2 to D and make an expansion in powers of 1/M1 for each
factor that enters into the formula for ṽp. Actually, it is enough
to calculate the limiting values of these expressions in the limit
M1 � 1. We show each factor separately as follows:

� ∼=
√

2γ

(γ − 1)3/2
+ O

(
1

M2
1

)
,

sinh χs
∼=

√
γ − 1

γ + 1
+ O

(
1

M2
1

)
, (56)

P̃s(χs) ∼= −2(γ − 1)(2γ 4 + 165γ 3 − 253γ 2 + 95γ − 1)
√

γ 2 − 1

(2γ − 1)(γ 5 + 291γ 4 − 476γ 3 + 228γ 2 − 29γ + 1)
.

We show the strong shock limit of the tangential velocity at the piston, in units of kψ0c2, kψ0D, and kψ0U , respectively,

δvyp

kψ0c2

∣∣∣∣
M1�1

∼= 2(2γ 4 + 165γ 3 − 253γ 2 + 95γ − 1)

(2γ − 1)(γ 5 + 291γ 4 − 476γ 3 + 228γ 2 − 29γ + 1)

√
2γ

γ − 1
, (57)

δvyp

kψ0D

∣∣∣∣
M1�1

= 4γ (2γ 4 + 165γ 3 − 253γ 2 + 95γ − 1)

(γ + 1)(2γ − 1)(γ 5 + 291γ 4 − 476γ 3 + 228γ 2 − 29γ + 1)
, (58)

δvyp

kψ0U

∣∣∣∣
M1�1

= 2γ (2γ 4 + 165γ 3 − 253γ 2 + 95γ − 1)

(2γ − 1)(γ 5 + 291γ 4 − 476γ 3 + 228γ 2 − 29γ + 1)
. (59)

In Fig. 5 we show δvyp/(kψ0U ) as a function of M1 and the
results are compared with the strong shock limits given in
Eqs. (57)–(59).

B. Free surface

In this case, we require the vanishing of the piston pressure
perturbations at any time. By looking at Eq. (12), we realize
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FIG. 5. (Color online) The tangential velocity δvyp in units of
kψ0U at the rigid piston surface when the shock is very far away as
a function of the shock Mach number M1 for different values of γ .
The strong shock asymptotic from Eq. (59) is shown.

that the piston tangential velocity does not change in time and
hence δvyp = ṽs0kψ0c2. Thus the boundary condition relating
the normal and tangential velocities at the piston [Eq. (42)]
now reads as follows:

up = δvxp

kψ0c2

∣∣∣∣
τ→∞

= ṽs0 + � sinh χsP̃s(q = χs). (60)

The value of P̃s has to be evaluated from Eq. (29) and the
functions must be defined in Eq. (31). In Fig. 6 we plot the

FIG. 6. (Color online) The normal velocity δvxp at the rigid
piston surface when the shock is very far away as a function of the
shock Mach number M1 for different values of γ . The perturbation
velocity is normalized in units of kψ0c2.

FIG. 7. (Color online) The normal velocity δvxp at the rigid
piston surface when the shock is very far away as a function of the
shock Mach number M1 for different values of γ . The perturbation
velocity is normalized in units of kψ0c1.

value of up as a function of the shock Mach number M1 for
different values of the adiabatic exponent γ . The same is done
in Fig. 7, but the normalization velocity used here is c1 instead
of c2. Very high values of γ have been included as case studies
in Figs. 6 and 7. Even though these values do not correspond to
ideal gases, it is known that high values of γ are used to roughly
model substances in liquid or solid state. At a given value of
M1, the dimensionless velocity δvxp/(kψ0c1) increases at first
as γ decreases from higher values, reaching a maximum value
at some lower γ to later decrease as γ → 1. The curious
result is that for the ideal case of γ = 1, the dimensionless
asymptotic velocity tends to π/2 in the strong shock limit.
This last result was derived for the first time in Ref. [18],
when studying the physics of corrugated shocks driven by
an ablation surface. Here we confirm that prediction in the
limit of highly compressible fluids and very strong shocks.
To reach this limit, the number of terms used in Eq. (29)
is very high, above 100 terms inside the summation, and the
number increases further as M1 is increased. For this particular
case, the solution found for the functional equation is very
slowly convergent, as high-order shifts are needed to increase
accuracy. This is due to the fact that in the ideal case of γ ∼= 1
and M1 � 1, the shock and the piston travel essentially at
the same speed and it may take an almost infinite amount of
time for the shock to separate from the piston. Hence all the
infinite reverberations are important to describe the pressure
field between both surfaces. This is mathematically equivalent
to include higher and higher-order shifts in multiples of 2χs

inside the arguments of the functions λ1 and λ2. As discussed
for the rigid piston situation, a similar dimensional analysis
leads us from the scaling shown in Fig. 6 to Fig. 7. It is enough
to change δvyp for δvxp. In the strong shock limit we get, from
Fig. 6 the scaling

δvxp

c2

∣∣∣∣
τ→∞

∝ g2(γ ) (61)
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FIG. 8. (Color online) Normal velocity perturbation at the free
piston surface in units of kψ0U for three different values of γ (7/5,
5/3, and 3) as a function of the shock Mach number M1. Also shown
are the asymptotic limits for weak shocks as explained in the text.

for some dimensionless function g2. As c2 ∝ M1c1 in the
strong shock limit, it follows the proportionality seen in Fig. 7
in the strong shock regime. When γ = 1, the independence of
δvxp on M1 � 1 follows directly from Eq. (61) and the fact
that c2 = c1 as deduced from Eq. (3).

As we have done in the previous subsection, we now discuss
the limit of weak shocks.

1. Weak shock regime (M1 − 1 � 1)

For very weak shocks, we use the same scalings as in
Eq. (53). However, P̃s(q = χs) has a different behavior with
respect to γ and M1. The values of p̃s1, p̃s3, and p̃s5 for this
case are calculated from the corresponding functional equation
for the shock pressure perturbations in the free surface case
(Figs. 8 and 9). We expand them in powers of M1 − 1, use the
formulas shown in Eq. (49), and substitute into Eq. (60) and
write the following:

up(M1 − 1 � 1)

= δvxp

kψ0c2

∣∣∣∣
M1−1�1

∼= 4(M1 − 1)

γ + 1
+ (−10γ + 6)(M1 − 1)2

(γ + 1)2

+ (26γ 2 − 36γ + 2)(M1 − 1)3

3(γ + 1)3
+ O[(M1 − 1)4]. (62)

We also show the expansion for the same velocity but in units
of kψ0D as follows:

δvxp

kψ0D

∣∣∣∣
M1−1�1

∼= 4(M1 − 1)

γ + 1
− 6(M1 − 1)2

γ + 1

+ 8γ (M1 − 1)3

(γ + 1)2
+ O[(M1 − 1)4]. (63)

This scaling differs from the scaling found in the weak shock
limit of the rigid piston for the tangential velocity. From
Eq. (62), we see that the normal velocity is proportional to

FIG. 9. (Color online) Normal velocity perturbation at the free
piston surface in units of kψ0U for three different values of γ (7/5,
5/3, and 3) as a function of the shock Mach number M1. Also shown
are the asymptotic limits for strong shocks as explained in the text.

the fluid velocity M1 − 1, for very weak shocks, as does
the compressed fluid velocity in that limit. Therefore, it
may be useful to rewrite the previous formula using U as
the normalization velocity. From the above equation, after
multiplying by c2/U and expanding up to third order, we
obtain the following:

δvxp

kψ0U

∣∣∣∣
M1−1�1

∼= 1 − 2(M1 − 1)2

3(γ + 1)
+ O[(M1 − 1)3]. (64)

We see that all the curves start from unity at M1 = 1,
which means that for weak shocks it is δvxp

∼= kψ0U and
the approximation is not too bad up to shocks of moderate
strength. The scaling changes drastically for very strong
shocks, similarly to what happened with the tangential velocity
for the rigid piston situation. As the shock strength increases,
the normal velocity perturbation is no longer proportional to
U but becomes proportional to D. This behavior is shown in
the following subsection.

2. Strong shock regime (M1 � 1)

We proceed similarly as with the rigid piston. We only need
to calculate the corresponding value for P̃s(q = χs). We get
the following:

P̃s(χs) ∼= −
√

γ 2 − 1

γ (2γ + 1)

× 122γ 4 − 227γ 3 + 139γ 2 − 25γ − 1

144γ 4 − 239γ 3 + 115γ 2 − 13γ + 1
. (65)
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We use � and sinh χs from Eq. (56). The asymptotic value of the initial tangential velocity is ṽs0
∼= √

2/[γ (γ − 1)]. Collecting
these results together, we obtain the desired asymptotic limit as follows:

δvxp

kψ0c2

∣∣∣∣
M1�1

∼= 8(3γ − 1)(12γ 2 − 15γ + 5)
√

2γ (γ − 1)

(2γ − 1)(144γ 4 − 239γ 3 + 115γ 2 − 13γ + 1)
. (66)

The previous expansion of the velocity δvxp can also be expressed in units of kψ0D as follows:

δvxp

kψ0D

∣∣∣∣
M1�1

∼= 16γ (γ − 1)(3γ − 1)(12γ 2 − 15γ + 5)

(γ + 1)(2γ − 1)(144γ 4 − 239γ 3 + 115γ 2 − 13γ + 1)
, (67)

or, in units of kψ0U ,

δvxp

kψ0U

∣∣∣∣
M1�1

∼= 8γ (γ − 1)(3γ − 1)(12γ 2 − 15γ + 5)

(2γ − 1)(144γ 4 − 239γ 3 + 115γ 2 − 13γ + 1)
. (68)

IV. ASYMPTOTIC VELOCITIES: APPROXIMATE
FORMULA FOR ANY SHOCK STRENGTH

In the previous section we have shown the asymptotic limits
of the piston velocities either for rigid or free surfaces in
the limits of weak and strong shocks. The main conclusion
of Sec. II is that at any surface driving a corrugated shock,
asymptotically in time, normal and/or tangential velocity
perturbations develop on it. These velocities are, in some
cases, accessible to experimental measurement or numerical
calculation, which makes them an exquisite tool with which
to test the theoretical models used to describe the particular
problem under study. Therefore, they become an important
quantity for research in the domain of HEDP. This is the
main reason why analytical models that study hydrodynamic
perturbations from first principles, like the calculations shown
here, are relevant. In Sec. II we have arrived at the conclusion
that the normal and tangential velocity components at the
piston are always related in the way shown in Eq. (42). This
is the unique boundary condition to be asked at any “passive”
surface like the piston in the problems considered here. The
relationship between δvxp and δvyp expressed in Eq. (42) is
not trivial and not evident a priori. In fact, we have had to
develop the whole perturbation theory for the shock and the
downstream profiles in order to arrive at it. Equation (42)
is the only correct boundary condition to be applied at any
“passive” surface driving a shock if we want to successfully
calculate those velocities in any range of shock strengths or
fluid compressibilities. In this work, we have concentrated
on a single fluid, inside which a single shock is moving, as
the calculations are simpler and serve as a starting step to
the more complex problem of two fluids. The weak shock
expansions shown in Eqs. (50)–(52) for the rigid piston case
and Eqs. (62)–(64) for the free surface case are valid for Mach
numbers below approximately 1.4. To go further we would
need a larger number of coefficients (p̃s7, etc.) inside the
expression of P̃s(χs), which makes this expansion not practical
for M1 > 1.4 and it probably could not go much beyond
that. On the opposite side, for very large Mach numbers, we
have obtained the limiting values of the velocities, which are
functions of γ , as given in Eqs. (57)–(59) for the rigid piston
and Eqs. (66)–(68) for the free surface problem. The question
that remains to be answered is as follows: What can we say

for the range of moderate strength shocks, that is, inside the
very important interval 1.4 < M1 < ∞. Interpolating between
the asymptotic expansions certainly could be a way, but
the formulas so obtained might not respect the physics that
underlies the perturbation dynamics in that range. Fortunately,
the function [Eq. (34)] suggested in Sec. II is a very good
estimate for the shock pressure function P̃s for not very
compressible gases at any M1 value. This requires us to use
γ > 1.1 as a constraint. If we want to study lower values of
γ , more iterations should be performed. Therefore, we can
write approximate and accurate formulas for the asymptotic
velocities under these restrictions. We have, for the rigid piston
tangential velocity at the piston,

δvyp

kψ0c2
= −� sinh χs

{
λ1(χs) + λ2(χs)

[
λ1(3χs)

1 − λ2(3χs)

]}
,

(69)

where λ1(q) and λ2(q) for the rigid piston case are given in
Eqs. (28). For the free surface, the approximate expression for
the asymptotic normal velocity at the piston is given by the
following:

δvxp

kψ0c2
= ṽs0 + � sinh χs

{
λ1(χs) + λ2(χs)

[
λ1(3χs)

1 − λ2(3χs)

]}
,

(70)

where ṽs0 = δvys(0+)/(kψ0c2) is the dimensionless initial
tangential velocity created between the shock and the piston
at t = 0+. The functions λ1(q) and λ2(q) that enter the last
equation for the free surface case are given in Eq. (31). In
Fig. 10 we compare the predictions of Eq. (69) with the exact
result for the rigid piston case for three values of γ . The same
is done with Eq. (70) for the free surface case in Fig. 11.
To summarize the discussion of the past two sections, we
may add that the results of the expansions of Sec. III are
easy to use, without any sophisticated software, and could be
ideally implemented with a pocket calculator, when needed, as
they involve polynomial expressions in M1 − 1, or 1/M1, and
rational expressions of γ . However, the approximate formulas
given in Eqs. (69) and (70) need at least a symbolic software
like MATHEMATICA or MAPLE in order to define all the quantities
given in Sec. II, as a function of shock strength M1 and fluid
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FIG. 10. (Color online) Comparison of the exact and approxi-
mate values [according to Eq. (69)] of the piston tangential velocity
perturbation as a function of the shock Mach number.

isentropic exponent γ in order to define the functions λ1 and
λ2, which is necessary to get the asymptotic velocities.

V. FREE SURFACE NORMAL VELOCITY
DEPENDENCE ON γ

To see the absolute dependence of δvxp on γ , we show
the normal velocity in units of vckψ0, where the characteristic

FIG. 11. (Color online) Comparison of the exact and approxi-
mate values [according to Eq. (70)] of the free surface normal velocity
perturbation as a function of the shock Mach number.

FIG. 12. (Color online) Normal velocity perturbation at the
piston normalized with vc as a function of γ for different values
of M1.

velocity vc = √
p1/ρ1, in Fig. 12. In this way, there is no

dependence on γ for the factor we use to normalize the
perturbation velocity. We see in Fig. 12 that at any given value
of M1 the normal velocity reaches a maximum value for some
value of the isentropic exponent which we indicate with γm.
We also show the curves (dashed) that represent the asymptotic
expansion of δvxp/(kψ0vc) in powers of 1/γ . This expansion
is given in Eq. 71 as follows:

δvxp

kψ0vc

∣∣∣∣
γ�1

∼= 2
(
M2

1 − 1
)

M1

1

γ 1/2

+ 1

−72M11
1 + 84M9

1 − 32M7
1 + 4M5

1

× (
205M12

1 − 559M10
1 + 628M8

1 − 390M6
1

+ 141M4
1 − 27M2

1 + 2
) 1

γ 3/2
. (71)

In Fig. 13 we show the dependence of γm on M1. We note that
there is a maximum value for γm, equal to γ max

m = 2.822 . . . ,
reached at M1 � 1. In Fig. 14 we show the maximum value of
the normal velocity perturbation (δvxpm), achieved only at γ =
γm as a function of M1. The curious result, not obvious from
the equations used to obtain it, is that δvxpm scales linearly for
almost any value of M1 > 1, except perhaps very near M1 = 1.
The dashed line in Fig. 14 satisfies δvxpm ∼ 0.724 M1. For a
given shock Mach number, this is the maximum attainable
perturbation velocity at the piston and for any other fluid with
γ �= γm, and the piston velocity perturbation would be smaller
than the value predicted from Fig. 14.
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FIG. 13. (Color online) Value γm of the isentropic exponent for
which the normal velocity perturbation at the piston is the maximum
possible at the given shock Mach number M1.

VI. SUMMARY

We have presented an analytic model to study the linear
RM-like flow that develops between a corrugated shock and
the piston driving it. Rigid and free surface conditions were
imposed at the left piston surface. Even though the solution to
the wave equation is independent of the equation of state, the

FIG. 14. (Color online) Maximum value of the normal velocity
perturbation at the piston, reached at γ = γm, as a function of the
shock Mach number M1.

results shown here consider an ideal gas but are not limited
in principle with this constraint. The asymptotic velocities
that develop between both surfaces are strongly dominated
by the vorticity generated at the shock during the whole
time evolution, which is dependent on the shock pressure
perturbations. In the reference frame of the compressed fluid,
these velocity fields are steady state and the perturbations
at the piston reach an asymptotic value when the shock is
far enough. The accurate determination of these velocities
(either tangential or normal to the piston surface) is an
important diagnostic tool, useful for the design of numerical
or real experiments. The results and the method of calculation
developed here constitute the first step of more complex
calculations aimed at deriving explicit analytical expressions
for the classical two-fluid RM instability problem. The main
mathematical difficulty to get the asymptotic velocities at an
arbitrary shock strength or fluid compressibility is represented
by the mathematical complexities of the functional equation
for the shock pressure fluctuations. We cannot avoid dealing
with Eq. (27). It has the information of the perturbation
fields (pressure, velocities, densities, etc.) in the whole space
between the shock and the piston. For all these years we have
been unable to find a closed-form expression for the solution of
that equation and this is the reason why we have to rely either
on approximate expansions at some physical limits (weak or
strong as in Sec. III) or to devise an approximate formula that
describes the whole interval (1 � M1 < ∞) in some restricted
domain of the isentropic exponent γ . In fact, in Sec. IV
we see that iterating once on the functional equation allows
us to get at least two-digit accuracy for shocks of arbitrary
strength if we stay above γ > 1.1. As we approach the high
compressibility limit (M1 > 5, γ − 1 � 1), the shock takes a
longer time to reach its asymptotic planarity and its ripple
makes more oscillations which in turn are responsible for
generating larger vorticity. Equivalently, we could say that
sound-wave production becomes very important as the shock
Mach number increases and the interaction with the piston
surface lasts for a longer time. The effect of this prolonged
interaction is in the final values of the tangential or normal
velocities at the piston, depending on the piston boundary
condition. The advantage of the results of Sec. III is that those
expansions can be easily calculated without any sophistication
in mathematical software. The disadvantage of those results
is that they are limited to M1 < 1.4. The best strategy we
have found for the interval M1 > 1.4 is to use the results of
Eqs. (69) and (70). The agreement between the exact solution
and the approximate ones is very good for almost any shock
Mach number if γ is not very near unity, as can be seen in
Figs. 10 and 11. From dimensional arguments, the scaling
δvxp,δvyp ∼ D can be seen in the strong shock limit for
both piston boundary conditions. For weak shocks, the useful
scaling δvxp ∼ U is noteworthy in the free surface problem.
Finally, we show here two additional plots, for the rigid and
free surfaces, respectively. In the horizontal axis we plot the
asymptotic velocity at the piston in units of the shock speed and
in the vertical axis we plot the same velocity but in units of the
compressed fluid velocity. These figures have curious shapes
and reveal in qualitative form the complex behavior of the
asymptotic velocities as a function of the shock Mach number.
In Fig. 15 we show this for the tangential velocity at the piston

053007-14



ANALYTICAL ASYMPTOTIC VELOCITIES IN LINEAR . . . PHYSICAL REVIEW E 90, 053007 (2014)

FIG. 15. (Color online) Exact tangential asymptotic velocity at
the rigid piston for different ideal gases. The horizontal axis is scaled
with the shock speed and the vertical axis is normalized with the
compressed fluid velocity.

and all the curves practically overlap each other for the range of
γ values studied. The weak shock limit starts at the point with
coordinates (0,0) and the very strong shock limit asymptotic
is the ending point of each curve. In the plots shown here,
M1 = 100 was used, which was considered enough to reach
the high-compression limit. The same is shown in Fig. 16.
The weak shock limit here corresponds to the point with
coordinates (0,1). All the curves start practically together and
separate when M1 > 1.4 and show a distinctive behavior as
compared to the rigid piston in the strong shock limit.

The results shown here are preliminary calculations before
studying the standard RM instability with two fluids in order

FIG. 16. (Color online) Exact normal asymptotic velocity at the
free surface for different ideal gases. The horizontal axis is scaled
with the shock speed and the vertical axis is normalized with the
compressed fluid velocity.

to obtain useful and accurate analytical expressions for shocks
of arbitrary strength and fluids with arbitrary compressibility.
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