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Effective surface dilatational viscosity of highly concentrated particle-laden interfaces
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The effective surface dilatational viscosity is calculated of a flat interface separating two immiscible fluids
laden with half-immersed monodisperse rigid spherical non-Brownian particles in the limit of high particle
concentration. The derivation is based upon the facts that (i) highly concentrated particle arrays in a plane form
a hexagonal structure and (ii) the dominant contribution to the viscous dissipation rate arises in the thin gaps
between neighboring particles.
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I. INTRODUCTION

Colloidal particles can adsorb irreversibly at the interfaces
between two fluids [1]. The capability of the adsorbed particles
to stabilize emulsions has been known since the early 20th
century [2,3]. This property has applications in many industrial
sectors, such as food processing [4], biomedicine [5], and the
petroleum industry [6].

Fluid interface with a small concentration of the adsorbed
particles can be regarded as a two-dimensional (2D) fluid [7].
It is possible to increase surface concentration of particles
by either adding new particles to the interface or changing
the surface area [8–13]. As the concentration increases, the
interface laden with spherical particles undergoes transition to
a 2D crystal state [14] with a possible intermediate hexatic
phase between liquid and solid phases [15–17]. Further
increase in particle concentration results in buckling of the
interface [8–13] and allows producing stable nonspherical
armored bubbles [18,19].

Highly concentrated particle-laden interfaces have recently
received significant attention as the basis of new soft materials
with tunable properties. It has been proposed that colloidal
microcapsules formed by self-assembly of particles at the
interface of emulsion droplets (“colloidosomes”) can used as
a tool for controlled delivery of drugs, food, and cosmetic
supplements [5,20–22]. Nonsticking fluid droplets encapsu-
lated with solid particles (“liquid marbles”) have potential
applications in sensors, chemical and biological microreactors,
and droplet microfluidics [23,24]. Bicontinuous interfacially
jammed emulsion gels (“bijels”), a new class of soft materials
stabilized solely by colloidal particles, can potentially serve as
a cross-flow microreaction medium [25–27]. Porous materials
with controlled porosity and pore sizes can be produced by
removing fluid from particle-stabilized emulsions [28]. The
effectiveness of colloidal particles in stabilizing emulsions
(“Pickering emulsions”) also depends on the formation of a
sufficiently dense layer of particles at the fluid interface [29].

The surface rheology of particle-laden interfaces is an im-
portant factor in the stability of particle-laden films, emulsions,
and foams, as well as in their kinetics, such as break-up and
coalescence [30,31]. We may expect the surface rheology to
play an even larger role at larger particle concentrations, when
the gaps between particles are small but not zero. Knowledge
of interfacial rheology in this regime may be important for
design of efficient manufacturing procedure of the materials
based on jammed particle-laden interfaces, mentioned above,

from the lower-concentration particle-laden systems, or for
the prediction of their viscoelastic properties. This motivates
study of the rheology of highly concentrated particle-laden
interfaces.

At sufficiently high concentrations the particle-laden inter-
faces exhibit viscoelastic behavior [29,32]. Generally viscous
and elastic contributions to the surface stress can be separated
[33]. A particle-laden interface at large scale can be regarded
as continuous, described, in particular, by the effective surface
viscosities [34].

For isotropic interfaces the viscous contribution is well
described by a Boussinesq-Scriven model with surface shear
and dilatational viscosities as the material properties [35].
Isotropic change in the surface area results in a purely
dilatational surface flow with the surface velocity field

vs = αr, (1)

where α is the dilatation rate. The corresponding rate-of-strain
tensor is isotropic,

S = αIs , (2)

where Is is the surface unit tensor. In this case the viscous
contribution to the surface stress tensor, σ v = ζsS, contains a
single material parameter, dilatational viscosity ζs .

The origin of excess dissipation in particle-laden interfaces
lies in modification by the particles of the flow in the bulk
fluids that surround the interface. In the extreme case of small
concentration of the adsorbed particles the interaction between
particles is small, and the interface is purely viscous. In this
limit it is possible to calculate effective surface dilatational
viscosity of the fluid interface laden with half-immersed
monodisperse spherical particles [34]:

ζs = 5(η1 + η2)Rφ, (3)

where η1 and η2 are shear viscosities of the surrounding bulk
fluids, R is the radius of the adsorbed particles, and

φ = πR2N

A
(4)

is the surface concentration of the particles, with N being the
number of particles in surface area A.

In this work the result is presented for the calculation of
the effective surface dilatational viscosity in the opposite case
of large particle concentrations, which complements the low-
concentration result given by Eq. (3).
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FIG. 1. Hexagonal lattice of spherical particles under dilatational
flow.

II. DERIVATION OF THE RESULT

We consider a system of identical rigid spherical particles
of radius R adsorbed at the flat interface between two
incompressible fluids. We neglect gravity and assume that
the interfacial tensions favor a contact angle π/2, so that
the particles are located with the equator coinciding with the
interfacial plane.

Different types of interaction between particles trapped at
fluid interfaces are possible [36]. We consider the case when
the effective interaction between the particles is repulsive,
so that they do not agglomerate and the system remains
homogeneous. The densest packing of circles in the plane is
the hexagonal (honeycomb) lattice, which has packing density

φm = π

2
√

3
. (5)

We consider a large surface concentration of the adsorbed
particles, given by Eq. (4), and assume that they are arranged
in a hexagonal lattice as shown in Fig. 1. The gap between
the particles’ surfaces, h, is expressed in terms of the surface
concentration of the particles, φ, by

1

h
= 1

2R

( √
φ/φm

1 − √
φ/φm

)
. (6)

We consider the system being subjected to the flow such
that the surface flow field, if unperturbed by particles, would
be purely dilatational, given by Eq. (1). Due to symmetry of the
system, the neighboring particles move with respect to each
other with relative velocity

v = α(2R + h), (7)

shown in Fig. 1. We assume the interface to be macroscopically
thin, having a surface tension sufficiently large to keep the fluid
interface flat in the flow.

Frankel and Acrivos [37] established that in highly concen-
trated three-dimensional suspensions subjected to shear flow
the dominant contribution to the viscous dissipation rate comes
from the gaps between neighboring particles. They found that
the asymptotic rate of viscous dissipation in the fluid with
shear viscosity η between two spheres approaching each other

with relative velocity v is given by

Ė = 3π

4
ηv2R

R

h
+ O

(
ln

(
h

R

))
. (8)

The derivation was based on the exact solution of Stokes
equations by Brenner [38]. Further terms in expansion (8)
can be obtained using the asymptotic expansion of lubrication
force given by Jeffrey [39].

We consider the system with a flat particle-laden interface
which is symmetric with respect to the interfacial plane z = 0.
If shear viscosities of both bulk fluids are equal, the presence
of the interface between two bulk fluids does not change
the solution of the hydrodynamic equations by Brenner [38]
provided surface tangential stress is negligible. This condition
is satisfied if there is no additional adsorbed species at the
interface, such as surfactants. In the case of different viscosities
there is a stress jump across the interface. It is straightforward
to show that the tangential traction at the interface equals zero
for the flow symmetric with respect to the axis that joins the
centers of two particles. The normal traction due to the pressure
jump is compensated by surface tension if it is strong enough,
so that the interface remains flat. For this to occur, the Laplace
pressure,

pL ∼ σ

R
, (9)

σ being surface tension, must be large compared to the pressure
difference at the interface between two fluids. In lubrication
flow the excess pressure in the fluid is of order ηvR/h2,
yielding the pressure jump

pflow ∼ |η1 − η2||α|R2

h2
. (10)

The condition pL � pflow can be cast in the form

|α| � σh2

|η1 − η2|R3
, (11)

meaning that the interface is flat if the dilatation rate α is small
enough. This condition is satisfied in most practical situations
involving colloidal particles.

Thus, if condition (11) is satisfied, there is no additional
traction due to the presence of the interface between the fluids.
As a result, the velocity field remains the same as for the
one-fluid problem without the interface. Viscous dissipation
in the domain occupied by each bulk fluid will be proportional
to the value of corresponding shear viscosity. Therefore, the
asymptotic rate of viscous dissipation in the system can be
written as a sum of the contributions from each bulk fluid,

Ė = 3π

8
(η1 + η2)

v2R2

h
. (12)

In order to calculate the effective dilatational viscosity
we shall follow the approach pioneered by Einstein [40]
and equate expressions for the rate of viscous dissipation
calculated in two ways. First, we consider the system as
homogeneous, having an effective continuum interface with
effective surface dilatational viscosity ζs . Second, we consider
the energy dissipation in presence of particles explicitly.

The energy dissipation rate due to dilatational surface
flow in a homogeneous surface characterized by dilatational
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FIG. 2. Asymptotic behavior of dilatational viscosity at low [line
A, Eq. (3)] and high [line B, Eq. (18)] particle concentrations. Crosses
correspond to the numerical results by Edwards and Wasan [41].

viscosity ζs is [35]

Ėh = ζs(Tr S)2A, (13)

where A is the area of the interface. In our case A equals the
area of the hexagonal array of N particles:

A = N

√
3

2
(2R + h)2. (14)

Substituting (Tr S)2 = 2α2 in accordance with Eq. (2), we
obtain

Ėh = N
√

3ζsα
2(2R + h)2. (15)

For dilatational flow in concentrated particle-laden inter-
face we have

Ėp = 3N
3π

8
(η1 + η2)

v2R2

h
, (16)

where 3N is a number of lubrication areas between N

hexagonally arranged particles. Substituting Eqs. (5), (6), and
(7) yields

Ėp = N
9π

16
(η1 + η2)α2R(2R + h)2

( √
φ/φm

1 − √
φ/φm

)
. (17)

Equating two expressions for the energy dissipation rate,
(6) and (17), we finally obtain the formula for the effective
dilatational viscosity at a large concentration of particles,

ζs = 3
√

3π (η1 + η2)R

16(
√

φm/φ − 1)
. (18)

This result, together with the low-concentration asymptotics
given by Eq. (3), is plotted in Fig. 2.

III. DISCUSSION

The derivation presented in the previous section is based
on the idea put forward by Frankel and Acrivos [37], who
suggested that fluid flow in the gaps between neighboring
particles gives the dominant contribution to the viscous
dissipation rate in the highly concentrated suspension, and

they used this idea to calculate the effective shear viscosity
of highly concentrated three-dimensional suspensions of solid
spherical particles. We shall now discuss possible caveats of
this model and their implications on our result.

Frankel and Acrivos considered arrangement of particles in
a lattice of fixed geometry. To reconciliate their results with
the experimental data, they employed the semiempirical cage
model [42] to calculate the viscous dissipation rate and found
that the best agreement with the available experimental data is
achieved for the cubic arrangement of the particles. However,
a condition of fixed particle arrangement is not fulfilled in
shear flow and is at best an instantaneous configuration. This
fact together with nonuniqueness of the cage model makes the
result by Frankel and Acrivos empirical and requires fitting to
the experimental data. Returning to our system we note that,
in contrast to shear flow, surface dilatational flow conserves
hexagonal arrangement of the particles on a surface, so there
is no need for empirical parameters in our model.

Berlyand et al. [43] considered fluid flow in highly concen-
trated strictly 2D suspensions and found that in two dimensions
different types of singular terms should be considered for
adequate description of the divergence of the dissipation rate.
In our case this complication does not arise because, although
particles are arranged on a 2D plane, fluid flow between them
remains three-dimensional. Moreover, of four types of flow
considered in Ref. [43], namely, the squeeze, the shear, and
two types of rotation, only the squeezing flow, considered in
our derivation, is present in purely dilatational flow.

Marrucci and Denn [44] analyzed the result by Frankel
and Acrivos and concluded that for the realistic configurations
of particles the averaging over relative pair positions of the
particles is incorrect, and the models based on regular lattice
may present a misleading picture of suspension behavior.
In our case the deviation of particles’ configuration from a
hexagonal lattice also requires separate analysis. However,
the presence of the repulsive interaction between particles
sufficient to make them non-Brownian removes this, otherwise
complicated, problem.

Edwards and Wasan [41] presented the results, shown in
Fig. 2, on the effective dilatational viscosity obtained by
numerical solution of Stokes equations for the case of adsorbed
spherical particles arranged in a square lattice. It is not
surprising that the high-concentration results are higher than
for hexagonal arrangement of particles because the distance
between particles arranged in a square lattice is less. It is less
clear why the data at lower concentrations, being larger than
predicted by low-concentration formula (3), change slower
than proportionally to the particle concentration φ.

Estimation of the concentration ranges at which the limiting
formulas for the dilatational viscosity, Eqs. (3) and (18), are
accurate requires separate investigation. A simple criterium
for the applicability of the high-concentration formula (18)
can be obtained by requiring viscous dissipation in lubrication
gaps between particles to be large compared to the rest of the
excess dissipation in the surrounding fluids. This requirement
is equivalent to the condition of dilatational analog of the
Saffman-Delbrück length [45],

l = ζs

η1 + η2
, (19)
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being large compared to the characteristic length for the excess
dissipation outside lubrication gaps, which is of order of
the particle size R. Expressing Eq. (18) in terms of h and
substituting the result in inequality l � R yields

h � 3
√

3π

8
R ∼ R, (20)

which is consistent with the initial assumption that the
lubrication gap should be small compared to the size of the
particles.

IV. CONCLUSION

We have obtained an asymptotic expression for the effective
surface dilatational viscosity of a flat interface separating
two immiscible fluids laden with half-immersed monodisperse
rigid spherical particles at a high concentration of the particles.
The derivation is based upon the facts that (i) highly concen-
trated particle arrays in a plane form a hexagonal structure,
and (ii) the dominant contribution to the viscous dissipation
rate arises in the thin gaps between neighboring particles.
Dilatational viscosity is given by Eq. (18) and diverges as
h−1, where h is the distance between neighboring particles’
surfaces.

It should be possible to verify this result by direct
experimental measurements. In the case of oscillatory flows
the present result, obtained for the case of stationary flow,

represents a low-frequency limit of frequency-dependent
dilatational viscosity.

The result can be extended in several ways. It should
be possible, with different degrees of complexity, to extend
the hydrodynamic model to the cases of different particle
shapes, size distributions, different contact angles between
the particles and the fluid interface, different curvatures of
the interface, combined shear+dilatational flow (e.g., in a
Langmuir trough), and so on. If particles adsorbed at the
fluid interface are small (“nanoparticles”), physical effects
not captured by the simple hydrodynamic model become
important and require further investigation, for example,
thermal motion of the particles and the interface [46], or
modification of fluid viscosity due to confinement [47,48] and
viscoelectric [49] effects.

The model for the dilatational viscosity can be used in con-
junction with appropriate model for interparticle interactions
to describe viscoelasticity of particle-laden interfaces [29].
The present result should allow extending the description of
viscoelastic properties to the case of high concentration of the
particles.
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