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Chemical convection in the methylene-blue–glucose system: Optimal perturbations
and three-dimensional simulations

Thomas Köllner,1,* Maurice Rossi,2 Frauke Broer,1 and Thomas Boeck1

1Insitute of Thermodynamics and Fluid Mechanics, TU Ilmenau, P. O. Box 100565, 98684 Ilmenau, Germany
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A case of convection driven by chemical reactions is studied by linear stability theory and direct numerical
simulations. In a plane aqueous layer of glucose, the methylene-blue-enabled catalytic oxidation of glucose
produces heavier gluconic acid. As the oxygen is supplied through the top surface, the production of gluconic
acid leads to an overturning instability. Our results complement earlier experimental and numerical work by Pons
et al. First, we extend the model by including the top air layer with diffusive transport and Henry’s law for the
oxygen concentration at the interface to provide a more realistic oxygen boundary condition. Second, a linear
stability analysis of the diffusive basic state in the layers is performed using an optimal perturbation approach. This
method is appropriate for the unsteady basic state and determines the onset time of convection and the associated
wavelength. Third, the nonlinear evolution is studied by the use of three-dimensional numerical simulations.
Three typical parameters sets are explored in detail showing significant differences in pattern formation. One
parameter set for which the flow is dominated by viscous forces, displays persistently growing convection cells.
The other set with increased reaction rate displays a different flow regime marked by local chaotic plume emission.
The simulated patterns are then compared to experimental observations.
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I. INTRODUCTION

Mass transport in fluids coupled to chemical reactions is
central to many processes in nature [1], chemical engineer-
ing [2], and geoengineering [3]. Convection and thereby mass
transport can be triggered due to density gradients (Rayleigh-
Bénard convection [4]), and/or to gradients in surface tension
(Marangoni convection [5]). The coupling of these forces and
gradients in chemical composition lead to complex dynamical
behaviors actively studied in the field of chemohydrodynam-
ics [6]. Paradigmatic theoretical or experimental studies of
chemohydrodynamic effects have focused on configurations
that are initially quiescent and spatially heterogeneous in
composition. In these systems, chemical reactions can take
place in one phase (single liquid phase) or in two phases
(immiscible liquid-liquid layers, gas-liquid phases).

One-phase systems have been studied with initial composi-
tional gradients parallel or perpendicular to gravity. For com-
positional gradients parallel to gravity, let us mention the acid-
base reaction with convection due to density effects [7–10],
autocatalytic fronts [11,12], and, recently, oscillating chemical
reactions [13]. For a compositional gradient perpendicular to
gravity, different reaction schemes have been studied with
buoyancy effects [14] as well as Marangoni effects occurring
at an interface with another physical domain (e.g., an air layer)
which is not involved in the chemical process [15,16]. Note
that when a reaction product is volatile and therefore migrating
in the other domain, as observed in the iodate-arsenous acid
reaction [17], the situation may be described as a two-phase
system.

Typical two-phase systems are immiscible liquid-liquid
layers, e.g., immiscible solvent phases that are stably stratified
with a compositional gradient in the direction of gravity due
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to phase specific solute loading. For two-phase systems, the
presence of an interface leads to several new consequences:
hindrance of species advection through the interface, interfa-
cial forces, differential solubility, and phase changes to name
only a few.

Often chemical reactions preferentially occur at the in-
terface causing Marangoni and Rayleigh-Bénard instabili-
ties [18–21]. One observes more variability in the possible
dynamical behaviors than for one-phase systems. An even
more complex situation is the presence of partially miscible
phases. Recently, the dissolution of alky formates in water
with their subsequent hydrolysis has been studied [22]. In such
situations, the Marangoni and Rayleigh-Bénard convection can
be tuned by dissolution of additional acids or bases.

Due to the experimental accessibility, numerous experi-
ments and related simulations in the field of chemohydrody-
namics1 have been done in a Hele-Shaw (HS) setup [18]: two
plates separated by a thin gap, which are able to enforce a
mostly two-dimensional situation. For instance, all the works
referenced above were concerned with these approximately
two-dimensional experimental or numerical situations. Truly
three-dimensional cases have been considered experimentally
in photochemical reactions near interfaces [23,24] or reactions
due to gas transfer [25]. An overview of experimental work
for systems with photochemical and mass transfer showing
density-gradient-driven convection can be found in [26].

Numerical analysis of chemohydrodynamic pattern forma-
tion have been rarely performed in a fully three-dimensional
context. In the present work, it is our purpose to study numer-
ically the full three-dimensional pattern formation process,

1Note that we leave out the related fields of electrochemistry,
combustion, and research on Belousov-Zhabotinsky reaction-type
systems.
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including the impact of various physical properties on flow
regimes, in a chemical system well documented in a series of
experimental and theoretical publications [27–31].

The system is an aqueous solution of methylene-blue–
glucose with continuous supply of oxygen through the top
air-liquid interface. This oxygen supply causes the production
of dense gluconic acid preferentially near the top, which leads
to a gravitationally unstable situation. Bees et al. [28] have
proposed a mathematical model for this reaction and conducted
a linear stability analysis [28] of the time-dependent reaction-
diffusion state within a quasi-steady-state approximation.
The predicted onset time of convection and the associated
pattern wavelengths were in agreement with the general trends
observed in experiments [27]. Later, Pons et al. [29] published
a detailed experimental analysis of this system in terms of time
of instability onset and its associated spatial scales for different
experimental conditions (viscosity, layer depth, pH value).

The importance of boundary conditions for this system was
demonstrated in two papers. First, a weakly nonlinear analy-
sis [30] found decreasing wave numbers for a fixed oxygen flux
boundary condition at the liquid-air interface, which is seen
in the long-term evolution in the experiments. Second, two-
dimensional nonlinear simulation [31] showed how different
oxygen boundary conditions influence the numerical solution.
In the present work, motivated by these former observations,
we extend the physical model by including an air layer,
since the appropriate oxygen boundary conditions appeared
uncertain in the one-phase approach [31].

The work is divided into two parts. First, we extend the
stability methods of Ref. [28] by determining an optimal
initial perturbation [32]. This method allows us to study the
stability of the unsteady but quiescent reaction-diffusion basic
state. Considering the basic state as fully unsteady implies
solutions for the linearized perturbations that are not purely
exponential in time; one speaks of nonmodal stability [33] or
non-normal mode [34] referring to the more mathematical
approach. Second, we show how the different time scales
employed in the problem lead to differences in the convective
structure of nonlinear states.

Section II introduces the physical problem based on for-
mer experimental works [27,29]. Nondimensional governing
equations are summarized in Sec. III. Section IV introduces
three sets of parameters which correspond to different reaction
rates and/or layer heights [29], namely type I (reference),
type II (high reaction rates), and type III (deep fluid layer).
Section IV describes the basic state. It corresponds to a system
with no convective transport, evolving under the action of
pure diffusion and chemical reactions. Section VI studies the
onset of convection by applying the optimal linear stability
method to the chemoconvection system. Thereafter, the onset
of convection is again determined but now based on the results
of direct numerical simulations (DNS) under optimal and
random initial perturbations (Sec. VII). The results of the DNS
after onset are discussed in Sec. VIII. The time evolution is
divided into two periods. Right after onset (the onset phase),
the flow pattern is determined by a sudden release of potential
energy. These flow structures, which are rather similar for
the three parameter sets, are presented in Sec. VIII A. In a
second period, the pattern shape and evolution depends on the
three parameter sets (types I, II, and III). In Sec. VIII B 1, the

flow structure for type I is described as convection cells with
continuously growing length scales. Section VIII B 2 addresses
types II and III which evolve into a statistically stationary state
with an erratically located emission of solutal plumes. Finally,
we compare our results to former results from numerical
simulations (Sec. VIII C) and experiments (Sec. VIII D). The
final Sec. IX presents our conclusions.

II. THE CHEMOCONVECTION SYSTEM

Pons et al. [27,29] reported a system where convection was
caused by a density difference due to the alkaline oxidation
of glucose with methylene blue as catalyst. More precisely,
an aqueous solution of glucose GL, sodium hydroxide NaOH,
and methylene in two forms (colorless reduced form MBH and
colored oxidized form MB+) is poured into a Petri dish which
is then covered by a lid. The Petri dish of total height H =
d + l contains a liquid layer of thickness d and an air layer
of thickness l (Fig. 1). Initially, this solution is saturated with
oxygen O2 and appears uniformly blue because the colorless
form MBH has been oxidized [27] to its colored form MB+
through the chemical reaction

2MBH + O2
k1→ 2MB+ + 2OH−, (1)

characterized by a fast reaction rate k1. A second chemical
reaction is also taking place: It is the reduction [27]

GL + MB+ + OH− kobs→ MBH + GLA, (2)

with a much slower reaction rate kobs, which produces gluconic
acid GLA by the consumption of glucose GL. Since the
reaction rate of oxidation (1) is much larger than that of
reduction (2), it is the oxygen supply that drives the production
of GLA through the production of the two components MB+
and OH− that mainly act as catalysts.

The oxygen initially present in the bulk is gradually
consumed by oxidation (1). Thereafter, the oxygen is only
supplied through the air-liquid interface and then diffuses into
the bulk. At this stage, the oxygen consumed by oxidation (1)
can be only partially compensated by its diffusion from
the air layer into the liquid layer and, obviously enough,
this effect increases as one gets away from the surface. By
consequence, the production of MB+ by oxidation decreases
with growing distance from the interface. Away from the
surface, the product MB+ is hence consumed by reaction (2)

Aqueous solution

Air

lxd

d

l

A[GLA], B[MB+], Ω[O2]

Ωair[O2]g

FIG. 1. Sketch of the chemoconvection experiment inside a
covered Petri dish.
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TABLE I. Definition of material properties and numerical parameters fixed for all three sets of parameters. Most of these values are given
in Table 2 of Ref. [29]. The diffusivity of oxygen in air is estimated from Ref. [35] and the initial oxygen concentration in the liquid is estimated
from Ref. [27]. We assume the initial molar concentration of oxygen in the air layer to be equal to a common value 8.65 × 10−3mol/l. This
initial molar concentration is deduced from the molar fraction of oxygen in air (= 0.209) given in Table 12.1 from textbook [36], the molar
mass of air 28.97g/mol and air density 1.20g/l. From the initial concentration of oxygen in the air and liquid, we deduce the Henry constant
cH = 33.28. For acceleration due to gravity we adopted the value of Pons et al. [31] g = 10 m/s2.

Name Description Value Unit

DM Diffusivity of MBH and MB+ 4 × 10−10 m2 s−1

DA Diffusivity of GLA 6.7 × 10−10 m2 s−1

D� Diffusivity of oxygen O2 in liquid 2.11 × 10−9 m2 s−1

D�−air Diffusivity of oxygen O2 in air 2.1 × 10−5 m2 s−1

�ρ Excess solution density per mole of GLA 44 kg m−3(mol/l)−1

W0 Initial concentration of MBH + MB+ 4.6 × 10−5 mol/l
�S Initial concentration of O2 in the liquid 2.6 × 10−4 mol/l
H Height of the Petri dish 2.7 × 10−2 m
cH Henry constant 33.28 (mol/l)/(mol/l)
δ� = D�

DM
Diffusion ratio of O2 in liquid to MB+ 5.28 —

δA = DA

DM
Diffusion ratio of GLA to MB+ 1.68 —

δair = D�−air
DM

Diffusion ratio of O2 in air to MB+ 5.25 × 104 —

and not renewed through reaction (1). Consequently, the
solution slowly becomes colorless as the concentration of
MB+ decreases while it is replaced by the colorless form MBH
and reaction (2) slows down because of the lack of MB+, which
causes a diminished production of gluconic acid from glucose.
By contrast, oxygen is still available near the interface, and
both reactions are active: The solution keeps its blue color and
the production of gluconic acid GLA is still going on. As a
result, the gluconic acid gradually accumulates on the top layer.
This fluid rich in acid is slightly denser than fluid with pure
glucose [the excess density of GLA with respect to GL per unit
mole �ρ = ρGLA − ρGL is equal to 44 (kg/m3)/(mol/l)] [28],
i.e., the local density increases near the surface. Finally, this
accumulation of GLA produces a difference in density able to
generate a gravitational instability initiating convection in the
fluid.

In these experiments [29], Marangoni instability was
avoided and the possibility of classical Rayleigh-Bénard
instability was excluded. The main results obtained in these
experiments are the times necessary for convection onset and
the corresponding pattern wavelength. Pons et al. reported
these data for several experimental conditions: NaOH concen-
trations, layer depths, and temperatures were modified as well
as viscosity by adding polyethylene oxide PEO.

III. PHYSICAL MODEL

In order to get close to the experimental situation, we
consider a dynamical model including two phases: a liquid
layer and an air layer completely closed in a Petri dish. This
differs from Bees et al. [28], where a boundary condition for
the oxygen was set. In both layers, the physical quantities are
taken to be periodic in the horizontal directions for the sake
of computational performance. The periodicity length is lxd

along the x direction and lyd along the y direction. All material
parameters used to describe the physical system are given in
Tables I and II.

In the liquid phase, the dynamics are described by the
mass-momentum transport equations coupled to the chemical
reaction equations introduced by Bees et al. [28]. We thus
limit the presentation to the essentials. (For more details, the
reader is urged to consult Ref. [28].) The fluid motion satisfies
the Boussinesq approximation, i.e., density differences are
neglected except in the buoyancy term [see Eqs. (3) and (4)].
In a typical experiment, the initial concentrations of GL and
OH− are so large that they can be considered constant over a
long period. Moreover, the sum W0 of the concentrations of
MB+ and MBH remains constant in space and in time if its
initial distribution is homogeneous in space and diffusivities of
MB+ and MBH are equal. If these assumptions are satisfied, it
is sufficient to consider an equation for the oxidized form
methylene blue MB+. Consequently, in the liquid phase,
only the concentrations of gluconic acid GLA, oxidized-form
methylene blue MB+, and dissolved oxygen O2 are modeled
by their advection-reaction-diffusion Eqs. (5)–(7).

In the air phase, the oxygen transport is assumed to be
purely diffusive [Eq. (8)]. This is justified by the low Schmidt
number in air Scair ≈ 0.5 and a posteriori by a low Reynolds
number imposing a small Peclet number Pe = ReSc < 1. The
upper boundary of the air layer is taken to be impermeable
which corresponds to the covered Petri dish of experiments
in Ref. [29]. Finally, the ratio between the concentration of
oxygen in the air and liquid is in equilibrium at the air-liquid
interface through Henry’s law with constant cH (see Table I).

In order to put the system in nondimensional form, we
adopt the fluid layer height as characteristic length L̃ = d.
If one excepts this scale, the remaining characteristic units
(T̃ ,Ṽ ,P̃ ) for nondimensionalization are motivated by the work
of Bees et al. [28]. The time is nondimensionalized with the
inverse dimensional reaction rate T̃ = k−1

obs of the slow reaction
[Eq. (2)], reflecting the reduction (decolorization) of MB+. In
this unit, the conversion of the GL into GLA takes roughly one
dimensionless time unit. The velocity is accordingly scaled
by Ṽ = dkobs. Pressure is nondimensionalized by P̃ = μkobs

where μ stands for the dimensional liquid dynamic viscosity.
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TABLE II. Physical properties and numerical parameters that vary with the three experimental parameter sets. Viscosity and reaction rates
are modified by temperature and NaOH concentration. The reaction rates are measured at 19 ◦C in Fig. 14 of Pons et al. [27]

Value

Type I Type II Type III
Name Description (exp. 12) (exp. 7) (exp. 11 ext.) Unit

d = L̃ Liquid layer height 8 × 10−3 8 × 10−3 20 × 10−3 m
k1 Fast reaction rate [Eq. (1)] 2675 19826 2000 (mol/l)−1 s−1

kobs = T̃ −1 Slow reaction rate [Eq. (2)] 0.0036 0.0496 0.0042 s−1

μ Dynamic viscosity (∼water) 1.05 × 10−3 1.0 × 10−3 1.0 × 10−3 kg m−1 s−1

ν Kinematic viscosity 1.053 × 10−6 1.0 × 10−6 1.0 × 10−6 m2 s−1

H� = √
DM/kobs Oxidation layer height 0.33 × 10−3 0.09 × 10−3 0.31 × 10−3 m

δl = l

d
= H−d

d
Ratio air-liquid height 2.375 2.375 0.35 —

κ = 2k1�S

kobs
Reaction ratio 385 220 248 —

λ = k1W0
kobs

Reaction ratio 34.1 19.5 21.9 —

δd = d

H�
Liquid height to oxid. region 24 86.62 64.81 —

R = g�ρW0H�
3

μDM
Rayleigh number 1.73 0.04 1.49 —

Sc = μ

ρDM
Schmidt number 2632.5 2500 2500 —

Tdiff = d2kobs
DM

Nondim. diffusion time 576 7503 4200 —

Tvis = d2kobs
ν

Nondim. viscous time 0.22 3.0 1.68

Rδd Modified Rayleigh number 41.52 3.46 96.56 —

The concentrations of gluconic acid GLA and the oxidized
form of methylene blue MB+ are nondimensionalized by W0

the homogeneous total concentration of methylene blue MB+
plus MBH, a quantity which was fixed for all experiments.
Finally, the oxygen concentration in air and water is scaled
by its initial concentration �S in water at 19 ◦C. From now
on, u = (ux,uy,uz) and P denote the nondimensional velocity
field and the dynamical pressure, respectively. Similarly, the
nondimensional concentrations of gluconic acid, the oxidized
form of methylene blue, the oxygen in aqueous solution
and the oxygen in air are denoted by A, B, �, and �air,
respectively (Fig. 1). All nondimensional quantities that appear
in the dimensionless governing equations or conditions are
summarized in Tables I and II.

The full nondimensional equations in the liquid domain
0 < x < lx, 0 < y < ly, 0 < z < 1 read

δ2
d

Sc

[
∂u
∂t

+ (u · ∇)u
]

= −∇P − δdRAez + ∇2u, (3)

∇ · u = 0, (4)

∂A

∂t
= −∇ ·

(
Au − δA

δ2
d

∇A

)
+ B, (5)

∂B

∂t
= −∇ ·

(
Bu − 1

δ2
d

∇B

)
+ κ�(1 − B) − B, (6)

∂�

∂t
= −∇ ·

(
�u − δ�

δ2
d

∇�

)
− λ�(1 − B), (7)

where gravity acts in the negative (vertical) z direction.
In the air layer 0 < x < lx, 0 < y < ly, 1 < z < 1 + δl

(δl = l/d) the oxygen concentration satisfies the diffusion

equation

∂�air

∂t
= δair

δ2
d

��air. (8)

For the velocity field, no-slip conditions are satisfied at the
bottom of the Petri dish (z = 0),

uz = ux = uy = 0 at z = 0. (9)

The liquid-air interface is assumed to remain flat at z = 1 and
to be stress free,

uz = ∂ux

∂z
= ∂uy

∂z
= 0 at z = 1. (10)

The concentration fields A, B verify a zero flux condi-
tion at the bottom of the Petri dish and at the liquid-air
interface

∂A

∂z
= ∂B

∂z
= 0 at z = 0,1. (11)

An identical condition is imposed to the oxygen concentrations
� (respectively, �air) at the bottom (respectively, at the top) of
the covered Petri dish,

∂�

∂z
= 0 at z = 0, (12)

∂�air

∂z
= 0 at z = 1 + δl. (13)

Finally, at the liquid-air interface z = 1, oxygen concentrations
� and �air are related by the Henry law as follows:

�(z = 1) = �air(z = 1)/cH at z = 1, (14)
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and by the conservation of mass fluxes

∂�

∂z
= δair

δ�

∂�air

∂z
at z = 1. (15)

For the horizontal x and y directions, we assume periodicity for
all fields, e.g., ux(x + lx,y,z,t) = ux(x,y,z,t) for all (x,y,z).

IV. PARAMETER SETS

Three different sets of material parameters are introduced
and simulated. Type I is characterized by modest reaction rates
and a liquid height of d = 8 mm. This type refers to experiment
12 in Ref. [29] and is simulated in a two-dimensional setting
in Pons et al. [31]. Type II is characterized by high reaction
rates due to increased NaOH concentration and an identical
liquid height d = 8 mm. It corresponds to experiment 7 in
Ref. [29]. Finally, type III is motivated by the change in liquid
layer height in experiments [29]. The largest layer in Ref. [29]
was 11.7 mm (experiment 11). However, we set the height to d

= 20 mm to see a larger effect, while keeping the reaction rate
modest in line with experiments [29]. The material properties
for these three different types are given in Tables I and II.
The parameters related to the experiments (3)–(11) of Pons
et al. [29] are gathered from Refs. [27] and [28], parameters for
experiment 12 are taken from Table 2 in Ref. [29]. In Table II,
the associated parameters are provided. The dimensionless
viscous time scale Tvis and dimensionless diffusive time scale
Tdiff ,

Tvis = d2

νT̃
= d2kobs

ν
= δ2

d/Sc,

(16)

Tdiff = d2

DMT̃
= d2kobs

DM

= δ2
d,

are measured in the intrinsic reaction time T̃ units.

V. BASIC SOLUTION

Let us study the stability of the quiescent basic state (u0 =
0) to the onset of convection. This pure reaction-diffusion state
[A0(z,t), B0(z,t), �0(z,t), �air

0 (z,t), P0(z,t)] is unsteady and
heterogeneous only along the vertical coordinate z. It solves

Eqs. (3)–(15) and starts with the initial conditions

A0(z,t = 0) = 0, B0(z,t = 0) = 1, �0(z,t = 0) = 1,

�air
0 (z,t = 0) = cH . (17)

[The reduced governing equations are shown in Appendix A.]
The chemical reactions depend on the initial concentration
of dissolved oxygen and on the oxygen diffusion through
the liquid-air interface. In the first stage, vertical gradients
in the oxygen distribution (oxygen concentration is higher at
the top) barely impact the production of B which stays at its
maximum value B = 1. When the initial amount of oxygen is
consumed, the production of B is impacted by the increased
oxygen concentration at the top and an unstable A stratification
is increasingly formed. The time range when this occurs can
be estimated. Assuming that B = 1 until all initial oxygen has
been exhausted, and observing that 1 mol of oxygen produces
2 mol of oxidized methylene blue B through reaction 1, it
takes approximately TO = 2�s/W0 = κ/λ = 11.3 time units
to consume all the initial oxygen which in turn leads to a spatial
gradient.

Figure 2 displays the concentration profiles of gluconic acid
for the basic state at three different times around TO (increasing
order): the experimental onset time, the onset time provided
by our DNS results in Sec. VII, and a time in between. The
oxygen supply from the top and its conversion into gluconic
acid A is readily observed in these profiles. For all three
types, a first noticeably unstable stratification is observed
at the experimental onset time. The inflection point in the
concentration A0(z,t) profile is located at lower z for type I than
type II or III, meaning a deeper penetration of A. This change
with parameter sets could be attributed to the characteristic
dimensionless diffusion time Tdiff , since it is smaller for type I
than for type II or III (see Table II).

VI. OPTIMAL LINEAR PROCEDURE: CONVECTION
ONSET DETERMINATION

A. Optimal linear perturbation: Method

To predict the onset time and corresponding length scales of
the convection pattern, an instability analysis of the basic state
[A0(z,t), B0(z,t), �0(z,t), �air

0 (z,t), P0(z,t)] is performed.

 

 

t=18
t=14
t=11

A0(z, t) − minz(A0(z, t))

z

0 2 4 6
0

0.5

1

 

 

t=34
t=25
t=17

A0(z, t) − minz(A0(z, t))

0 5 10 15 20
0

0.5

1

 

 

t=15
t=14
t=11

A0(z, t) − minz(A0(z, t))
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0

0.5

1

I II III

FIG. 2. (Color online) Basic state profiles of gluconic acid A0 for types I, II, and III at three different times: experimental onset time, which
is the earliest time (for type III, we used the value of type I because there is no corresponding experimental data), shortly before the onset
provided by the DNS (the largest time) and at time in between. Please observe that the axis numbering changes between the types.
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We adopt a method similar to the one used in Ref. [37]
which is naturally adapted to unsteady basic states. By means
of this method we extend former work [28] in which a
standard frozen-time analysis was performed. More precisely,
the pattern formation process is studied using a linear stability
analysis of the unsteady basic flow: Initial conditions are
modeled as a sum of the basic state (at initial time t = 0)
and an arbitrary perturbation (denoted with subscript p),

u = up(x,y,z,t), P = P0(z,t) + pp(x,y,z,t), (18)

A = A0(z,t) + Ap(x,y,z,t), B = B0(z,t) + Bp(x,y,z,t),
(19)

� = �0(z,t) + �p(x,y,z,t),�air = �air
0 (z,t) + �air

p (x,y,z,t).
(20)

When perturbations are assumed to be of small amplitude,
they satisfy a linear system with no preferential direction in
the x-y plane. Without loss of generality, Fourier modes with
a wave number α in the x direction and no y dependence can
be considered, i.e.,

(up,Ap,Bp,�p,�air
p ,pp) = q(z,t)eiαx, (21)

where q is a vector of vertical perturbation profiles

q(z,t) = (û,ŵ,Â,B̂,�̂,�̂air,p̂). (22)

Since the basic flow is unsteady, it is not possible to
perform a classical normal mode analysis in which mode q
is purely exponential in time. A non-normal approach [33,38],
however, can still be used since it handles unsteady basic
flows. This approach defines an objective scalar function
Eβ(q) for a perturbation q (the subscript β is introduced to
allow several possible objective functions). The scalar Eβ(q),
which measures the perturbation amplitude, should be properly
chosen to emphasize a property related to the instability
mechanism. Selecting different functions Eβ(q) enables one to
discuss different possible sources of instability. In the present
paper, the objective function is assumed to be a quadratic form

Eβ[q(t)] =
6∑

j=1

C
β

j

∫ 1

0
qj (z,t)q∗

j (z,t)dz, C
β

j ∈ {1,0},

(23)
where C

β

j are free constants and star ∗ means the com-
plex conjugate. Thereafter, this approach identifies, for any
given time t = T , the initial disturbance qopt(t = 0) which
maximizes at time t = T , the measure Eβ(q(t = T )) among
the set of possible initial perturbations q(t = 0) normalized
such that Eβ(q(t = 0)) = 1. The gain for this optimal initial
perturbation

Gβ(t = T ,α) = Eβ[qopt(t = T ,α)]

Eβ[qopt(t = 0,α)]
= Eβ[qopt(t = T ,α)]

(24)
then can be computed. The flow is considered unstable at time
T if the gain Gβ(t = T ,α) is above a threshold value Gtresh. In
the result section (Sec. VI B), we assume Gtresh = 10.

The role of a specific field (concentration, velocity) for
instability is analyzed by choosing the function Eβ . We employ

four different kinds, namely

Ek(q) =
∫

[û(z,t)û∗(z,t) + ŵ(z,t)ŵ∗(z,t)]dz, (25)

E�(q) =
∫

�̂�̂∗dz, EA(q) =
∫

ÂÂ∗dz, (26)

EB(q) =
∫

B̂B̂∗dz, (27)

to examine velocity perturbations, concentration perturbations
in oxygen, gluconic acid, or methylene blue, respectively. The
quantity under consideration is exclusively initialized with
a perturbation, the others are zeroed. The onset time and
characteristic length scale of the instability are identified by a
parametric study, i.e., changing T and α and calculating the
respective gain Gβ(T ,α).

In order to get the optimal perturbation for a given wave
number α, objective function Eβ , and time T , the problem
is mathematically restated as a variational problem [33,38].
The details of this mathematical procedure are given in
Appendix B.

B. Optimal linear perturbation: Results

For the three experimental parameter sets, the onset times
and associated length scales are analyzed by considering the
linear optimal perturbation for different objective functions:
Ek(q), E�(q), EA(q), and EB(q). In Fig. 3, the decadic
logarithm log10 Gβ(T ,α) of the optimal amplification gain is
displayed as a function of wave number α and time T . The
range of both variables is scanned beginning at 0.1 in intervals
of 0.1. From these data sets, the onset times and length scales
at convection onset can be predicted. This is done as follows:
The critical time Tc is the smallest time T for which the gain
is larger than the threshold Gtresh for at least one wave number
denoted by αc,

(Tc,αc) = min
T

{(T ,α) : (Gβ(T ,α)) > Gtresh)}. (28)

Such values are presented for the three experimental types and
the four objective functions in Table III.

TABLE III. Onset times and critical wave numbers for the three
experimental sets I, II, and III. Tc and αc are calculated by the
Eq. (28) using four different objective functions and Gtresh = 10. The
simulated onset time Tonset (last row) is calculated [cf. Eq. (29)] from
the large box simulations. The corresponding wave number αonset is
equal to kB

avg(Tonset) the averaged wave number [see Eq. (D6)] from
the Fourier spectrum of B̄(x,y,t = Tonset].

Type I Type II Type III

Tc αc Tc αc Tc αc

EA 12.5 2.8 14.8 3.8 11.1 3.9
E� 14.2 2.8 18.5 4.1 12.1 3.5
EB 14.8 3.2 20.7 4.5 12.9 3.8
Ek 18.2 3.6 34.2 4.5 15.4 4.1

Tonset αonset Tonset αonset Tonset αonset

DNS 18.4 3.7 34.8 4.5 15.8 4.1
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FIG. 3. (Color online) Logarithm of the gain Gβ (t = T ,α) for different objective functions as a function of the wave number α and the
time T . Physical parameter of type I are used.

The onset times [see Fig. 3(c) and Table III] are lowest for
EA, i.e., for concentration perturbations. This is in line with the
frozen time analysis [28], since the A perturbations dominate
these eigenfunctions (see Fig. 9 in Bees et al. [28]). Moreover,
this former eigenvalue analysis revealed that the system is most
unstable to modes with a wave number near zero. This branch
of unstable modes is also observed in Fig. 3(c) where the
neutral curve [contour level log10 (EA(T ,α)) = 0] approaches
the time axis. This trend might be preserved also for values
α < 0.1 (not calculated here), since an acid perturbation with
no spatial variation (α = 0) solves the perturbation equations,
which yields a gain GA(t) = 1 for all t � 0. However, small-
wave-number modes are amplified only very weakly and they
demand an experimental device with a large aspect ratio, thus
they are physically less relevant.

The type III system gives the earliest onset times when
comparing perturbations from one class. It is followed
by type I. The onset time is therefore negatively corre-
lated with the modified Rayleigh number Rδd , i.e., the

prefactor of the buoyancy term in Eq. (3), as one might
expect.

VII. THREE-DIMENSIONAL NONLINEAR SIMULATIONS:
CONVECTION ONSET DETERMINATION

The onset time of convection is now analyzed using three-
dimensional (3D) direct numerical simulations starting with
random (Sec. VII A) or optimal velocity (Sec. VII B) pertur-
bations. In both cases, initial concentration perturbations are
set to zero. This choice corresponds to an initially well-mixed
state, which could be approached in experiments. In contrast,
stirring or even the basic preparation of a sample unavoidably
introduces velocity perturbations to the system. However, we
briefly discuss simulations with additional pertubations in the
acid field in Sec. VII C.

The full nonlinear model is solved with a pseudospectral
method formerly used in Refs. [39,40]. The spatial flow
domain is discretized with Nx × Ny Fourier modes in the
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horizontal directions and Nz Chebychev polynomials in the
vertical direction. Appendix C provides further details of the
numerical procedure.

A. Random velocity perturbation

We analyzed the three experimental types. First, a set of
type I simulations corresponding to experiment 12 in Ref. [29]
is considered. The initial perturbations are built as follows.
A random velocity field is first generated: At each grid
point, the vertical velocity uz(x,y,z) and vertical vorticity
ωz(x,y,z) are set independently and equally distributed in
the interval between zero and unity. This field is thereafter
multiplied by a factor to produce a random field such that
the mean energy 1

2 〈u2〉xyz(t = 0) takes one of the values
10−6,10−3,100,10+3,10+6. This amplitude variation is per-
formed with one unique random field which is scaled, respec-
tively. (However, simulations with different random velocity
field show only minor variation.) For these simulations, we
take lx = ly = 10 and Nx = Ny = 512.

For all amplitudes [Fig. 4(a)], the qualitative temporal
evolution of velocity perturbations is similar. First, the initial
kinetic energy is dissipated until a minimum is reached
proportional to the initial perturbation amplitude. Thereafter, a
growth is observed leading to convection. In order to determine
the onset time, we consider the observed methylene pattern via
the vertical average B̄(x,y,t) (cf. Appendix D for the definition
and notation). This is reminiscent of the experiments [29],
since B̄(x,y,t) is a direct measure of the light absorption.
Using this DNS data, the onset time is defined as the time
when the variance σ 2

B(t) [see Eq. (D8) in Appendix D] in the
observed methylene-blue pattern B̄(x,y,t) exceeds a critical
value σc, i.e.,

Tonset = min{t : σB(t) > σc}. (29)

This critical value σc is not explicitly given in Refs. [29,31].
However, given that the experimental device [29] has a

resolution of 256 gray values between zero and 1 for B̄(x,y),
a standard deviation of σc = 1/256 seems an appropriate
threshold for detection of convection. For the random velocity
perturbations, Tonset can be a fitted [Fig. 4(b)] by

T random
onset = 18.51 − 0.1742 log10

(
1
2 〈u2〉xyz(t = 0)

)
.

The logarithmic dependence on the amplitude is readily
explained by assuming an exponential growth of perturbation.

The onset time Tonset for type I and 1
2 〈u2〉xyz(t = 0) = 1

is recorded together with the linear prediction in Table III.
(There we used the simulated data from a larger domain
lx = ly = 20 with Nx = Ny = 1024 and Nz = 128; onset time
is almost identical to lx = ly = 10.) A reasonable agreement
with the optimal-linear prediction for velocity perturbation Ek

is observed. The critical wave number is also computed. It is
obtained as in Ref. [29], by a Fourier analysis of the methylene-
blue distribution B̄(x,y) [similarly, the acid distribution
Ā(x,y) could be considered] providing a power spectrum
HB

2 (k,t = Tonset). From the power spectrum HB
2 (k,t = Tonset)

at onset, the wave number is identified with the weighted
average αonset ≡ kB

avg(Tonset) according to Eq. (D6). At onset
this wave number compares well to the one from the optimal
linear analysis with objective function Ek for perturbation
velocity (see Table III).

The chemoconvection results were also analyzed for
types II (experiment 7) and III (experiment 13). These
simulations were also initiated by a random velocity field
with 1

2 〈u2〉xyz(t = 0) = 1 and computed in a large domain
(lx = ly = 20 for type II or lx = ly = 8 for type III with
Nx = Ny = 1024 and Nz = 128). Again, the onset times Tonset

and wave number kB
avg(Tonset) at onset compare well to the one

from the optimal linear prediction based on Ek (see Table III).

B. Optimal velocity perturbations

Due to horizontal translational invariance of the linearized
equations, the optimal growth analysis can only provide the
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FIG. 4. (Color online) Three-dimensional simulations of type I. (a) Quantity 1
2 〈u2〉xyz(t) for random initialized velocity field with different

initial amplitudes. (b) Onset times computed using criterion [Eq. (29)] for random initialized velocity field and for an optimal initial condition
(hexagons) with a wave number αopt = 3.6.
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vertical perturbation structure and wavelength. The horizontal
structure of the pattern is not determined in this way. In order to
study optimal profiles, we take it to be spatially periodic as in
stationary convection problems, i.e., with a hexagonal, square,
or linear (roll) pattern. Type I (experiment 12 in Ref. [29])
is analyzed in this way using a series of simulations. The z

profile and critical wave number αc are those of the optimal
velocity perturbations, i.e., obtained by the objective function
Ek .

For hexagons, the vertical velocity is initialized with the
Christopherson solution [4]

uz = ŵ(z)

[
cos

(
αc

(√
3

2
y − 1

2
x

))
+ cos(αcx)

+ cos
(

αc

(√
3

2
x + 1

2
y

))]
, (30)

while the horizontal velocity components result from the
incompressibility condition and imposing the vertical vorticity
to be zero. For a square pattern the vertical velocity is

uz = ŵ(z)[cos(αcy) + cos(αcx)], (31)

and for the roll pattern it is
uz = ŵ(z)[cos(αcx)]. (32)

The onset time computed using this optimal perturbation
leads to an earlier onset of convection. The three patterns
yield nearly the same onset time. The derived onset times
for an initial amplitude of 1

2 〈u2〉xyz(t = 0) = 1 and αopt = 3.6
are, for example, 17.50 (hexagons), 17.53 (squares), and
17.54 (rolls). Furthermore, the optimal patterns display an
analogous logarithmic dependency on the initial amplitudes as
the random initial perturbations [Fig. 4(b)].

C. Random perturbations of acid concentration and velocity

The impact of an initial perturbation in both the
acid-concentration field and the velocity field is studied now.
Velocity is initialized as described in Sec. VII A,with a unity
amplitude 1

2 〈u2〉xyz(t = 0) = 1 for all runs. The acid pertur-
bation is varied, its concentration is initialized with numbers

equally distributed between zero and 1. Then we adjust the
squared mean value 〈(A(x,y,z,t = 0))2〉xyz = 0.01,1,100
by multiplying with a common prefactor. Thereby, three
simulations are performed with independent random initial
conditions.

As expected, the onset time decreases with
growing perturbation strength, i.e., Tonset = 14.78(0.01),
13.18(1),11.58(100). These times again compare reasonably
with the time Tc = 12.5 predicted by the linear analysis,
cf. Table III. Except for the onset time, the behavior of
simulations with perturbations of acid concentration show no
distinct features compared to runs where only the velocity is
perturbed.

VIII. THREE-DIMENSIONAL NONLINEAR
SIMULATIONS: RESULTS

The system evolution for the three different simulations
(types I, II, and III2) is presented in Fig. 5 where the
chemical species volume average is shown until t = 200. The
onset time by the criterion defined in Eq. (29) is pinpointed
by red crosses. Before onset, oxygen concentration and
methylene-blue concentration are clearly decreasing for the
three simulations. After convection onset, the time range can
be subdivided into two characteristic phases. Just after onset
(called the onset phase), kinks or minor oscillations appear
in 〈B〉xyz. Thereafter, the system continuously develops into
a quasisteady state for 〈B〉xyz and 〈�〉xyz, which differs for
the three cases. The Reynolds number based on the rms
velocity,

Re =
√〈u · u〉xyzṼ d

ν
= Tvis

√〈u · u〉xyz, (33)

is almost constant and below unity in this second phase
[Fig. 6(a)] though inertial effects are larger for types II and

2The results presented in Sec. VIII are based on simulations in a
large square domain of size 16 × 16 cm, which is introduced at the
end of Sec. VII A.
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FIG. 5. (Color online) Three-dimensional simulations of types I, II, and III. (a) Volume average of methylene blue B; (b) volume average of
oxygen � dissolved in the liquid. The onset times for the three simulations are marked by crosses (T I

onset = 18.44, T II
onset = 34.8, T III

onset = 15.8).

053004-9
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FIG. 6. (Color online) Three-dimensional simulations of types I, II, and III. (a) Reynolds number; (b) rms velocity.

III compared to type I [Fig. 6(a)]. Since the Peclet number
Pe = ReSc is of order Pe ∼ 101–102 for all three cases, the
solute transport is dominated by advection.

A. Onset phase

Before convection onset, diffusion of oxygen through the
liquid-air interface leads to increasingly unstable density
stratifications. This is the process which is active for the
basic state (see the gluconic acid profiles in Fig. 2). For a
more general, horizontally nonuniform flow, this aspect may
be quantified by the growth of the quantity

epot = Rδd

(〈zA〉xyz − 1
2 〈A〉xyz

)
, (34)

which is related to the total potential energy defined relative to
a homogeneous reference state. Potential energy epot grows
in time when all oxygen is exhausted around t = 11 [see
Fig. 7(a)] with a fairly constant slope. This slope is governed by
diffusion of oxygen into the layer, the two chemical reactions

leading to denser product, i.e., the gluconic acid A, as well as
the diffusive spreading of A which lowers the potential energy
density.

This growth stops at convection onset. The increasing rms
velocity [see Fig. 6(b)] at the same time indicates that it
corresponds to the downward transport of A by convection.
Indeed, in Fig. 8(a), a vertical cut at y = 15 shows the
dense acid layer at onset (t = 35), its detachment from the
upper interface (t = 38), and its impingement on the bottom
(t = 40), leading to mushroom shapes. Figure 8(b) provides
a three-dimensional picture at t = 38 with an isosurface of
the acid field. The comparable amount of potential energy at
convection onset leads, for types I and III, to a comparable
maximum velocity amplitude [see sharp peak in Fig. 6(b)]. It
is smaller for type II.

This onset phase lasts for 18.4 � t � 40 (type I), 34.8 �
t � 100 (type II), and 15.8 � t � 40 (type III). During the
beginning of the onset phase, the flow pattern is quite similar
in the three types: Polygonal cells emerge with downflow at the
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FIG. 7. (Color online) Three-dimensional simulations of types I, II, and III. (a) Potential energy (epot = Rδd (〈zA〉xyz − 1
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gradient at the interface.
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FIG. 8. (Color online) Onset phase in 3D simulations for type II (34.8 � t � 100). (a) Plots of A(x,y = 15,z,t) at constant y = 15 and a
subrange of x ∈ [0,8] at different times. The arrows represent the velocity field tangentially to the cutting plane plane y = 15. (b) Isosurface at
A(x,y,z,t) = 31.2 = ( max[xyz](A) − min[xyz](A))0.8 + min[xyz](A) for time t = 38. Note that gravity is directed downwards in (a) and upwards
in (b).

edges. This is illustrated in the first row of Fig. 9 (type II) and
Fig. 10 (type I) for the vertically averaged acid concentration
〈A(x,y,z,t)〉z. As the initial pattern wave number (Table III)
is around four for all three cases, the emerging roll cells have
a horizontal size between one and two layer heights (Fig. 8).
For types II and III, one observes downwelling plumes (dotted
shapes) together with the downflowing “curtains” (Fig. 9) later
during the onset phase. Type I keeps the polygonal pattern
(Fig. 10).

The change of rms velocity is also associated with the rapid
raise of the oxygen gradient at the interface [Fig. 7(b)]. Note
that the amplitude of the velocity field in Fig. 6(b) and oxygen
gradients in Fig. 7(b) decrease with time but the onset pattern
is preserved.

B. Second-phase regime

The dimensionless viscous Tvis and diffusive Tdiff time
scales [see Eq. (16) and Table II] indicate that type I differs
from types II and III: Viscous momentum transport occurs
faster than the chemical reaction, and for types II and III the
chemical reaction is faster. The time evolution indeed differs
substantially for type I and the two other types.

1. Second phase for type I: Coarsening regime

After the onset phase, flow structures develop into growing
cells as seen from the patterns of Fig. 10 and Fig. 11. The
cell coarsening can be seen also in a vertical plane displaying
the distribution of acid A together with the tangential velocity
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t=35 t=38 t=40

t=50 t=60 t=70

t=100 t=200.5 t=300

FIG. 9. (Color online) Plots of Ā(x,y,t) for different times in 3D simulations for type II. A subdomain domain (x,y) ∈ [0,8] × [0,8] is
shown. Dark areas correspond to high values = max(A) “downwelling curtains” and bright areas = min(A) correspond to upwelling lighter
fluid. At any time the color is adjusted to the minimum and maximum values.

(Fig. 12). It occurs by a continuous growth of larger cells as
well as by the inclusion of smaller cells into larger ones. In
relatively low acid concentration (light regions in Fig. 12), fluid
rises to the interface and absorbs oxygen from the air layer. The
oxygen gradient ∂z�(x,y,z = 1,t) and the vertically averaged
methylene-blue concentration B̄(x,y,t) (Fig. 11) indicate that
(a) oxygen-rich fluid gets denser by the two reaction steps
and sinks down with enriched acid in the boundaries of the
polygonal cells and (b) upwelling fluid, free of oxidized
methylene B, takes up oxygen [dark green (dark gray)] at
the interface, is enriched in B, and sinks subsequently [dark
blue (dark gray)].

In the range 50 < t < 200 a considerable growth is ob-
served in the characteristic length scales, quantified by the
wavelength 2π/kA in Fig. 13(a). From time t = 200 onward,
the maximum mode 2π/kA

max corresponds to the edge length
of the domain. The cell size is thus limited by the finite
horizontal domain size equal to 20. Note that the rms velocity
U = √〈u · u〉xyz [see Fig. 13(b)] almost saturates at t =
200. Figure 13(c) displays the maximum acid concentration
differences on the surface �A(t) = maxxy{A(z = 1,x,y)} −
minxy{A(z = 1,x,y)}. It increases with time; however, its
growth is also decelerated from t = 200 onward. The convec-
tion pattern finally arrives at one large convection cell around
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t = 19 t = 19.5 t = 28

t = 30 t = 50 t = 70

t = 100 t = 200 t = 350

FIG. 10. (Color online) Plots of Ā(x,y,t) in 3D simulations for type I. The full domain (x,y) ∈ [0,20] × [0,20] is shown. Dark areas
correspond to high values = max(Ā) “downwelling curtains” and bright areas = min(Ā) correspond to upwelling lighter fluid. At any time the
color is adjusted to the minimum and maximum values. Isolines are included for the latest times.

t = 700. This is not shown in Fig. 13, where the largest time
is t = 400.

The features of the type I experiment are peculiar compared
to the standard Rayleigh-Bénard convection. Howard [41]
viewed the turbulent Rayleigh-Bénard regime as a cyclic
growth and disruption of an unstably stratified layer near
boundaries. These layers are generated by the diffusion
of heat and do not depend on velocity. For type I ex-
periments, the viscous time is smaller than reaction time
scale. In that case, the size and velocity of the convection
cells distinctly impacts the density differences near the
upper boundary through the turnover time of convection
cells.

For type II or type III, the reaction time scale governs how
the upper unstably stratified layer is produced: The unstably
stratified layer depends on diffusion of oxygen and reaction
rates.

2. Dripping flow regime: Types II and III

Type I displays coarsening. By contrast, types II and
III develop a structure characterized by localized plume
emissions. As mentioned above, the change of the flow regime
(compared to type I) might be related to Tvis > Treac for type
II. In the following we concentrate on type II only since type
III is qualitatively similar. The instantaneous flow structure
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t = 70 t = 200 t = 350

FIG. 11. (Color online) Three-dimensional simulations for type I: Plots of ∂z�(x,y,z = 1,t) (top) and B̄(x,y,t) (bottom) for different times
in full numerical domain (x,y) ∈ [0.20] × [0,20] (black areas = high value, light gray = low value). The arrows in the top row represent the
velocity field at the surface z = 1.

is shown in Fig. 14 together with the oxygen gradient at the
interface ∂z�(x,y,z = 1), the methylene blue B̄(x,y,t), and
acid Ā(x,y,t) patterns. In addition, a vertical cross section with
acid concentration and tangential velocity field is displayed in
Fig. 15.

Starting with the pattern observed at onset (Fig. 9), the
flow rearranges for t > 100 into a statistically stationary
state: Convection rolls (appearing as dark stripes) are dis-
rupted by descending solutal plumes (appearing as dots).
The main driving mechanism is the same as in type I, i.e.,
upwelling fluid adsorbs oxygen at the interface and sinks
down but now in smaller and individually unsteady convective
structures. Length scales are smaller relative to type I and
they are not growing [see the wavelength λA = 2π/kA

avg in
Fig. 16(a)].

For times t > 100, the system reaches a statistically steady
state as documented by the wavelength λA = 2π/kA

avg and the

velocity measure
√〈u · u〉xyz (see Fig. 16). In this regime,

the finger and plume structures are constantly evolving as
seen in the space time plot of the acid concentration at the

interface (see Fig. 17) where the source of downwelling
dense liquid can be traced by the continuous dark areas
that are high in concentration. We call this flow a dripping
regime. A characteristic time scale for pattern decorrelation
can be obtained by computing an autocorrelation function
〈Ā(t)Ā(t + τ )〉xy . It is evaluated (not shown) to be of the
order of the convective time λA/

√〈u · u〉xyz = 11.23 based
on the pattern length scale λA and velocity

√〈u · u〉xyz of
Fig. 16.

C. Comparison with former simulations

The two-dimensional simulations of Pons et al. [31] focused
on type I experiments. In these simulations, the air layer is
neglected and a boundary condition on oxygen concentration
is used. Our simulations show that the oxygen concentration
at the interface (in the liquid phase) differs very weakly from
the averaged concentration in the air layer divided by Henry’s
constant: The standard deviation 〈[〈�air〉xyz/cH − �(x,y,z =
1)]2〉1/2

xy is distinctly below 10−4 for the simulated times of
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t=101

t=201

t=351

FIG. 12. (Color online) Three-dimensional simulations for type I: Plots of A(x,y = 15,z,t) at constant y = 15 for x ∈ [0,12], z ∈ [0,1]
and different times. The arrows represent the velocity field tangential to the plane.

nonlinear simulation. Consequently, the upper air layer can
be accurately modeled by a fixed concentration boundary
condition,

�(x,y,z = 1) = 〈�air〉xyz/cH . (35)

Simulations of Pons et al. [31] show a behavior similar to ours
apart from the wall influence: Onset time around t = 18, an
initial damped oscillation in methylene-blue amplitude [cf.
Fig. 5(a)], and a subsequent coarsening are also observed
there [31]. However, walls can lead to a large-scale shear
flow through the full domain at late times [see Ref. [31],
Fig. 7(b)].

D. Comparison with former experiment

The experiments [29] were conducted in a Petri dish of
18.5-cm diameter. The pattern was observed via the light
adsorption of methylene blue in a rectangular window of

12.4-cm width with 256 pixels and, for a smaller box height,
192 pixels (y range). By this the vertical average of methylene
blue B̄(x,y,t) is recorded, assuming that the Beer-Lambert’s
law holds for methylene blue. The main experimental results
that have been reported describe the onset time, the dominant
wave-number evolution, and some characteristic patterns for
different experimental conditions. Pons et al. [29] divided
the experimental evolution into three phases: linear growth,
nonlinear saturation (our onset phase), and a third phase
which shows different behaviors with experimental conditions,
i.e., decreasing, constant, or oscillating wave numbers (cf.
Figs. 9, 12, and 13 in Ref. [29]). This third phase ends with the
disappearance of the pattern. Such behaviors are also seen in
our simulations except for the disappearance of the patterns,
which is not predicted by the present model.

Let us first compare the onset time of convection and
the initial dominant wave number (see Table III). For ex-
periment 12 (type I), the onset is at T

exp12
onset = 11.16 with
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FIG. 13. Three-dimensional simulations for type I. (a) Dominate wavelengths of Ā(x,y,t), (b) root-mean-squared velocity, and (c) maximum
acid differences at the interface.
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∂zΩ(x, y, z = 1, t = 100) B̄(x, y, t = 100) Ā(x, y, t = 100)

FIG. 14. (Color online) Three-dimensional simulations for type II in subdomain (x,y) ∈ [0,8] × [0,8]: ∂z�(x,y,z = 1,t) (left), B̄(x,y,t =
100) (center), and Ā(x,y,t = 100) (right) (black areas, high value; light gray, low value; the colors are adapted to the extreme values). The
arrows represent the velocity field at the surface z = 1.

t=100

g

t=200

t=300

FIG. 15. (Color online) Three-dimensional simulations for type II statistically steady state t � 100: Plots of A(x,y,z,t) at constant y = 15,
x ∈ [0,8] for different times in a simulation. The arrows represent the tangential velocity field with a reference arrow at the right side.
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FIG. 16. (Color online) Three-dimensional simulations in dribbling flow regime for types II and III. (a) Dominant length λA = 2π/kA
avg

in acid patterns; (b) rms velocity. Sample values extracted at t = 200 are
√〈u · u〉xyz

II = 0.0414, λII
A = 0.465,

√〈u · u〉xyz

III = 0.137, and
λIII

A = 0.319.
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FIG. 17. (Color online) Type II in the statistically steady regime: Space-time plots of the interface concentration A(x,y = 15,z = 1,t) −
〈A(x,y,z = 1,t)〉xy at constant y = 15, x ∈ [0,8] for times t ∈ [100,300].

wave number αexp12
onset = 3.85. It occurs before the earliest

prediction of the linear stability analysis based on the
EA objective function, i.e., Tc = 12.5 with wave number
αc = 2.8. For velocity perturbations, which are practically
present when pouring the mixture into the Petri dish, the
difference is even higher higher: Tc = 18.2 (αc = 3.6). For
experiment 7 (type II), the onset time T

exp7
onset = 17.06 with

α
exp7
onset = 8.51 is reported which is between the critical time

obtained using the acid perturbation (function EA) Tc =
14.8 (αA

c = 3.85) and the velocity perturbation (function Ek)
Tc = 34.2 (αc = 4.5). Experimental onset times decrease with
increased liquid layer depth. This trend is reproduced by
calculations for type III, which show the earliest onset times
T A

c = 11.1.

During evolution, the dominant wave-number progression
for experiments 7 and 12 is extracted from Ref. [29] and
plotted together with the data from the respective simulation
in Fig. 18. The numerical trend of higher wave numbers for
type II relative to type I is in accordance with experiments;
however, there is a gap between experiment and simulation.
The visual appearance of the methylene-blue patterns from
Ref. [29] shares general features but differs in some points. For
experiment 12 (type I), a short coarsening phase is observed
(see Fig. 1 in Ref. [29]), but the experimental pattern then
disappears preferentially at the walls around t = 60. For
type II, a tendency towards more stripes in the experimental
pattern is seen (see Fig. 7 in Ref. [29]), in accordance with
simulations. The tendency to lines or stripes rather than dots

Experiment 7 Pons

Simulat ion type I I

Experiment 12 Pons

Simulat ion type I

W
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nu

m
b

er

T ime

0 50 100 150 200
0

5
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FIG. 18. (Color online) Comparison of simulated wave numbers kB
avg with experimental data extracted from Ref. [29] while type I refers to

experiment 12 and type II to experiment 7.
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for systems with a larger layer depths, as in type III, is also
pointed out in Ref. [29].

The discrepancy between simulation and experiment may
have two main origins: deficiencies in the chemical model [28]
and variability of experimental conditions. More specifically,
the chemical model developed in Ref. [28] needs to be
extended to capture the final disappearance of the convection
patterns observed in Ref. [29]. Thus additional conservation
equations would have to be included for glucose and NaOH,
which are absent from the present reaction scheme. The
influence of these species on reaction rates would also have to
be modeled. A related discussion can be found in Ref. [42].
Our study also suggests that the initial evolution of the system
(especially onset time of convection) is sensitive to the initial
state (see Table III and Fig. 4). This point could be clarified
by repeating the experiments under the same conditions and
recording deviations among them.

Another possible cause for discrepancies are the vertical
walls in the experiments: Although initially the experimental
patterns appeared periodic, the wall influence becomes appar-
ent in Fig. 1 of Ref. [29], where the pattern of experiment 12
(type I) starts to disappear from the walls. Furthermore, the
two-dimensional simulation [31] suggests that the walls may
lead to a large-scale flow, which may cause large radial stripes
of methylene blue ranging from the wall to the center of the
Petri dish, see Fig. 1(b) in Pons et al. [31].

IX. CONCLUSION

We have numerically studied the chemohydrodynamic
convection of methylene-blue–glucose based on the model
proposed by Bees et al. [28]. In the present study, this model
has been extended to a closed system: An air layer is included
where oxygen is transported by diffusion and the concentration
jump of oxygen at the interface between liquid and air is
governed by Henry’s law.

To characterize convection onset, a non-normal stability
analysis was performed that revealed the dependence of onset
time and dominant wave numbers on initial perturbations.
The system is much more sensitive to perturbations in the
concentration fields than to perturbations located in the
velocity field. We further studied the convection onset by
using a fully three-dimensional nonlinear model with velocity
perturbation for three different experimental conditions. The
onset time of convection decreases logarithmically with the
initial perturbation amplitude both for random and optimal
initial perturbations.

In a second part, the nonlinear evolution of the three-
dimensional runs was shown for large periodic boxes. These
runs correspond to three different experimental types. The
first convection phase proceeds similar for the three cases.
The unstable layer of gluconic acid at the air-liquid interface
is entrained in plumelike structures into the bulk. However,
the subsequent flow regimes change considerably for the three
cases.

Type I showed a flow regime which is marked by a steady
increase in the size of flow structures until the length scale
of the convection cells is comparable to the system size. The
coarsening proceeds as large convection cells continuously

increases in size and absorb smaller cells in their vicinity. Gen-
erally, convection occurs in a low-Reynolds-number regime.

The dripping flow regime of types II and III is marked
by downwelling dense liquid that is localized in a convective
structure of short lifetime. In contrast to the type I regime,
the buildup of unstable acid layers is less coupled to the
downwelling liquid. This change is explained by the fact that
the time of viscous equilibration is larger than reactive time
scale.

The comparison of our results with former experimental
studies showed the need for further combined experimental
and numerical work to improve physical modeling (chemistry,
air-liquid interface combined with the vertical walls) for the
methylene-blue–glucose system.
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APPENDIX A: TRANSIENT LINEAR STABILITY METHOD

1. Basic evolution

A possible solution to the governing equations is an
unsteady pure diffusion-reaction process, in which concen-
trations evolve along z only and the velocity field remains
zero,

u = 0, A = A0(z,t), B = B0(z,t), � = �0(z,t),

P = P0(z,t), �air = �air
0 (z,t). (A1)

Introducing (A1) into Eq. (3) provides an equation for the
pressure as follows:

∂P0

∂z
+ δdRA0(z,t) = 0. (A2)

From Eqs. (5) to (8), and boundary conditions (11) to (14),
one obtains the following set of equations governing the basic
state:

∂A0

∂t
= δA

δ2
d

∂2A0

∂z2
+ B0, (A3)

∂B0

∂t
= 1

δ2
d

∂2B0

∂z2
+ κ�0(1 − B0) − B0, (A4)

∂�0

∂t
= δ�

δ2
d

∂2�0

∂z2
− λ�0(1 − B0), (A5)

∂�air
0

∂t
= δair

δ2
dδ

2
l

∂2�air
0

∂ξ 2
. (A6)

Note that the dimensional vertical coordinate in the air layer
z̃ ∈ [d,d + l] is transformed by ξ = (z̃ − d)/l. This is done
in all equations in the Appendix in order to consider the
dimensionless coordinate z,ξ from the interval [0,1] only. The
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boundary conditions are as follows:

∂A0

∂z
= ∂B0

∂z
= ∂�0

∂z
= 0 at z = 0, (A7)

∂A0

∂z
= ∂B0

∂z
= 0;

∂�air
0

∂z
= 0

at z = 1, respectively,ξ = 1, (A8)

∂�0(z = 1)

∂z
= δair

δlδ�

∂�air
0 (ξ = 0)

∂ξ
, (A9)

�0(z = 1) = �air
0 (ξ = 0)/cH . (A10)

2. Linear perturbation equations

The solution of the full governing Eqs. (3) to (8) is split
into the basic state and perturbations. The perturbations are
assumed of weak amplitude and therefore any term higher
than linear in perturbations is neglected. The linear system on
z,ξ ∈ [0,1] reads

δ2
d

Sc

∂û

∂t
+ iαp̂ −

[
∂2

∂z2
− α2

]
û = 0, (A11)

δ2
d

Sc

∂ŵ

∂t
+ ∂p̂

∂z
−

[
∂2

∂z2
− α2

]
ŵ + δdRÂ = 0, (A12)

∂Â

∂t
+ iαA0û + ∂(A0ŵ)

∂z
− δA

δ2
d

[
∂2

∂z2
− α2

]
Â − B̂ = 0,

∂B̂

∂t
+ iαB0û + ∂(B0ŵ)

∂z
− 1

δ2
d

[
∂2

∂z2
− α2

]
B̂

+ κ�0B̂ − κ�̂(1 − B0) + B̂ = 0, (A13)

∂�̂

∂t
+ iα�0û + ∂(�0ŵ)

∂z
− δ�

δ2
d

[
∂2

∂z2
− α2

]
�̂

− λ�0B̂ + λ�̂(1 − B0) = 0, (A14)

∂�̂air

∂t
− δair

δ2
dδ

2
l

[
∂2

∂ξ 2
− α2

]
�̂air = 0, (A15)

iαû + ∂ŵ

∂z
= 0, (A16)

and boundary conditions

ŵ = ∂2ŵ

∂z2
= 0 at z = 1, (A17)

ŵ = ∂ŵ

∂z
= 0 at z = 0, (A18)

∂Â

∂z
= ∂B̂

∂z
= ∂�̂air

∂z
= 0 at z = 1, (A19)

∂Â

∂z
= ∂B̂

∂z
= ∂�̂

∂z
= 0 at z = 0, (A20)

∂�̂(z = 1)

∂z
= δair

δlδ�

∂�̂air(ξ = 0)

∂ξ
, (A21)

�̂(z = 1) = �̂air(ξ = 0)/cH . (A22)

APPENDIX B: OPTIMIZATION PROCEDURE

We continue the presentation of Sec. VI A, where we stated
the optimization problem in terms of the objective functions
Eβ(q). We therefore construct a Langragian function by

L(q,q̃,s0,T ) = Eβ(q(T )) − s0[Eβ(q(0)) − 1]

−
7∑

j=1

∫ T

0
dt(〈Fj (q(t)),q̃j (t)〉2) + (c.c.).

(B1)

The first term Eβ(q(T )) is the objective function, which is
to be maximized at time T . The second term in Eq. (B1)
enforces the normalization to unity of the initial perturbation
with the Lagrangian muliplieres s0. The third term enforces
the linear governing equations, where Fj is the left-hand side
of Eqs. (A11) to (A16) and q̃ is the Lagrangian multipliers
field. The abbreviation c.c. denotes complex conjugate of
〈Fj (q(t)),q̃j (t)〉2 and 〈·,·〉2 stands for the L2 scalar product,

〈a1,a2〉2 ≡
∫

â1(z)â∗
2 (z)dz. (B2)

An extremum of Eβ(q(T )) is found if the first variation of L

is zero,

δL = dL(q + hδq)

dh

∣∣∣
h=0

= 0, (B3)

with respect to the test functions δq. The sum q + hδq(z,t)
has to admit the initial and boundary conditions as well as the
governing equations. In this case, L = E and δL = δE.

Starting with Eq. (B3) we derive a complete set of governing
equations to compute the Lagrangian multipliers. For a given
wave number α, objective function Eβ , and time T , the field
q satisfying Eq. (B3) is called optimal perturbation qopt. Note
that we do not distinguish between the coordinates in the upper
ξ and the lower layer z and just write “z” as they pass trough
the same range of real numbers.

The Lagrangian multipliers fields correspond to the fol-
lowing adjoint fields: ũ(z,t), w̃(z,t), Ã(z,t), B̃(z,t), �̃(z,t),
�̃air(z,t),p̃(z,t), while s0 is just a real number.

The calculation of the optimal perturbation relies on the
examination of Eq. (B3) to obtain the Lagrangian multipliers,
and it reads

δL =
5∑

j=1

Cj

(∫
q∗

j (z,T )δqj (z,T )dz

)

− s0

5∑
j=1

(∫
q∗

j (z,0)δqj (z,0)dz

)

−
7∑

j=1

∫ T

0
dt[〈δFj (q(t))q̃j (t)〉2

︸ ︷︷ ︸
I

+〈Fj (q(t)),δq̃j (t)〉2] + (c.c.). (B4)
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The integral 〈Fj (q(t)),δq̃j (t)〉2 in Eq. (B4) is zero if the
governing equations Fj (q) = 0 are satisfied during the time
interval [0,T ]. The main idea then amounts to rewriting
quantity 〈δFj (q(t)),q̃j (t)〉2 in terms of δqk(t) by partial
integration, which gives a system of PDEs for the Lagrangian
multiplier q̃. Including all boundary and initial condition in the
partial integration process and changing the sign of the time
coordinate τ = −t , one obtains the following adjoint system:

δ2
d

Sc

∂ũ

∂τ
− iαp̃ −

[
∂2

∂z2
− α2

]
ũ

− iα(A0Ã + B0B̃ + �0�̃) = 0, (B5)

δ2
d

Sc

∂w̃

∂τ
− ∂p̃

∂z
−

[
∂2

∂z2
− α2

]
w̃

−
(

A0
∂Ã

∂z
+ B0

∂B̃

∂z
+ �0

∂�̃

∂z

)
= 0, (B6)

∂Ã

∂τ
− δA

δ2
d

[
∂2

∂z2
− α2

]
Ã + δdRw̃ = 0, (B7)

∂B̃

∂τ
− 1

δ2
d

[
∂2

∂z2
− α2

]
B̃ + (κ�0 + 1)B̃

− λ�0�̃ − Ã = 0, (B8)

∂�̃

∂τ
− δ�

δ2
d

[
∂2

∂z2
− α2

]
�̃ + (1 − B0)(λ�̃ − κB̃) = 0, (B9)

∂�̃air

∂τ
− δair

δ2
dδ

2
l

[
∂2

∂z2
− α2

]
�̃air = 0, (B10)

iαũ + ∂w̃

∂z
= 0. (B11)

Using the boundary conditions of the system, the analogous
boundary conditions are derived from the partial integration
procedure to the following:

ũ = ∂w̃

∂z
= w̃ = 0 at z = 0, (B12)

w̃ = ∂ũ

∂z
= ∂2w̃

∂z2
= 0 at z = 1, (B13)

∂Ã

∂z
= ∂B̃

∂z
= ∂�̃

∂z
= 0 at z = 0, (B14)

∂Ã

∂z
= ∂B̃

∂z
= �̃air = 0 at z = 1, (B15)

δl�̃
air(z = 0) = �̃(z = 1), (B16)

δ�δ2
l

δaircH

∂�̃air(z = 0)

∂z
= ∂�̃(z = 1)

∂z
. (B17)

Depending on what objective functions Eβ is used the terminal
condition for the adjoint and direct fields change, which is just
a consequence on demanding the first two terms being zero in

Eq. (B4). For instance, the velocity case Ek demands

û(T )Sc = ũ(T ), ŵ(T )Sc = w̃(T ), (B18)

Ã(T ) = Â(0) = B̃(Te) = B̂(0) = �̃(T ) = 0, (B19)

�̂(0) = �̃air(T ) = �̂air(0) = 0, (B20)

û(0) = ũ(0)

s0Sc
, ŵ(0) = w̃(0)

s0Sc
. (B21)

The value of s0 is chosen as

s0 =
√

Ek

(
1

Sc
q̃(0)

)
. (B22)

This choice, included in condition (B21), yields

û(0) = ũ(0)√
Ek(q̃(0))

, ŵ(0) = w̃(0)√
Ek(q̃(0))

. (B23)

To find the optimal perturbation for time t = T , an
iterative scheme is performed, which propagates arbitrary
initial perturbation in velocity forward in time until time t = T ,
using the direct Eqs. (A11) to (A22). The concentration fields
have to admit Eqs. (B19) and (B20). Subsequently, this end
state q(t = T ) is used as an initial condition for q̃(t = T )
[regarding Eq. (B18)], which is propagated backwards using
the adjoint equations until time t = 0. Relations (B18)–(B20)
are enforced directly, but (B23) must be achieved iteratively to
reach a stationary value of L. The new initial condition for the
direct problem is set by (B23) to start a new loop. The problem
has converged when condition (B23) holds up to some error
ε < 10−10, i.e. the initial conditions only marginally change
between iterative loops.

APPENDIX C: THREE-DIMENSIONAL NONLINEAR
SIMULATIONS: NUMERICAL METHOD

The numerical code solves the Navier-Stokes-Boussinesq
equations and the reaction-diffusion-advection equations. It
has been used and described in Ref. [39,40] for interfacial
convection in a two-layer systems. However, in contrast to
Ref. [39], nonlinear terms are implemented with a first-
order Euler forward scheme in order to reduce the demand
of main memory. The simulation is performed using the
poloidal-toroidal decomposition of the velocity field, whereby
incompressibility is automatically satisfied. The dynamical
equations for the poloidal and toroidal components and the
various concentrations are discretized using a pseudospectral
method: Fields are expanded in truncated Fourier series for
the horizontal periodic directions x,y and in Chebyshev
polynomials for the vertical direction z. Usage of Fourier
modes leads to an efficient parallel solution scheme as well
as low numerical dissipation.

The smallest wave numbers for the x,y directions are kx0 =
2π/lx , ky0 = 2π/ly . The wave-number domain is discretized
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by the following set of wave numbers:

kx = −Nx

2

2π

lx
, . . . ,

(
Nx

2
− 1

)
2π

lx
, (C1)

ky = −Ny

2

2π

ly
, . . . ,

(
Ny

2
− 1

)
2π

ly
. (C2)

The data output in physical space and the nonlinear terms are
computed at the collocation points,

(xn,ym,zk) = (
nlx/Nx,mly/Ny,

1
2 (1 + cos(kπ/Nz))

)
, (C3)

with n ∈ [0,1, . . . ,Nx − 1], m ∈ [0,1, . . . ,Ny − 1], k ∈
[0,1, . . . ,Nz]. The transformation from physical space into
wave-number space is partly dealiased by zeroing all Fourier
modes corresponding to wave numbers larger or equal to three
quarters of the maximum wave number, i.e.,

Q̂(kx,ky) = 0 for |kx | � kx0
Nx

2

3

4
or |ky | � ky0

Ny

2

3

4
.

(C4)
The number of grid points in each direction is a power of 2
because only base 2 fast Fourier transforms (FFTs) are used.
All simulations have a vertical resolution of Nz = 128.

We adapt the value of the time step at step n + 1 to be
equal to δtn+1 = min(δtmax,δt

n+1
CFL ) where the value δtmax is

enforced throughout the study to be δtmax = 5 × 10−3. For the
calculation of δtn+1

CFL , the CFL number at time n is calculated
as follows:

Cn
g = δtn max

{
ux

�x
,
uy

�y
,
uz

�z

}
. (C5)

When Cn
g is in the interval

Cb/2 � Cn
g � Cb, (C6)

we set δtn+1
CFL = δtnCFL. We have chosen the size of this interval

in order to provide a stable numerical scheme by Cb = 0.15
but increased it up to Cb = 0.3 for times beyond the onset of
convection. For the case of having a too-small time step Cn

g <

Cb/2 (or, respectively, too large, Cn
g > Cb), we set δtnCFL =

Cbδt
n/Cn

g [respectively, δtnCFL = Cbδt
n/(2Cn

g )].
Parallelization with message passing interface (MPI) is

based on a domain decomposition in one horizontal direc-
tion, which requires transposition of the array of expansion
coefficients across the MPI tasks in order to compute the
FFTs. For the resolution of 1024 × 1024 × 128 ∼ 108 the
simulations program needs usually 52 Gb of main memory to
run. Usually it runs on 128 to 256 MPI processes. The ratio of

simulated time to wall-clock time is around 2 × 10−4, although
it clearly changes with flow velocity, generated output, and
used hardware. Typically, advancing by �t = 200 took around
10 days on 256 MPI processes.

APPENDIX D: POSTPROCESSING

For any field quantity Q(x,y,z,t), we may average over a
vertical line,

Q̄(x,y,t) ≡
∫ 1

0
Q(x,y,z,t)dz, (D1)

a horizontal plane,

〈Q〉xy(z,t) ≡ 1

lx ly

∫ ly

0

∫ lx

0
Q(x,y,z,t)dxdy, (D2)

or a volume,

〈Q〉xyz(t) ≡ 1

lx ly

∫ ly

0

∫ lx

0

∫ 1

0
Q(x,y,z,t)dxdydz. (D3)

The length scales in the distribution of Q are quantified
by a discrete Fourier analysis of Q̄(x,y,t) computed using its
value given at the discrete points xn, ym, i.e.,

Q̂(kx,ky,t) = 1

NxNy

Nx−1∑
n=0

Ny−1∑
m=0

Q̄(xn,ym,t)eikxxneikyym, (D4)

with the set of wave numbers given in (C2).
From this amplitude, a power spectrum,

H
Q
2 (k,t) =

∑
√

k2
x+k2

y∈[k± π
2 ]

|Q̂(kx,ky,t)|2, (D5)

is calculated and two dominant wave numbers are identified:
a weighted average kavg,

kQ
avg(t) =

∑
k H

Q
2 (k,t)k∑

k H
Q
2 (k,t)

, (D6)

or the wave number kmax(t) for which the power spectrum
reaches its maximum at time t ,

H
Q
2 (kQ

max(t),t) = max
k

H
Q
2 (k,t). (D7)

Finally, one can also extract from Q̄(x,y,t) its variance

σ 2
Q(t) = 〈

Q2
eff(x,y,t)

〉
xy

, with

Qeff(x,y,t) = Q̄(x,y,t) − 〈Q(x,y,z,t)〉xyz. (D8)
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