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We consider arbitrary, possibly turbulent, Boussinesq flow which is smooth below a dissipative scale ld . It
is demonstrated that the stability of the flow with respect to growth of fluctuations with scale smaller than ld

leads to a nontrivial constraint. That involves the dimensionless strength of fluctuations of the gradients of the
scalar in the direction of gravity Fl and the Rayleigh scale L depending on the Rayleigh number Ra, the Nusselt
number Nu, and ld . The constraint implies that the stratified fluid at rest, which is linearly stable, develops
instability in the limit of large Ra. This limits observability of solution for the flow around small swimmer in
quiescent stratified fluid that has closed streamlines at scale L [A. M. Ardekani and R. Stocker, Phys. Rev. Lett.
105, 084502 (2010)]. Correspondingly, to study the flow at scale L one has to take turbulence into account. We
demonstrate that the resulting turbulent flow around small particles or swimmers can be described by a scalar
integro-differential advection-diffusion equation. Describing the solutions, we show that closed streamlines
persist with finite probability. Our results seem to be the necessary basis in understanding flows around small
particles and swimmers in natural marine environments.
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I. INTRODUCTION

Turbulent flows are considered to be smooth in the
dissipation range of scales [1]. Below the viscous scale of
the Navier-Stokes turbulence the internal friction of the fluid
regularizes the irregular turbulent fluctuations in the inertial
range turning the flow into laminar and differentiable. In the
case of the Boussinesq turbulence the regularization is done
by both viscosity and heat conduction. We define ld as the
dissipative scale below which both the flow and the scalar field
coupled to it are smooth. In both cases the self-consistency of
laminarity below ld demands decay of perturbations at scales
smaller than ld .

In the Navier-Stokes turbulence the value of the viscous
scale ld can be obtained from the demand that the viscous
dissipation balances the nonlinear advection term in the
equation at this scale. Otherwise said, ld is fixed by demanding
that the Reynolds number based on this scale is of order one
[1]. That guarantees that the flow below ld is laminar smooth
flow. In particular, if one studies the temporal development of
wave packets with small amplitude sized below ld , then the
smallness of the Reynolds number based on the packet’s size
guarantees that the fluctuation decays. Thus, the assumption
of the flow laminarity below the scale ld is self-consistent.

Consider now the Bousinesq turbulence that involves
interaction of the flow with the scalar. Using the velocity
equation one can readily determine the scale lν at which
the viscous dissipation balances the nonlinear advection term
in the equation. Similarly, using the scalar equation one can
readily determine the scale ldif at which the heat conduction
balances the nonlinear advection term in the equation. How-
ever, in contrast to the Navier-Stokes turbulence, this does
not guarantee that the wave packets with size smaller than
ld = min[lν,ldif] would decay. This is due to the coupling of
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the flow to the scalar field that produces the mechanism for
the growth of fluctuations which is the same mechanism that
underlies the convective instability. Thus, the demand that the
heat conduction and viscosity terms dominate the advection
ones in velocity and scalar equations separately does not
guarantee the stability yet.

In this work we study the equations governing small
perturbations at scales smaller than ld and demonstrate that
the condition of decay of small fluctuations in the dissipation
range produces a nontrivial inequality. This inequality can
be considered as the condition of convective stability in the
dissipative range.

It is a remarkable consequence of the derived condition
that the familiar linearly stable state of the vertically stratified
fluid at rest turns unstable when the Rayleigh number, Ra,
measuring the relative importance of buoyancy and dissipative
processes in the fluid, is large. This is based on the constraint’s
consequence that unless the scalar gradient points strictly in
the direction of the gravity, the flow gets unstable in the
limit Ra → ∞. Since in natural situations the direction of
the scalar gradient fluctuates, then the instability holds. The
potential far-reaching consequences of this instability are to be
studied.

Further, we demonstrate that in the case of the turbulent
Boussinesq flow, the condition is obeyed by the known phe-
nomenological relations. In the case of nonsmall Prandtl num-
ber the flow parameters fit the condition precisely. It follows
that the values of the dissipative scales can be considered as
the condition of stability like in the Navier-Stokes turbulence.
In contrast to that, in the case of small Prandtl numbers there is
a gap between the dissipative scales prescribed by the stability
and those observed phenomenologically. The understanding
of this gap demands further study.

Finally, we use the stability condition to study the Boussi-
nesq flow around small particles. Although the problem of
translation of small particles through the viscous fluid has been
studied intensively for centuries already [2], unexpectedly, a
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new result was found recently. A nontrivial flow pattern was
predicted for passive particles and self-propelled swimmers
that move in the quiescent fluid when fluid’s density strati-
fication (present invariably in many aquatic environments) is
taken into account [3]. Stratification produces an intrinsic scale
L = (νκ/γg)1/4 that characterizes the interaction of dissipa-
tive processes (characterized by kinematic viscosity ν and
heat conductivity κ) and gravity g, with γ = (1/ρ0)(−dρ/dz)
being the density gradient normalized by the reference density.
In the case of stable convection in the horizontal layer of a
fluid of depth d, L4 = d4/Ra. Thus, below we refer to L as
the Rayleigh scale. In particular, the well-known threshold
for convective instability corresponds to the Rayleigh scale
becoming smaller than d times a constant of order one
depending on the type of boundary conditions [4].

In the fluid at rest the Rayleigh scale is the scale at which
the impact of stratification on the flow around a small particle
becomes appreciable. At smaller scales a � r � L, where
a is the particle’s radius, the stratification is negligible and
the usual Stokes flow holds. However, at scales of order L

and larger instead of the Stokes’s streamlines that are open to
infinity, one finds closed streamlines and toroidal eddies [3].
We show here that the flow decay at r � L is exponential-like.
This is in sharp contrast to the slow algebraic (inverse with the
distance) decay of the Stokes flow.

The obtained flow demonstrates that, in spite of wide sepa-
ration of scales of stratification (kilometers) and of particles or
self-propelled microorganisms (0.1–1 mm) in typical marine
environment, the stratification cannot be neglected; the scale
L is of the order of ∼1 mm. It was suggested that this
previously unnoticed feature of the flow around small particles
in the ocean may affect propulsion of small organisms and
sinking of marine snow particles, diminish the effectiveness of
mechanosensing in the ocean [3], stifle nutrient uptake of small
motile organisms [5], or potentially hinder the drift-induced
biogenic mixing [6].

The derivation of the above stratified flow in [3] presumed a
constant gradient of the stratified agent. Correspondingly, the
obtained flow is observable if L � ldif , where ldif is the scale
of spatial variations of the gradients. However, the stability
condition derived in this work shows that a quiescent stratified
fluid with L � ldif is stable only if the deviations (γ − γz)/γ of
the scalar gradient γ from the direction of gravity, γ = γz, are
bounded by a small parameter (L/ldif)4. Since for L/ldif � 1
the parameter (L/ldif)4 is vanishingly small, then it seems that
the predicted flow is unlikely to occur in nature.

To resume, the problem with observability of the solution
in [3] is that the flow involves the intrinsic scale of the fluid
L that is independent of the particles’ size (in contrast to,
say, the Oseen scale). Then the condition of observability
of the flow around the particle is the condition on the fluid
flow itself, which realization is questionable due to convective
instability holding when the gradients of the scalar have natural
fluctuations from the vertical direction. We point out that it is
not that the particle drives the rest state of the fluid considered
in [3] unstable, but rather that the rest state with considered
parameters is not likely to occur in marine environments to
begin with.

The stability condition implies that the consideration of the
flow around small particles and swimmers in the quiescent

stratified fluid has natural applications only in the case
L � ldif (unless there is strong limitation on the fluctuation of
the gradients described in the previous paragraph). However,
in order to consider the flow at scale L in this case, one has
to take into account the spatial variation of the gradient of the
background density. This complication both hinders analytic
progress and makes the study nonuniversal. The flow would
strongly depend on the way the gradient varies.

Thus, we consider the universal situation where the flow is
turbulent, which is by far the most common case in nature.
In this case, the stability condition implies that L � ldif .
We consider the practically important case of large Prandtl
numbers where the known phenomenological relations imply
L ∼ ldif . We demonstrate that in this case the calculation of
the flow is reduced to the study of scalar advection-diffusion
equation. This equation is integro-differential.

Despite the presence of turbulence, to leading order the
flow at a � r � L is still the Stokes flow. We use the
advection-diffusion equation to find the correction to that flow
due to turbulence. We succeed in finding exact formula for the
magnitude of fluctuations due to turbulence in terms of the
energy dissipation rate ε.

Finally, we construct the asymptotic solutions to the flow
at the scale L. These demonstrate that, with finite probability,
there are closed streamlines.

It should be emphasized that the results are obtained without
modeling the statistics of turbulence and they can be directly
applied to natural environments.

II. BEHAVIOR OF INFINITESIMAL SMALL-SCALE
PERTURBATIONS IN THE BOUSSINESQ FLOW

In this section we consider the behavior of infinitesimal
small-scale perturbations in the Boussinesq flow that describes
the interaction of the flow with the stratifying agent, by [4,7]

∂tv + v · ∇v = −∇p0 + φg + ν∇2v + f , ∇ · v = 0,

∂tφ + v · ∇φ = κ∇2φ, (1)

where v is the fluid velocity, φ the fluid density normalized
by the reference value ρ0, p0 is the properly defined pressure
[4], and g = −gẑ is the gravitational acceleration. The force
f represents either a body force and/or a boundary force.
We demonstrate that there is a range of parameters for
which the infinitesimal small-scale fluctuations would grow
exponentially. It is to be stressed that, besides smoothness (the
existence of finite scales of temporal and spatial variation of
the fields), no assumptions are made on the flow. In particular,
the flow can be turbulent, which is the typical case in natural
marine environments.

We briefly review the characteristic properties of the
turbulent flow governed by Eqs. (1). The smallest scale of
fluctuations of φ is the diffusive scale ldif . Though φ itself is
dominated by the large-scale fluctuations at the outer scale of
the flow L0, the fluctuations of the gradients ∇φ are dominated
by the scale ldif . The latter typically is much smaller than L0.
This is similar to properties of velocity in the Navier-Stokes
turbulence [1], where the velocity is dominated by L0 but its
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gradients by lν � L0. Here lν ∼ ν3/4ε−1/4, where ε is the rate
of viscous energy dissipation per unit volume of the fluid;
see [1]). In fact, within the Kolmogorov theory the scalings of
velocity and the scalar coincide in the inertial range; see [8] and
references therein. The scale ldif is determined by balancing the
advection and diffusion terms in Eqs. (1). The balance gives
that δv(ldif)ldif ∼ κ , where δv(ldif) is the typical difference of
velocities at spatial scale ∼ldif . Similarly, the smallest spatial
scale of variations of v, the viscous scale lν , is determined from
δv(lν)lν ∼ ν. If the Prandtl number Pr = ν/κ obeys Pr � 1,
then the viscous scale lν , below which the flow is smooth,
obeys lν � ldif , so that at the scale ldif one can approximate
δv(ldif) by its derivative, δv(ldif) ∼ λldif , where λ is the typical
value of the velocity gradient. The latter is given by λ = √

ε/ν.
It follows that ldif = √

κ/λ if Pr � 1. In the case Pr � 1, the
scale ldif belongs to the inertial range of turbulence producing
the Kolmogorov theory estimate ldif ∼ κ3/4ε−1/4 = Pr−3/4lν ,
where δv(ldif) ∼ ε1/3l

1/3
dif . Similar estimates can be written for

Bolgiano-Obukhov scaling.
Independently of Pr and whether the flow is described by

Kolmogorov or Bolgiano-Obukhov scalings, what is relevant
to the present study is that ∇φ can be considered smooth below
scales ldif so that it is approximately constant over distances
much smaller than ldif . The temporal scale tdif of variations
of ∇φ is λ−1 if Pr � 1 and [κ/ε]1/2 = λ−1Pr−1/2 otherwise
(this follows from the estimates above). One can write
t−1
dif = λ min[1,Pr1/2].

The time development of small perturbations is described
by linearized version of Eqs. (1),

∂t u + v · ∇u + u · ∇v = −∇p + θ g + ν∇2u,
(2)

∂tθ + v · ∇θ + u · ∇φ = κ∇2θ, ∇ · u = 0,

where u, θ , and p are perturbations of velocity, scalar, and
pressure, respectively. We consider the time development of
wave packets with characteristic wavelength much smaller
than the smallest spatial scale ld of the flow which is
the minimum of the diffusive ldif and viscous lν scales,
ld = min[ldif,lν]. Introducing the fields in the frame that
moves with wave packets’ center qcm(t), that is considering
u′(x,t) = u(x + qcm(t),t) and θ ′(x,t) = θ (x + qcm(t),t), we
find an equation for u′(x,t),

∂t u′ + [v(x + qcm(t),t) − v(qcm(t),t)] · ∇u′

+u′ · ∇v(x + qcm(t),t) = −∇p′ + θ ′ g + ν∇2u′, (3)

∇ · u′ = 0,

where p′(x,t) = p(x + qcm(t),t) and ∂t qcm(t) = v(qcm(t),t).
The equation for θ ′(x,t) reads

∂tθ
′ + [v(x + qcm(t),t) − v(qcm(t),t)] · ∇θ ′

+u′ · ∇φ(x + qcm(t),t) = κ∇2θ ′. (4)

We now use that the wave packet’s size is much smaller than
ld so that one can use the Taylor series, which to leading order
gives

∂t u′ + σ x · ∇u′ + σ u′ = −∇p′ + θ ′ g + ν∇2u′,
(5)

∂tθ
′ + σ x · ∇θ ′ = u′ · γ + κ∇2θ ′,

where we introduced the matrix of velocity derivatives in
the fluid particle’s frame, σik(t) = ∇kvi(qcm(t),t), and the
gradient of the scalar in that frame, γ (t) = −∇φ(qcm(t),t).
The terms σ x describe the distortion of the wave packet due
to local velocity gradients.

Finally, we observe that the small size of the wave packet in
comparison with ld implies that the stretching and advection
terms can be neglected in comparison with viscous and heat
conduction terms; the wave packet is in the range dominated
by the dissipative viscosity and heat conduction processes. We
find

∂t u′ = −∇p′ + θ ′ g + ν∇2u′,
(6)

∂tθ
′ = u′ · γ + κ∇2θ ′.

The time development of Fourier modes obeys

∂t u′ = −ikp′ − gθ ′ẑ − νk2u′, k · u′ = 0,
(7)

∂tθ
′ = u′ · γ − κk2θ ′.

Multiplying the first equation with k, we find ik2p′ = −gθ ′kz

or p′ = igθ ′kz/k2. Thus,

∂tu
′
i = gθ ′kikz/k2 − gθ ′δiz − νk2u′

i , (8)

which gives

[∂t + νk2][∂t + κk2]u′
i = g[kikz/k2 − δiz]u′ · γ . (9)

This equation by itself cannot be solved due to the time
dependence of γ with characteristic time scale tdif . [The
problem is similar to a one-dimensional Schrödinger equation
on vector wave function u(t), with γ (t) playing the role of the
potential. It can only be solved for particular time dependencies
of γ (t).] However, the equation can be solved in the limit
where the scale of temporal variations tc of u′

i obeys tc � tdif ,
where one can use “adiabatic approximation.” To find the range
of parameters of this limit, we assume tc � tdif and demand
self-consistency. We consider γ as a slowly varying quantity
that can be treated as a constant to the leading order. For
constant γ , taking the scalar product of the above equation
with γ produces a closed equation on w = v · γ ,

[∂t + νk2][∂t + κk2]w = −gγ̃w, (10)

where γ̃ (k) = γz − (γ · k̂)k̂z, with k̂ = k/k. This is the Fourier
space version of the corresponding equations for the study of
convective instability in [4]. The solutions are proportional to
exp[λt], where

(λ + νk2)(λ + κk2) = −gγ̃ , (11)

with the larger solution (if the square root is real; otherwise,
Reλ < 0)

λ(k) = 1
2 [

√
(ν − κ)2k4 − 4gγ̃ − (ν + κ)k2]. (12)

Consider the dependence of λ(k) on k at fixed orientation
k̂ so that γ̃ is fixed too. In the convectionlike case one has
γ̃ < 0 (to see that in the case of convection γ̃ < 0, note that
γ = −γ ẑ, so that γ̃ = −γ k2

⊥/k2 with k2
⊥ = k2 − k2

z ) so that
the solution is positive at small k < k0 and negative at k > k0,
where λ(k = k0) = 0. We have k4

0 = −gγ̃ /νκ . In contrast,
in the stratificationlike case, γ̃ > 0, the real part of λ is
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always negative (it has unique zero at k = 0, which has no
consequences in physical situations with finite k).

It follows from k4
0 = −gγ̃ /νκ that the maximal value

of k with positive λ is determined by the minimum of
γ̃ over all possible orientations of k̂. We notice that the
maximum of (γ · k̂)k̂z over all possible orientations of k̂

is given by (γz + γ )/2 while the minimum is given by
(γz − γ )/2. To see this, one can write γ = γzẑ + (γ − γzẑ)
so that k̂z(γ · k̂) = (γz + γ⊥ tan δ) /(1 + tan2 δ), where
γ⊥ = √

γ 2 − γ 2
z and cos δ = k̂z. Then the extrema over δ

taken at tan δ = (−γz ± γ ) /γ⊥ are given by the provided
expressions. It follows that the minimum of γ̃ = γz − k̂z(γ · k̂)
is given by γz − (γz + γ )/2 = (γz − γ )/2 � 0, where the
equality holds only if γ points precisely in the z direction.
Thus, λ(k) is positive for certain modes provided the wave
numbers with k4 < g(γ − γz)/2νκ are admissible.

In the case of stratification with γ = γ ẑ, where
g(γ − γz)/2νκ = 0, there are no modes with positive λ(k) for
finite k > 0. In contrast, in all other cases where γ 
= γ ẑ—that
is, the cases where γ has nonzero component perpendicular to ẑ

or obeys γ = −γ ẑ, like in convection—there are exponentially
growing modes of Eqs. (2).

In the case of convection the described growing modes cor-
respond to the familiar Rayleigh-Bénard instability. In that case
the physically relevant wave numbers obey k2 = π2/d2 + k2

⊥
(recall that d is the distance between the plates) and k2

⊥ is
arbitrary (we consider free-free boundary conditions) [4]. One
has

λ = 1

2

⎡
⎣

√
(ν − κ)2

(
π2/l2

d + k2
⊥
)2 + 4gγ k2

⊥(
π2/l2

d + k2
⊥
)

− (ν + κ)
(
π2/l2

d + k2
⊥
)⎤⎦. (13)

This is negative both at small and large k2
⊥ with maximum

of λ(k⊥) reached at 0 < k⊥ < ∞. This maximum is positive
(instability) if gγ /νκ > 27π4/4l4

d and negative otherwise
(stability). This is the well-known criterion where gγ l4

d/νκ

is the Rayleigh number [4]. Similar instability criterion can be
derived for other directions of γ (since these have no direct
physical significance, we do not do this).

Returning to the case of arbitrary smooth Boussinesq flow,
we observe that the wave numbers with k4 < g(γ − γz)/2νκ

are permissible provided the corresponding wavelength is
much smaller than the minimum of ldif and lν , which is the
condition of validity of our study. Introducing the length
L = (νκ/gγ )1/4, we find the condition L � ld (1 − γz/γ )1/4.
The characteristic value of the growth exponent is
λ(k = 0) ∼ √

g(γ − γz).
If Pr � 1, then tdif = λ−1, min[ldif,lν] = ldif , and the wave

numbers with k4 < g[γ − γz]/[2νκ] are permissible provided
ldif(1 − γz/γ )1/4/L � 1. If the latter condition is met, then
λ(k = 0)tdif = (1 − γz/γ )1/2ldif lν/L

2 � 1.
If Pr � 1, then tdif = λ−1Pr−1/2, min[ldif,lν] = lν , and

the wave numbers with k4 < g(γ − γz)/2νκ are permissible
provided lν(1 − γz/γ )1/4/L � 1. If this condition is obeyed,
then again λ(k = 0)tdif = (1 − γz/γ )1/2Pr−1l2

ν/L
2 is much

greater than 1.

We conclude that if the wave numbers with
k4 < g(γ − γz)/2νκ are permissible, then they grow
exponentially with the typical time scale much smaller
than tdif .

We are now ready to deal with the time dependence of γ (t):
Because the growth occurs at the time scales much smaller
than the time scale of variations of γ the growth occurs at the
rate λ(k) determined by the instantaneous value of γ (t). This
can be proved by noting that multiplying Eq. (9) with time-
dependent γ one still finds that Eq. (10) holds approximately.
This is because of inequalities like γ ∂t u′ � u′∂tγ . Finally,
Eq. (10) still has the same exponential solutions because the
time derivatives of λ(k) can be neglected similarly.

We conclude that arbitrary smooth Boussinesq flow
is unstable with respect to small-scale perturbations if
L � ld (1 − γz/γ )1/4. We stress that this conclusion is reached
by finding a deterministic solution, though the flow itself
can be turbulent. This has nontrivial consequences for flows
realizable in nature, where small perturbations are present
always. It implies that there are no stationary turbulent flows
or time-independent laminar flows with L � ld (1 − γz/γ )1/4.
We now consider the applications of this stability condition.

III. INSTABILITY OF STABLE STRATIFICATION
IN THE LIMIT OF LARGE Ra

In this section we demonstrate that in the limit of large
Rayleigh numbers a “stably stratified fluid” will necessarily
become unstable in natural situations. This is despite that
infinitesimal perturbations of the stably stratified state decay.

In the case of stably stratified fluid at rest, the scale ld is
the scale ldif of variations of temperature. The ratio l4

d/L
4 then

defines the usual Rayleigh number Ra.
In natural situations there are always disturbances that

produce certain finite (constant or not) levels of fluctuations
of horizontal components of γ . Then the criterion derived in
the previous section says that these fluctuations have to obey
Ra1/4(1 − γz/γ )1/4 � 1 in order for the fluid to remain at rest.
Due to the smallness of exponent 1/4, the factor (1 − γz/γ )1/4

would be close to unity for rather small fluctuations of γ . It
follows that in the limit of large Ra taken at constant level of
fluctuations of 1 − γz/γ the fluid would always turn unstable.

This conclusion implies that, despite the linear stability of
the stratified fluid at rest in the limit Ra → ∞, the instability
would have to occur because strictly vertical γ is impossible.
This probably is the reason why stably stratified fluid at rest
seems to be rather rare in nature. We conjecture that this
instability is one of the reasons for the peculiar features of
the distribution of temperature in the ocean [9] leaving the
corresponding study to future work.

We now consider the implications of the instability to the
turbulent flow.

IV. IMPLICATIONS OF SMALL-SCALE INSTABILITY
FOR TURBULENCE

In the turbulent flow the fluctuations of horizontal
components of γ are nonsmall so that (1 − γz/γ )1/4 ∼ 1
and stability demands L � min[ldif,lν]. This is compatible
with the phenomenological relations proposed previously.
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We have [8,10]

ε = ν3

L4
0

(Nu − 1)RaPr−2, γ0 = �

L0

√
Nu, (14)

where � is the temperature difference at the outer scale
L0, Ra = g�L3

0/(νκ) = L4
0/(L4

√
Nu). We defined the typical

value of ∇φ by γ0 =
√

〈[∇φ]2〉. The last of the equations (14)
defines the Nusselt number. Since ∇φ is due to small scale
turbulence with scale ldif that is typically much smaller than
L0 then Nu � 1. The relations (14) imply

L4 = κ2

λ2

√
Nu.

If Pr � 1, then ld = min[ldif,lν] = ldif = √
κ/λ. The above

relation implies then that L4 = l4
d

√
Nu � l4

d . If Pr � 1,
then min[ld ,lν] = lν and L4 = Pr−2l4

ν

√
Nu. In both cases,

L � min[ldif,lν] is obeyed. We conclude that the stability con-
dition L � min[ld ,lν] is consistent with the phenomenological
relations (14).

Finally, it is worth emphasizing that the mean field
description of the large-scale flow fails in describing the
behavior of small-scale perturbations. Substituting into the
equations the average γ , which is vertical, would lead to
decay law for perturbations in contrast to the growth that holds
for time-dependent γ (t), which is nonvertical. The solution
described previously holding for given realization of the flow
has to be used.

V. SMALL PARTICLES AS A CONSTANT SOURCE
OF PERTURBATIONS

We now consider the problem of describing the perturbation
flow around small particles translating in the Boussinesq flow.
Focusing on the case of small particles of the sizes much
smaller than the scales of the flow, we see that in the near
vicinity of the particles the perturbation flow is described by
the usual Stokes flow (see the end of the section). Our interest,
thus, is in the flow far from the particle. Considering scales
much larger than the particle’s size, the impact of the particle
on the balance of momentum and energy can be described as
a point force with magnitude equal to minus the force that
the flow exerts on the particle. The latter is the Stokes force
since the force is determined by the flow near the particle’s
surface that is close to the usual Stokes flow. The Navier-Stokes
equations become

∂tv + v · ∇v = −∇p0 + φg + ν∇2v + f ẑδ[x − y(t)],

(15)

where y(t) is the position of the particle, |f | = 6πμa| ẏ|,
where a is the particle’s radius (we consider spherical particles
for clarity) and it is implied that there is force driving the flow.
We consider the case of particles moving in the z direction with
the sign of f determined by whether the motion is upward or
downward. The cases of transversal motion can be studied
similarly to the study below using the superposition. The
particle’s coordinate obeys

d2 y
dt2

= − ẏ − u[t, y(t)]

τ
, (16)

where τ is the Stokes relaxation time given by the ratio of
the particle’s mass to 6πμa and u is the flow that would hold
without the particle.

The particle could exchange heat with the flow. That would
produce a point source in the equation on φ in Eqs. (1), which
could lead to nontrivial type of flow. In this work we do not
consider this possibility postponing it to future work: Due to
linearity of equations on the perturbation flow (see below), this
possible heat source term in the equation on φ can be included
by superposition. Here we use the evolution of φ,

∂tφ + v · ∇φ = κ∇2φ. (17)

Since the Stokes force is proportional to the particle’s radius,
then the force term in Eq. (15) is small for small particles. Thus,
the perturbation flow produced by the particles is considered
using linearized equations.

We decompose the flow into the background turbulent
flow and the perturbation flow centered at the particle’s
location, v(x) = u(x) + w′ [x − y(t)], p/ρ(x) = P0(x) +
P [x − y(t)], and θ (x) = θ0(x) + � [x − y(t)], where w′, P ,
and � decay at large r ≡ x − y(t). The perturbations obey
(cf. [11])

∂tw
′ + {u (x + y [t]) − ẏ} · ∇w′ + (w′ · ∇)u (x + y [t])

+w′ · ∇w′ = −∇P + �g + ν∇2w′ + f ẑδ(x),

∂t� + w′ · ∇θ0 (x + y [t]) + {u (x + y [t]) − ẏ} · ∇�

+w′ · ∇� = κ∇2�, ∇ · w′ = 0. (18)

For small particles, the Reynolds number Rep = w′
da/ν and

the Péclet number Pep = w′
da/κ based on the particle’s drift

velocity with respect to the flow w′
d = ẏ − u[t, y(t)] are small.

In particular, when the Stokes number St = λτ � 1 the drift
velocity is given by [12]

w′
d = −τ [∂t u + (u · ∇)u] . (19)

It follows that w′ ∼ Stλlν so that Rep = Sta/lν , Pep = RepPr.
Thus, for small particles one can neglect the nonlinear terms
in Eqs. (18). This quantifies the smallness of f needed for
the perturbation flow to obey linearized equations. Further,
we observe that due to smallness of Rep, Pep one can
neglect the w′

d term in u (x + y [t]) − ẏ = u (x + y [t]) −
u[t, y(t)] − w′

d in comparison with viscous and heat con-
ductance terms. Focusing on scales much smaller than lν ,
one finds u (x + y [t]) − u[t, y(t)] = σ x, where σik(t) is the
matrix of velocity gradients at the position of the particle
σik(t) = ∇kui[t, y(t)]. Thus, Eqs. (18) become

∂tw
′ = −∇P + �g + ν∇2w′ + f ẑδ(x),

(20)
∂t� + w′ · ∇θ0 (x + y [t]) + σ x · ∇� = κ∇2�,

where we neglected σ x · ∇w′, σw′ terms in the equation on w′
in comparison with the viscous terms using that we consider
the flow at scales much smaller than lν . We did not, however,
neglect the σ x · ∇� term in the equation on � since it is
possible that this term is not small if the Prandtl number
is large; e.g., in the ocean the typical values are Pr ≈ 7 for
temperature and ≈670 for salinity [9].

We observe from Eq. (20) that θr at scale r obeys
θr ∼ r2γw′

r/κ , where γ is the typical value of ∇θ0 and we
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balance the heat conductance term with the term w′ · ∇θ0. It
follows that in the first of Eqs. (20) we have at scale r

�rg

ν∇2w′
r

∼ r4

L4
. (21)

Thus buoyancy term is negligible at scales r4 � L4, where
one would have the usual Stokeslet flow unless ld is smaller
than L. The Stokes flow that holds near the particle will get
modified at the smallest of the scales L, ld (the Oseen radius
is assumed to be larger than these scales). We start with the
case L � ld . The condition of stability in this case brings us
to consider the following range of parameters.

VI. FLOW AROUND A SMALL PARTICLE AT
ld � L � ld(1 − γz/γ )1/4: QUASIEXPONENTIAL DECAY

We consider flow around the particle at the scale L when
we deal with weakly fluctuating stratification L � ld , but
L � ld (1 − γz/γ )1/4. The inequalities imply that
(1 − γz/γ )1/4 � 1 so that only small fluctuations of γ

around the stratification relation γ = γz hold in the flow. Due
to L � ld , one can neglect the σ x term in Eq. (20) and put
∇θ0 (x + y [t]) ≈ −γ (t), where γ (t) = −∇θ0 ( y [t]). Here
we assume that the scale ldif of spatial variations of ∇θ0 is
much larger than the scale of consideration L. We find

∂tw
′ = −∇P + �g + ν∇2w′ + f ẑδ(x), (22)

∂t� = γ · w′ + κ∇2�. (23)

We thus obtained Eqs. (6) governing small-scale fluctuations
that are created by the constant momentum source f . Clearly,
in the case of stable stratification γ = γ ẑ the condition of
stability of the flow L � ld (1 − γz/γ )1/4 implies that linear
modes of the above equation decay. Thus, in the presence of the
constant source there is time-independent solution determined
from

0 = −∇P + �g + ν∇2w′ + f ẑδ(x), (24)

0 = γ · w′ + κ∇2�. (25)

This equation in the case of stable stratification γ = γ ẑ was
considered in [3]. It is useful for what comes later to keep γ

arbitrary. The equation is solved by the Fourier transform

ikP = �g − νk2w′ + f ẑ, k · w′ = 0, (26)

γ · w′ = κk2�. (27)

We multiply the first equation with k and use the incompress-
ibility condition k · w′ = 0 to eliminate the pressure,

P = igkz�
′/k2, �′ ≡ � − f/g. (28)

Introducing k̂ ≡ k/k and the projection �ij (k) leads to

νk2w′ = �′�(k)g, �ij (k) = δij − k̂i k̂j . (29)

It follows that

γ · w′ = −g�′γ̃
νk2

, (30)

where γ̃ (k) = γz − (γ · k̂)k̂z was introduced previously. Sub-
stituting γ · w′ in the equation for �,

� = φ(k)

α(k)
= f

g

γ̃ /|γz|
L4k4 + γ̃ /|γz| = f

g
− f

g

L4k4

L4k4 + γ̃ /|γz| ,

α(k) ≡ κk2d(k), d(k) ≡ 1 + γ̃ /|γz|
L4k4

, φ(k) ≡ f γ̃

νk2
.

Thus,

�′ = −f

g

L4k4

L4k4 + γ̃ /|γz| . (31)

This solution in the case of stable stratification γ = γ ẑ, where
one has

�′ = −f

g

L4k4

L4k4 + k2
⊥/k2

, (32)

was obtained in [3]. It was demonstrated using this formula
that the flow at scales L � r � lb is profoundly altered by the
buoyancy force. Here lb is the depth of the fluid layer or the
characteristic scale of variations of γ . Instead of the typical
Stokesian 1/r behavior, fast decaying velocity was found.
This observation was done numerically with no explanation
of the nature of the decay (power law with large exponent,
exponential decay, or other). We pass to provide quantitative
consideration of the nature of the decay.

The flow is axially symmetric, so that one can introduce
the stream function ψ0(r,z) = ∫ r

0 r ′w′
z(r

′,z)dr ′ that obeys in
cylindrical coordinates

w′
z = 1

r

∂ψ0

∂r
, w′

r = −1

r

∂ψ0

∂z
. (33)

We have (it is useful to introduce averaging over ϕ)

ψ0 =
∫ r

0

∫ 2π

0

r ′dr ′dϕ

2π

∫
w′

z(k)dk

(2π )3
exp[ikzz + ik⊥r ′ cos ϕ]

= −g

ν

∫
k2
⊥dk

(2π )3k4
�′(k) exp [ikzz]

∫ r

0
r ′J0(k⊥r ′)dr ′,

where we used w′
z = −gk2

⊥�′(k)/νk4 and J0(x) is the Bessel
function of zeroth order. Noting that k2

⊥
∫ r

0 r ′J0(k⊥r ′)dr ′ =∫ k⊥r

0 xJ0(x)dx = k⊥rJ1(k⊥r), passing to the dimensionless
integration variable q = Lk and scaling all lengths (i.e., r ,z)
with L,

ψ0(Lr) = f Lr

ν

∫ ∞

0

q2
⊥dq⊥
(2π )2

∫ ∞

−∞

exp [iqzz] J1(q⊥r)q2dqz

q2
⊥ + q6

,

where we used the solution (32). To further simplify this
expression, we introduce polar coordinates in the (qz,q⊥) plane
by q⊥ = q sin θ , qz = q cos θ , so that

ψ0(Lr) = f Lr

ν

∫ π/2

0

sin2 θdθ

2π2

∫ ∞

0

q3 cos [qz cos θ ]

sin2 θ + q4
dq

×J1(qr sin θ ). (34)

When q is large, the integrand is proportional to q−3/2 times an
oscillating function of q, so the convergence is slow. We rewrite
the integral so the convergence is fast and convenient for the
numerical evaluation. The denominator has simple poles in the
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upper half plane at q1 = √| sin θ |(1 + i)/
√

2 and q2 = −q∗
1 .

We write

1

sin2 θ + q4
= 1

(q − q1)(q + q1)(q − q∗
1 )(q + q∗

1 )
. (35)

Closing the contour in the upper half plane is not straight-
forward because the integrand has growing exponents when
continued onto the complex plane. We first write

ψ0(Lr) = f Lr

ν

∫ π/2

0

sin2 θdθ

2(2π )2

∫ ∞

−∞

q3J1(qr sin θ )

sin2 θ + q4
dq

× (exp [iqz cos θ ] + exp [−iqz cos θ ]) , (36)

where we used that J1(qr sin θ ) is odd function of q to
continue the integral over q to (−∞,∞). Using the integral
representation of J1(z) (Re stands for real part),

ψ0(Lr) = f Lr

ν
Re {I0(y+) + I0(y−)} , (37)

where y± = r sin θ sin φ ± z cos θ and

I0(y) =
∫ π/2

0

sin2 θdθ

2(2π )2

∫ π

0

dφ

π
exp[−iφ]

×
∫ ∞

−∞

q3dq

sin2 θ + q4
exp [iqy] .

The integral is purely imaginary due to the parity properties
of the integrand, so I0(y) is an odd function of y. We consider
y > 0 when we can close the contour in the upper half plane,

I1 ≡ 1

2πi

∫ ∞

−∞

q3dq

sin2 θ + q4
exp [iqy]

= q3
1 exp [iq1y]

2q1(q1 − q∗
1 )(q1 + q∗

1 )
+ c.c.

= exp[−y
√

sin θ/2]
cos[y

√
sin θ/2]

2
.

In the case y < 0 we close the contour in the lower half plane
which gives

I1 = − q3
1 exp [iq1|y|]

2q1(q1 − q∗
1 )(q1 + q∗

1 )
− c.c.

Therefore, we can write

I1 = sgn(y) exp[−|y|
√

sin θ/2]
cos[|y|√sin θ/2]

2
.

Thus, we finally obtain

ψ0 = f Lr

ν

∫ π/2

0

sin2 θdθ

(2π )2

∫ π/2

0
dφ exp [−h+] sin φ cos(h+)s+

+ f Lr

ν

∫ π/2

0

sin2 θdθ

(2π )2

∫ π/2

0
dφ exp [−h−] sin φ cos(h−)s−,

where h± ≡ |r sin θ sin φ ± z cos θ |√sin θ/2 and
s± ≡ sgn(r sin θ sin φ ± z cos θ ). This form of ψ0 suits
well the numerical evaluation.

(a)

(b)

FIG. 1. (Color online) Flow induced by a vertical (upward)
Stokeslet located at the origin in a vertically stratified fluid at rest.
(a) Streamline: The contour labels show the corresponding values of
the stream function ψ (scaled with f L/ν). (b) Axial velocity (scaled
with f/νL) vs the axial distance z (scaled with L): The solid black
line corresponds to |w0

z |; the red dashed (long dashes) line stands
for the velocity due to Stokeslet in unstratified fluid, 1/4π |z|, that
prevails at z � 1; the blue dashed line (short dashes) stands for the
approximate exponential decay |w0

z | ∝ exp (−y0|z|/
√

2).

The resulting plot of the flow ψ0 (scaled with f L/ν)
induced by a passively translating particle (Stokeslet) is shown
in Fig. 1(a). The streamline pattern in Fig. 1(a) is the same as
reported before (see Fig. 1 in [3]; the axial velocity at r = 0
vanishes at z � 3.8).

It is instructive to consider directly the axial velocity
averaged over the angles,

w0
z (Lr) =

∫ 2π

0
w′

z(Lr,Lz,φ)
dφ

2π

= − g

νL

∫
q2

⊥dq
(2π )3q4

�′
( q
L

)
exp [iqzz] J0(q⊥r)

= f

νL

∫
q2

⊥q2dq

(2π )3[q2
⊥ + q6]

exp [iqzz] J0(q⊥r),

where we used w′
z = −gk2

⊥�′(k)/νk4. Using that the inte-
grand is even function of qz,

w0
z = f

νL

∫ ∞

0
dqz

∫ ∞

0

dq⊥
2π2

q3
⊥q2

[q2
⊥ + q6]

cos [qzz] J0(q⊥r).

We consider the asymptotic forms that w0
z takes at large and

small distances; cf. [3]. Passing to polar coordinates in the
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(q⊥,qz) plane, we find

w̃0 =
∫ π/2

0

sin3 θdθ

(2π )2

∫ ∞

−∞
dq

q4 cos [qz cos θ ] J0(qr sin θ )

[sin2 θ + q4]

=
∫ π/2

0

sin3 θdθ

(2π )2

∫ ∞

−∞
dq cos [qz cos θ ] J0(qr sin θ )

−
∫ π/2

0

sin5 θdθ

(2π )2

∫ ∞

−∞

cos [qz cos θ ] J0(qr sin θ )dq

[sin2 θ + q4]
,

(38)

where w̃0 ≡ w0
zνL/f . We note that∫ ∞

−∞
dq cos [qz cos θ ] J0(qr sin θ )

=
∫ 2π

0
dα

∫ ∞

−∞

dq

2π
exp [iqz cos θ + iqr sin θ sin α]

= 2
∫ π/2

0
dαδ (r sin θ sin α − |z| cos θ ) . (39)

One finds∫ π/2

0

sin3 θdθ

(2π )2

∫ ∞

−∞
dq cos [qz cos θ ] J0(qr sin θ )

=
∫ π/2

0
dα

∫ π/2

0

sin2 θdθ

2π2|z| δ (cot θ − r sin α/|z|)

=
∫ π/2

0

dα

2π2|z|
1

(1 + r2 sin2 α/z2)2

= 2 + r2/z2

8π |z|(1 + r2/z2)3/2
, (40)

which is nothing but the Stokeslet flow that holds without
stratification. Thus, we obtained the representation of the
velocity as the sum of the flow without stratification and the
correction due to the stratification,

w̃0 = 2 + r2/z2

8π |z|(1 + r2/z2)3/2
−

∫ π/2

0

sin5 θdθ

(2π )2

×
∫ ∞

−∞

cos [qz cos θ ] J0(qr sin θ )dq

[sin2 θ + q4]
. (41)

This representation is useful for studying the role of stratifica-
tion. At z � 1, r � 1, one has

w̃0(rL,zL)

≈ 2+r2/z2

8π |z|(1+r2/z2)3/2
−

∫ π/2

0

sin5 θdθ

(2π )2

∫ ∞

−∞

dq

[sin2 θ + q4]

= 2 + r2/z2

8π |z|(1 + r2/z2)3/2
− B(9/4,9/4)

π
,

where B(x,y) is the β function, so that
B(9/4,9/4)/π � 0.0351. Thus, stratification has a small
impact on the flow at scales smaller than L, introducing a
small uniform correction to the flow. It should be noted that,
though the correction is small, it can have finite effect on the
motion of nearby particles due to the persistent drift that it
induces. The study of this drift is left for future work.

On the other hand, the stratification’s contribution is
dominant at scales larger than L, screening the Stokeslet
flow, so that the resulting flow is fully determined by the
stratification. To demonstrate this, we consider the axial
velocity along the axis of symmetry r = 0,

w̃0(0,zL) = 1

4π |z| −
∫ π/2

0

sin5 θdθ

(2π )2

×
∫ ∞

−∞

exp [iq|z| cos θ ] dq

[sin2 θ + q4]
.

We note that

1

2πi

∫ ∞

−∞

exp [iq|z| cos θ ] dq

[sin2 θ + q4]

= exp [iq1|z| cos θ ]

2q1
(
q2

1 − q∗2
1

) − c.c.

= exp [iq1|z| cos θ − iπ/4]

4i sin3/2 θ
− c.c. = 1

2i sin3/2 θ

× exp

[
−|z| cos θ

√
sin θ

2

]
cos

[
|z| cos θ

√
sin θ

2
−π

4

]
.

(42)

Thus, introducing ϕ = π/2 − θ ,

w̃0(r = 0) = 1

4π |z| −
∫ π/2

0
cos

[
|z| sin ϕ

√
cos ϕ

2
− π

4

]

× exp

[
−|z| sin ϕ

√
cos ϕ

2

]
cos7/2 ϕdϕ

4π
. (43)

When |z| is large, the integral is determined by the minima
of sin ϕ

√
cos ϕ/2, which are equal to zero and attained at

ϕ = 0 and ϕ = π/2. The contribution of the saddle point ϕ0,
where sin ϕ

√
cos ϕ has zero derivative is to be considered, too,

though it includes the exponentially small factor; see below.
The contribution of the leading order term that comes from the
neighborhood of ϕ = 0 is∫ ∞

0
cos[|z|ϕ/

√
2 − π/4] exp[−|z|ϕ/

√
2]

dϕ

4π

= Re

√
2 exp[iπ/4]

4π |z|(1 + i)
= 1

4π |z| , (44)

demonstrating that stratification screens the Stokeslet solution
at |z| � L. The contribution of the leading order term coming
from the neighborhood of ϕ = π/2 is∫ π/2

0
cos[|z|

√
(π/2 − ϕ)/2 − π/4]

× exp[−|z|
√

(π/2 − ϕ)/2]
(π/2 − ϕ)7/2dϕ

4π
∝ 1

|z|9 .

(45)

We conclude that the velocity field decays faster than the
Stokeslet solution at large distances from the particle. To
find the leading order term at large |z|, we split the do-
main of integration over ϕ into ϕ < ϕ0 and ϕ > ϕ0, where
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ϕ0 ≡ arctan
√

2,

w̃0(r = 0)

= 1

4π |z| −
∫ ϕ0

0
cos[|z| sin ϕ

√
cos ϕ/2 − π/4]

×exp[−|z| sin ϕ
√

cos ϕ/2] cos7/2 ϕdϕ

4π

−
∫ π/2−ϕ0

0

sin7/2 ϕ̃

4π
cos[|z| cos ϕ̃

√
sin ϕ̃/2 − π/4]

× exp[−|z| cos ϕ̃
√

sin ϕ̃/2]dϕ̃,

where we introduced ϕ̃ = π/2 − ϕ. Then, in the first of the
integrals, designated by I ′, one can pass to the integration
variable y ≡ sin ϕ

√
cos ϕ,

dϕ

dy
= 2

√
cos ϕ

2 cos2 ϕ − sin2 ϕ
. (46)

Introducing y0 ≡ y (ϕ0) =
√

2/(3
√

3) (we use

cos[arctan(
√

2)] = 1/
√

3), one finds

I ′ = Re
∫ y0

0
h(y) exp

[
− (1 + i)|z|y√

2
+ iπ

4

]
dy

2π
,

where we defined

h(y) = x4
1 (y)

3x2
1 (y) − 1

, y =
√

x1(y) − x3
1 (y), (47)

with x1 = cos ϕ(y), so that x1(y) is the branch of the solution
of the cubic equation x3 − x = −y2 that obeys x(0) = 1. One
has

dx

dy
= 2y

1 − 3x2
,

dh

dy
= 4x3(3x2 − 2)y

(1 − 3x2)3
. (48)

The large |z| expansion is obtained by introducing the Taylor
expansion of h(y) into I ′,

I ′ ≈
∞∑

n=0

h(2n)(0)

(2n)!
Re

∫ ∞

0
y2n exp

[
− (1 + i)|z|y√

2
+ iπ

4

]
dy

2π

=
∞∑

n=0

h(2n)(0)Re
1

2in|z|2n+1π
=

∞∑
k=0

(−1)kh(4k)(0)

2|z|4k+1π
, (49)

where we used that h(2n)(0) = 0 by h(y) = h(−y). The k = 0
term reproduces (4π |z|)−1 found previously. The k = 1 term
turns out to be vanishing because a direct computation reveals
that h(4)(0) = 0. The next order term is proportional to |z|−9,
which is the same order as in Eq. (45), necessitating the
consideration of the contribution of the neighborhood of
ϕ = π/2 into w̃0. This is described by

I ′′ ≡ Re
∫ π/2−ϕ0

0

sin7/2 ϕ̃

4π
exp

[
− (1 + i)|z|ỹ√

2
+ iπ

4

]
dϕ̃,

where ỹ = cos ϕ̃
√

sin ϕ̃. Passing to the integration variable ỹ,
using

dϕ̃

dy
= 2

√
sin ϕ̃

cos2 ϕ̃ − 2 sin2 ϕ̃
, (50)

we obtain

I ′′ = −Re
∫ y0

0
h̃(ỹ) exp

[
− (1 + i)|z|ỹ√

2
+ iπ

4

]
dỹ

2π
,

where we defined

h̃(ỹ) = x4
2 (ỹ)

3x2
2 (ỹ) − 1

, y =
√

x2(y) − x3
2 (y),

with x2(ỹ) = sin ϕ̃(ỹ) given by the branch of the solution of the
cubic equation x̃3 − x̃ = −ỹ2 that obeys x(0) = 0. Combining
I ′ and I ′′, the following representation of w̃0 is obtained:

w̃0 = 1

4π |z| −
∫ y0

0

[
x4

1 (y)

3x2
1 (y) − 1

− x4
2 (y)

3x2
2 (y) − 1

]
(51)

exp

[
−|z|y√

2

]
cos

( |z|y√
2

− π

4

)
dy

2π
. (52)

Introducing

l(y) ≡ x4
1 (y)

3x2
1 (y) − 1

− x4
2 (y)

3x2
2 (y) − 1

, (53)

we find the asymptotic series for w̃0 at large |z|,

w̃0 = −
∞∑

k=2

(−1)kl(4k)(0)

2|z|4k+1π
. (54)

Thus, at very large |z| the axial velocity w̃0(r = 0) is expected
to decay as ∼|z|−9, as l(8)(0) 
= 0. The absolute value of the
axial velocity at r = 0 determined by numerical integration
of Eq. (52) is shown in Fig. 1(b). It agrees with the earlier
results in [3] and shows that at length scales below L the
flow is just that due to unstratified Stokeslet solution ∼1/|z|
[dashed red line in Fig. 1(b)]. At scales �L the Stokeslet flow
is screened by the buoyant flux due to vertical stratification
resulting in a series of eddies with velocity decaying much
faster than ∼1/|z|. The numerical results suggest that at
large, but finite |z|, the saddle-point contribution dominates
the integral in (52) so that the velocity decays exponentially
fast ∝exp (−y0|z|/

√
2) [dashed blue line in Fig. 1(b)], and not

∝|z|−9, as was suggested above. It seems that the involved
numbers are such that the power law will be seen only at
very large |z| when the solution is vanishingly small. For
practical purposes, therefore, one can say that the velocity
decays exponentially at scales larger than L.

We resume the results on the flow around small particle in
the Boussinesq flow with L � ld but L � ld (1 − γz/γ )1/4.
The flow is very close to stratified flow with γ = γ ẑ.
The perturbation flow around the particle decays (quasi)
exponentially at scales larger than L, where the streamlines
are closed. The usual Stokes flow with constant correction
holds at scales much smaller than L.

We observe that the range of validity of the perturbation
flow discovered in [3] is very narrow. The derivation of the flow
presumes that the gradient γ is constant over the scale L so that
L � ld . The stability condition L � ld (1 − γz/γ )1/4 implies
then that (1 − γz/γ )1/4 � 1. This implies (1 − γz/γ ) � 10−4,
meaning very small deviations from purely vertical stratifica-
tion, the situation that seems unlikely to occur in typical marine
environment. Thus, we pass to consider the typical situations
where the flow is turbulent with (1 − γz/γ )1/4 ∼ 1.
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VII. SCALAR ADVECTION-DIFFUSION EQUATION FOR
FLOW AROUND A SMALL PARTICLE IN TURBULENCE

In this section we study the flow around a small swimmer
translating in the turbulent flow. We demonstrate that in the
limit of large Prandtl numbers, which occurs in practical
applications often, the problem can be reduced to a scalar
advection-diffusion equation.

The limit Pr � 1 occurs in natural environments often. The
relations discussed in the section on relations in turbulence
imply that, in this case, L ∼ ldNu1/8. One finds L ∼ ld unless
the Nusselt number is unrealistically large. In the turbulent
flow with Pr � 1 the following hierarchy of scales holds
lν � ld ∼ L.

Specifying to Pr1/2 � 1, where lν � ld , one can use Eqs.
(20). Further, since the characteristic time of variations of w′
is λ−1, we can neglect the ∂tw

′ term in the first of Eqs. (20) in
comparison with the viscous term. We obtain

0 = −∇P + �g + ν∇2w′ + f ẑδ(x), (55)

∂t� + σ x · ∇� + w′ · ∇θ0 (x + y [t]) = κ∇2�. (56)

We stress that this system provides valid description to the
flow around small particle in arbitrary Boussinesq turbulence
with large Prandtl number. Turbulent transport is described
by the material derivative term ∂t� + (σ r · ∇)� that occurs
universally in the description of the advection of the passive
scalar fields by turbulence at large Prandtl numbers; see [13,14]
and references therein. This term is comparable with the
diffusive one at a characteristic scale �d = √

κ/λ and it is
dominating at larger scales.

We note that Eq. (55) coincides with Eq. (24). Conse-
quently, the solution is given by Eq. (29). We find that the
flow is described by the scalar advection-diffusion equation

∂t�
′ + σ x · ∇�′

= κ∇2�′ + ∇iθ0 (x + y [t])

×
∫

dk
(2π )3

g�′(k)[δiz − k̂i k̂z]

νk2
exp [−ik · x]

+ κf ∇2δ(x)

g
, (57)

where we used that the Fourier space relation �′ ≡ � − f/g

implies �′ ≡ � − f δ(x)/g in the real space (f is considered
time independent). We used σ x · ∇δ(x) = ∇ · [σ xδ(x)] = 0.
Once �′ is found, the pressure and velocity can be obtained
by the Fourier space relations

P (k) = igkz�
′(k)

k2
, w′

i(k) = −g�′(k)[δiz − k̂i k̂z]

νk2
.

(58)

We conclude that the problem of finding the flow around small
particles in the Boussinesq flow with large Pr is described
by one integro-differential equation of advection-diffusion
type with pointlike source. Clearly, the difficulty in solving
this equation is in the spatial dependence of ∇iθ0 (x + y [t]).
Progress in the solution demands simplifications of the latter
term.

VIII. CORRECTION TO THE STOKESLET
FLOW AT x � L

We consider the flow at scales x � L, where it has to be
close to the usual Stokeslet flow. Our purpose in this section
is to find the correction to that flow.

We observe that, due to x � ld , one can use
∇θ0 (x + y [t]) ≈ −γ (t), with γ = −∇θ0 ( y [t]). Using the
incompressibility trσ = 0 we find in Fourier space

∂t�
′ − (σ t k · ∇)�′ = −α(k)�′ − κk2f/g,

(59)

α(k) ≡ κk2d(k), d(k) ≡ 1 + gγ̃

κνk4
.

To find the solution we pass to the moving frame
�̃(k,t) = �′(k(t),t), where k(t) ≡ W−1,t (t)k, with

Ẇ = σW, Ẇ−1,t = −σ tW−1,t , Wij (t = 0) = δij . (60)

The matrix σ , and thus W , have to be considered random for
turbulence and described statistically. The properties of the
statistics of W that are relevant here do not depend on the
details of the statistics of σ due to universality [13,15,16],
yet for clarity we assume that the statistics of σ is close to the
Lagrangian statistics of ∇jui (the statistics in the frame of fluid
particle). This holds provided the velocity of the particle’s drift
with respect to the flow is much smaller than the characteristic
velocity uη ∼ λ�η of the viscous scale eddies of turbulence
[1]. It seems that this assumption is not restrictive and it is
obeyed in typical natural situations. Since σ is statistically
the same as the velocity gradient of u in the fluid particle’s
frame, then W is statistically the same as the Jacobi matrix
of the turbulent flow backward in time [13,15,16]. That is,
if we consider the Lagrangian trajectories q(t,r) defined by
∂t q(t,r) = u[t,q(t,r)] and q(t = 0,r) = r , then Wij (t,r) =
∂jqi(t,r) at t < 0 describes the evolution of small volumes
in the turbulent flow backward in time and obeys Eq. (60).
In particular, since the Lyapunov exponents of the backward
in time flow are (−λ3, −λ2, −λ1), where (λ1,λ2,λ3) are the
Lyapunov exponents of the forward in time flow, then k(t),
which is governed by W−1,t rather than W (t), obeys

lim
t→−∞(1/|t |) ln[k(t)/k(0)] = λ1; (61)

see details in [13,15,16]. Thus, the growth of k(t) with |t | is
similar to the exponential growth of the separation between two
infinitesimally close fluid particles in turbulence (governed by
the principal Lyapunov exponent λ1).

The limit in Eq. (61) holds for almost every realization of
σ (t) and does not involve the randomness of turbulence that
disappears after taking the infinite time limit. To describe the
fluctuations of k(t) when t is finite, one introduces the polar
representation k(t) = k exp[ρ(t)]n̂(t), where |n̂| = 1. Using
k̇ = −σ t k one finds [13]

˙̂n = −σ t n̂ + n̂ζ, ρ̇ = ζ, ζ ≡ −n̂σ n̂. (62)

It follows that ln[k(t)/k] = ∫ 0
t

ζ (t ′)dt ′, where ζ is a finite-
correlated noise which correlation time τc is of order of
the correlation time of σ , so that τc ∼ λ−1. Thus, Eq. (61)
resembles the law of large numbers. To find the moments of
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k(t), one introduces

lim
t→−∞(1/|t |) ln〈kl(t)〉 ≡ ϕ(l). (63)

The function ϕ(l) is convex and obeys ϕ(0) = ϕ(−3) = 0,
so it is negative at −3 < n < 0 and positive otherwise. This
holds independently of the statistics of turbulence (see [13] for
details). In the moving frame, Eq. (59) becomes

∂t �̃ = −α[k(t)]�̃ − κk2(t)f/g. (64)

We consider �̃ at t = 0, taking the initial condition at t = −T

and studying the limit T → ∞; i.e., we focus on the steady
state solution. Using �̃(t = 0) = �′(t = 0),

�′ = −κf

g

∫ 0

−∞
dt exp

{
−

∫ 0

t

α[k(t ′)]dt ′
}

k2(t). (65)

This, together with Eq. (58), is the implicit Fourier space
solution to the problem of finding the flow around small
particles at small distances.

The exponent −α (k) has to coincide in the limit with the
eigenvalues λ(k) of the linearized problem. This is indeed so:
Considering Eq. (12) in the limit of large Prandtl numbers
ν � κ , one has to leading order

λ(k) ≈ νk2

2

[√
1 − 2κ

ν
− 4gγ̃

ν2k4
− 1

]
− κk2

2

≈ −κk2 − gγ̃

νk2
= −α (k) , (66)

where we used gγ̃ /[ν2k4] ∼ [PrL2k2]−2 � 1.
The solution (65) can be rewritten using k(t) =

k exp[ρ(t)]n̂(t),

�′ = −κk2f

g

∫ 0

−∞
dt exp[s(t)],

s(t) = 2ρ(t) − κk2
∫ 0

t

exp[2ρ(t ′)]dt ′ − g

νk2

∫ 0

t

γ̃ (t ′)

× exp[−2ρ(t ′)]dt ′, (67)

where γ̃ (t) = γz(t ′) − nz(t ′)[γ (t ′) · n̂(t ′)] can be considered
stationary noise with amplitude of the order of the charac-
teristic amplitude of the fluctuations of γ . The characteristic
time of variations of γ (t) is the characteristic time scale λ−1

of variations of γ (t,x) in the fluid particle’s frame. Inertia is
considered small here so that the deviation of the particle’s
trajectory from the one of the fluid particle is negligible.

To understand the behavior of s(t) qualitatively we use the
mean field approximation ρ(t) = λ1|t |,

s(t) ≈ −κk2
∫ 0

t

dt ′
[
e2λ1|t ′| + gγ̃ (t ′) exp (−2λ1|t |)

κνk4

]
+ 2λ1|t |.

(68)

When λ1|t | � 1 this reduces to

s(t) ≈ 2λ1|t | − κk2|t | − gγ̃ (0)|t |
νk2

= [λ(k,0) + 2λ1]|t |,
(69)

where we introduced

λ(k,t) = −κk2 − gγ̃ (t)

νk2
. (70)

Since we consider scales ld � x where κk2 � gγ̃ /νk2 and
κk2 � λ1, then the −κk2|t | term dominates s(t). In particular,
s(t) is a decreasing function of t , which corresponds to
λ(k) < 0 at k � k0; see the section on stability. Thus, the
integral in Eq. (67) converges at the time scale [κk2]−1, which
is much smaller than λ−1 by k2l2

d � 1. The leading order
formula for �′ is found by setting s(t) ≈ ṡ(0)t in the integral
in Eq. (67). One finds �′ ≈ −κk2f/[gṡ(0)], which gives

�′(k) ≈ − f L4(0)k4

g[L4(0)k4 + 1 − 2L4(0)kσ (0)k/κ]
, (71)

where we used ζ (0) = −k̂σ k̂ and defined L4(t) = κν/[gγ̃ (t)].
This differs from solution (31) in the stably stratified fluid by
the use of the instantaneous value γ (t = 0) in the definition
of γ̃ and by the presence of the transport term involving the
turbulent velocity gradient at the position of the particle σ (0).

The solution (32) describes well the flow at k4L4 � 1,
where the first term dominates the denominator,

�′(k) ≈ −f

g
, k4L4 � 1. (72)

It is readily seen that this solution produces the usual Stokeslet
flow that has to hold at x � L. The leading order correction
to the Stokeslet flow is given by

�′(k) ≈ −f

g
+ f

gL4(0)k4
− 2kσ (0)kf

gκk4
, (73)

where the second term is kept to demonstrate how the variation
of γ in comparison with the vertical direction is present in the
correction. In fact, the ratio of the last term to the second one is
L4k2l−2

d � 1 so that the consistent form of �′(k) to the lowest
order in kL � 1 is

�′(k) ≈ −f

g
− 2kσ (0)kf

gκk4
, kL � 1. (74)

Thus, it is the turbulent transport that dominates the correction
to the Stokeslet flow at small scales and not the scalar
gradients γ .

The correction is a random field that depends on the
random value of the matrix of velocity gradients σ at the
location of the particle. One has 〈σij 〉 = 〈∇jui〉 = 0 and
〈σijσmn〉 = 〈∇jui∇num〉, where the last average can be taken
in the Eulerian frame due to incompressibility (we use here
that the statistics of σ is assumed to be close to the one of the
matrix of velocity gradients in the frame of the fluid particle).
One finds

30ν〈σijσmn〉 = ε[4δimδjn − δinδjm − δij δmn], (75)

where isotropy (typically valid for small-scale turbulent
fluctuations that determine ∇u [1]) and spatial uniformity are
assumed. The form of 〈∇jui∇num〉 is fixed uniquely by the
demands of isotropy, incompressibility, and spatial uniformity
that imply 〈∇mui∇num〉 = 〈∇m [ui∇num]〉 = 0. The relation
is exact due to stationarity condition ν〈∇jui∇jui〉 = ε. Thus,
we obtain the exact result for fluctuations δ� = �′ + f/g of
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�′ near the Stokeslet value −f/g (clearly 〈δ�〉 = 0) due to
background turbulence,

〈δ�2〉1/2 = 2f

gκk2

√
ε

15ν
. (76)

For the rms deviation near the average Stokeslet value we have

〈δ�2〉1/2

〈�′〉 = 2

κk2

√
ε

15ν
∼ 1

l2
dk

2
, (77)

where we used that l2
d ∼ κ/

√
ε/ν when Pr � 1. Clearly, the

condition of validity of the derivation kL � 1 implies that the
correction is small due to L ∼ ld . Note, however, that using
Eq. (74) one can discuss the impact of strong fluctuations of
∇u above the typical value

√
ε/ν that occur in the turbulent

flow quite often due to intermittency.
We stress that Eqs. (74) and (76) provide the exact leading

order corrections at scales x � L to the Stokeslet flow around
the particle translating in arbitrary (turbulent) Boussinesq flow.

IX. STRONG DEVIATIONS FROM STOKESLET:
FLOW AT SCALES L ∼ ld

Flow around small particles presents the highest interest
at scales x ∼ L ∼ ld , where the deviations from the Stokeslet
flow are not small. Particularly, one would like to know if
the features observed in the flow in the fluid at rest, i.e., fast
decay at scales larger than L and toroidal eddies, would hold in
turbulence too. To address this question one needs to find the
complete solution to Eq. (57), which is formidable. Therefore,
we resort to order-of-magnitude calculation.

We observe that the flow obtained by disregard-
ing the spatial variation of ∇θ0 (x + y [t]) and using
∇θ0 (x + y [t]) ≈ −γ (t) is to reproduce the qualitative fea-
tures of the flow well. Thus, we study the solution (67) at
x ∼ L. In this case the three terms in Eq. (69) are of the same
order due to kld ∼ kL ∼ 1. We observe that the integral for �′
in Eq. (67) converges over time scales of order λ−1

1 because at
larger times s(t) ∼ −k2l2

d exp[2λ1|t |], where κ/λ1 ∼ l2
d . Since

γ̃ (t) varies over time scale λ−1
1 , then by order of magnitude

we can put γ̃ (t) = γ̃ (0) in Eq. (68), which gives

s(t) ≈ −κk2
∫ 0

t

dt ′
[
e2λ1|t ′| + gγ̃ (0)e−2λ1|t |

κνk4

]
+ 2λ1|t |

≈ 2λ1|t | − κk2

2λ1
[e2λ1|t | − 1] − gγ̃ (0)[1 − e−2λ1|t |]

2λ1νk2
.

(78)

We find

�′ = −κk2f

2gλ1

∫ ∞

0
dt exp

{
t − κk2

2λ1
[et − 1]

− gγ̃ (0)[1 − e−t ]

2λ1νk2

}
.

Introducing the variable y = exp[t] we find

�′ = −κk2f exp [p − r]

2gλ1

∫ ∞

1
dy exp

[
−py + r

y

]
, (79)

where we introduced p = κk2/[2λ1], r = gγ̃ (0)/[2λ1νk2].
The corresponding result for the velocity is [see Eq. (58)]

w′
i = κf exp [p − r] [δiz − k̂i k̂z]

2νλ1

∫ ∞

1
dy exp

[
−py + r

y

]
.

(80)

Thus, for the real-space velocity profile we find

w′
i(l̃d x) = f

νl̃d

∫ ∞

1
dy

∫
q>0.3

dq
(2π )3

[δiz − q̂i q̂z] exp [iq · x]

× exp

{
−q2(y − 1) − l̃4

d [γ̂z − (γ̂ · q̂)q̂z](y − 1)

L4q2y

}
,

(81)

where in the inverse Fourier transform we passed to the
integration variable q = kl̃d with l̃d = √

κ/[2λ1] of the order
of ld . We introduced L4(0) = κν/[gγ (0)] and γ = γ γ̂ . The
(fluctuating) factor [l̃d/L(0)]4 is of order one. The direction
γ̂ is statistically isotropic because the small-scale statistics of
turbulence is. We disregard that γ has nonvanishing average
because that is much smaller than the typical value of γ .

The formula (80) is valid for kL � 1. Hence, it can be used
to find the qualitative picture of the flow (in real space) at
scales x � L. Thus, in the inverse Fourier transform one has
to put a cutoff at small kL, where the formulas become invalid.
Since L ∼ l̃d , then this cutoff corresponds to q � 1 in Eq. (81).
This cutoff is necessary because γ̃ can be negative producing
exponential divergence of the integral at small q. It follows
that for the directions in Fourier space for which γ̃ is negative
the integral is determined by the cutoff.

It is clear that the obtained solution involves order one
change of the solution corresponding to the fluid at rest. Thus,
with finite probability there will be closed streamlines in the
flow. The streamlines around the swimmer will fluctuate oc-
casionally getting open. Though in the absence of degeneracy
forbidding closed streamlines our conclusions seem highly
plausible, further studies are needed.

X. FLOW AROUND SWIMMERS

The fundamental Stokeslet solution described by Eqs. (55)
and (56) corresponds to a flow induced by a small particle
moving under the action of an external force (e.g., passive
sinking under the action of gravity). The flow field around
self-propelled objects could be, however, quite different from
that of a passively towed particle. A steadily self-propelled
swimmer generates no net momentum flux, since the thrust is
counterbalanced by the drag force (in contrast to the particle,
for which steady motion demands an external force, the
swimmer can move on its own). The two forces of equal
magnitude, acting in opposite directions and separated by some
distance, constitute a force dipole of strength ŝ, so that the flow
induced by a self-propelled swimmer can be approximately
described by

∇Ps = �s g + ν∇2w′
s + ŝij∇j δ(r), (82)

where ŝij is a diagonal matrix ŝij = diag[−ŝ/3, −ŝ/3,2ŝ/3]
and the subscript “s” denotes the fields of the force-doublet
flow. Passing to P̃s ≡ Ps + ŝδ(r)/3 we find that the flow
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around the swimmer is determined from

∇P̃s = �s g + ν∇2w′
s + ŝ

∂δ(r)

∂z
ẑ,

(83)
∂t�s + (σ r · ∇)�s − γ · w′

ŝz = κ∇2�s,

The relation between the Stokeslet and the force-doublet flows
is trivial without turbulence when the term ∂t� + (σ r · ∇)�
is missing in the equations. The equations corresponding to
the flow induced by the force-doublet can be simply obtained
by differentiating the equations for Stokeslet with respect to
z, so w′

s = (ŝ/f )∂zw, �s = (ŝ/f )∂z�, and P̃s = (ŝ/f )∂zP .
When turbulence is considered, the coefficients in Eqs. (83)
depend on the coordinate, so differentiation over z does not
produce Eqs. (24). Thus, in the presence of turbulence, the
relation between the Stokeslet and the force-doublet flows is
nontrivial. Nevertheless, qualitatively the conclusions reached
for the Stokeslet continue to hold for the doublet. This can be
demonstrated using the corresponding expressions for pressure
and velocity are (we write directly the pressure Ps , rather
than P̃s),

Ps = igkz�s + ki ŝij kj

k2
, νk2w′

s = �(k) [�s g + iŝk] .

(84)

The calculations repeat the steps used for the Stokeslet.

XI. CONCLUSION

In this work we derived the stability condition that holds
for arbitrary Boussinesq flow which is smooth below a certain
scale ld . This is generalization of the classical convective
stability condition, the derivation of which is possible thanks
to universal spatial behavior of the flow at scales smaller
than ld . The flow there can be described by a linear profile
corresponding to the first term in the Taylor series.

The condition is the demand that small perturbations below
the scale ld decay in order to preserve the laminarity of the
flow in that region (at larger scales the flow can be turbulent).
This involves the Rayleigh scale L = (νκ/gγ )1/4 and the
dimensionless measure of fluctuations of the gradient γ of the
scalar around the vertical direction, Fl = (1 − γ /γz)1/4. We
prove that the flow with L/ld � Fl is unstable with respect to
growth of small fluctuations at scales smaller than ld .

Thus, there is a nontrivial condition L/ld � Fl on arbitrary
Boussinesq flow whenever the gradient γ deviates from strict
stratification condition Fl = 0. Since deviations from strict
verticality are inevitable in nature, then we conclude that this
condition needs to be verified all along when dealing with
natural environments.

The first conclusion that we draw from the stability
condition is that quiescent stratified fluids are unstable in the
limit of large Rayleigh numbers, Ra. This is because Fl is finite
in nature.

This poses the question of finding the realistic behavior
of stratified fluid in the Ra → ∞ limit. To address this
question, we propose the introduction of the random source of
fluctuations of γ into the equations and look for a new steady
state. Our work implies that this state is likely not to be close to
the state of quiescent stratified fluid (unless the nonlinear terms

arrest the fluctuations’ growth at weak nonlinearity, which
seems unlikely). This new steady state may shed light on the
puzzle of the layered structure of the density in the ocean, the
origin of which is not yet fully understood [9]. It is left for
future work.

Applying the L/ld � Fl condition to the study of the
turbulent Boussinesq, flow we find that the previously derived
phenomenological relations [8] can be understood as the
condition of stability of the flow when the Prandtl number,
Pr, is not small and the Nusselt number Nu is not too large.
Similarly to how in the Navier-Stokes turbulence one can
understand the viscous scale as the one at which the flow
becomes laminar (the Reynolds number at the viscous scale is
of order one [1]) so in this case of Boussinesq turbulence the
dissipation scale ld can be understood as the scale at which
the dissipative processes regularize the convective instability.
In contrast, the phenomenological relations diverge from the
stability condition in the limits Nu1/8 � 1 or Pr � 1. The
reason for this divergence is to be studied in the future.

Finally, we consider the implications of the stability
condition to the flow of small particles in arbitrary background
flow. The small particles can be considered as the source
of the flow fluctuations. The stability with respect to those
fluctuations implies that the recently found solution for the
flow around small particles in quiescent stratified fluid [3]
seems to be highly limited in scope.

It was demonstrated that the flow around small particles
moving in the quiescent stratified fluid with constant gradient
γ = γ ẑ has a nontrivial structure of closed streamlines at the
scale L, beyond which the flow decays rapidly [3]. However,
the constancy of the gradient implies the condition L � ld
of observability of this flow. Using the stability condition
derived in this work, we conclude that the flow is observable if
ldFl � L � ld , which implies very small deviations of the
gradients from verticality, Fl � 1.

Considering the flow with ldFl � L � ld we describe
quantitatively the rate of decay of the flow at scales larger
than L (this decay was addressed in [3] numerically without
quantitative conclusions). We demonstrate that the flow decays
inversely with the distance to the power nine. Due to the high
exponent of the power law this algebraic decay seems to be
practically indistinguishable from the exponential one, which
we prove by computing the solution numerically.

The regime with Fl � 1 is likely to hold very rarely, if
at all, in typical marine environments. This is due to intrinsic
presence of fluctuations in stratification gradient bringing finite
Fl. This poses the question of finding the flow around small
particle in Boussinesq flows which is relevant to nature.

We consider the most practical case of the particle trans-
lating in the turbulent Boussinesq flow. There are two regions
in the perturbation flow caused by the particle. Below the
Rayleigh scale the flow is close to the usual Stokes flow. We
succeeded in deriving analytic formulas for the correction
to the Stokes flow in that region, demonstrating that the
leading order correction is a small constant drift. Since drift
correction can accumulate bringing finite effects, this poses
the question of practical implications of this correction. Direct
generalization of our calculation can be used to describe
the corrections to the Stokes force on the particle due to
stratification.
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In contrast, at the Rayleigh scale the flow is very dif-
ferent from the Stokes flow. We demonstrated that in the
practically relevant regime of large Prandtl numbers the flow
can be described by one scalar integro-differential advection-
diffusion equation (57) instead of the complete system of
four hydrodynamic equations. We propose this equation as
an efficient tool for the numerical study of the flow around
small particles in stratified turbulent flow.

Though the closed-form solution to that equation cannot be
obtained, we succeed in constructing the solution that holds by
the order of magnitude providing valid qualitative description
of the solutions. This indicates that the closed streamlines
holding for quiescent stratified background persist for the
turbulent background with finite probability. The structure of
those lines is different, being random. The numerical study
of the statistics of the flow near small particles in Boussinesq
turbulence and the corresponding probabilities is left for future
work.

We conclude by providing typical numbers for
the flow around small swimmers in various aquatic
environments. Using the extreme value of the density gradient
γρ0 = 1 kg m−4 [3] that may occur locally in fjords [17],
lakes, and reservoirs [18] with μ = 10−3 kg m−1 s−1 yields
L ≈ 0.6 mm for salt-stratified water (κ ≈ 1.3 × 10−9 m2 s−1)
and L ≈ 2 mm for temperature-stratified water
(κ ≈ 1.4 × 10−7 m2 s−1). Further considering weakly
turbulent conditions with the dissipation rate per unit
mass ε ≈ 10−10 m2 s−3 (e.g., Kunze et al. [19] measured
ε � 10−9 in a coastal inlet) gives λ = √

ε/ν ≈ 0.01 s−1.
Thus, the corresponding values of L/ldif are ≈0.5 and

≈1.7 for temperature- and salt-stratified water, respectively.
Furthermore, in the marine environment the buoyancy
frequency N = √

gγ corresponding to the marginal
oscillations which the stable stratification supports [9]
is typically in the range between 10−4 and 10−2 s−1,
yielding density gradients γρ0 that range between 10−6 and
10−2 kg m−4, several orders of magnitude lower than that
considered in [3]. In some extreme cases, however (e.g., during
seasonal thermocline [9]), N may exceed 0.05 s−1 so γρ0

may reach ≈0.3 kg m−4. Using this extreme value of density
stratification and ε ≈ 10−10 m2 s−3, we arrive at L/ldif ≈ 0.7
and L/ldif ≈ 2.3 for temperature- and salt-stratified water,
respectively. For the less extreme conditions of marine
turbulence and/or stratification, typically L/ldif > 1. For
example, for ε ≈ 10−9 m2 s−3 and γρ0 ≈ 0.01 kg m−4

we find L/ldif ≈ 2.8 and L/ldif ≈ 9.5 for temperature and
salt stratification, respectively. These estimates demonstrate
clearly that the relevant physical situation is the one with
L � ld , where the solutions with turbulence are to be
considered.
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