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Escape dynamics of many hard disks
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Many-particle effects in escapes of hard disks from a square box via a hole are discussed in a viewpoint of
dynamical systems. Starting from N disks in the box at the initial time, we calculate the probability Pn(t) for
at least n disks to remain inside the box at time t for n = 1,2, . . . ,N . At early times, the probabilities Pn(t),
n = 2,3, . . . ,N − 1, are described by superpositions of exponential decay functions. On the other hand, after a
long time the probability Pn(t) shows a power-law decay ∼t−2n for n �= 1, in contrast to the fact that it decays
with a different power law ∼t−n for cases without any disk-disk collision. Chaotic or nonchaotic properties of the
escape systems are discussed by the dynamics of a finite-time largest Lyapunov exponent, whose decay properties
are related with those of the probability Pn(t).
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I. INTRODUCTION

The escape of materials from a finite area is known as an
essential concept to understand many physical features in a
variety of natural phenomena. It describes a wide scale of
physical phenomena from a microscopic scale (e.g., α decay
of nuclei [1,2] and light emissions from molecules [3–5])
to a macroscopic one (e.g., ejections or evaporations of
stars in cosmology [6,7]). It also plays an important role
to analyze properties of materials, for example, by means
of particle escapes from a quantum dot [8–10] or from an
optical potential trap [11–13], escape basins of magnetic field
lines in plasma [14,15], and transition of states in chemical
reactions (as an escape of excited chemical species from a
reactant region) [16–18], etc. The concept of escape is also
used to calculate transport coefficients in chaotic dynamical
systems [19–22], and as a mechanism to produce electric
currents as escapes of electrons from particle reservoirs
[23–25]. Escapes occur when particles reach a specific region
like a hole, so that they are related to the first passage
time problem and the recurrence problem [26–28]. In escape
phenomena, states of materials leave their initial ones with a
decay, and this type of dynamical features also appears in the
Loschmidt echo and fidelity decay [29–31].

Escape phenomena are characterized by various quantities,
such as the survival probability [32–39] as the probability for
a particle to remain in an initially confined area, the escape
time [28,40,41] as the time period for a particle to stay in the
initial area, and a velocity of a particle escaping from the initial
area [38], etc. These quantities decay in time as a feature of
escape phenomena in which materials continue leaking from
the initial area. Many works have already been done to clarify
their decay properties in escapes of a single particle by using
dynamical theories. It is conjectured, for example, that the
survival probability decays exponentially in time for chaotic
systems based on an ergodic argument, while it decays with
a power law for nonchaotic systems [32]. This conjecture led
to further dynamical studies of escape phenomena, clarifying
effects of a finite size of holes [34,40], weakness of chaos [28],
specific orbits causing a power-law decay [35,42], etc.

The principal aim of this paper is to discuss many-particle
effects in dynamical properties of escape phenomena. As a

system consisting of many particles, we consider many hard
disks in a square box, which have been widely used to investi-
gate statistical and dynamical properties [43–45]. At a corner
of the box we put a hole where hard disks escape from the box.
To discuss escape properties of N disks from the box via the
hole, we introduce the survival probability Pn(t) for n disks
to remain inside the box at time t (n = 1,2, . . . ,N). We show
that at early times decays of the survival probabilities Pn(t),
n = 2,3, . . . ,N − 1, are well described by superpositions of
exponential functions. It is also shown that after a long time
the survival probability Pn(t) shows a power-law decay ∼ t−2n,
while it decays with a different power law ∼t−n for the case
without any disk-disk collision, for n = 2,3, . . . . These results
mean qualitative changes in decays of survival probabilities by
disk-disk collisions and changing numbers of disks, implying a
possibility to get information on particle-particle interactions
and the number of nonescaping particles from their decay
behaviors.

In this paper, we also discuss dynamical properties of escape
systems by using the finite-time largest Lyapunov exponent
(FTLLE) λ(t) [46–48], which is introduced as an exponential
rate of expansion or contraction of an infinitesimally small
initial error at a finite time t . The FTLLE converges to
the well-known largest Lyapunov exponent in the long time
limit, whose positivity means dynamics of the system to
be chaotic. We compare quantitatively decay properties of
the survival probability Pn(t) and the corresponding FTLLE
λ(t), and clarify roles of chaotic or nonchaotic dynamics
in escape phenomena of many hard disks. Dependencies of
the survival probabilities and the FTLLEs on the system
length and the hole size, etc., are also discussed as scaling
properties.

The outline of this paper is as follows. In Sec. II, we
introduce our model consisting of many hard disks in a square
box with a hole, and discuss exponential and power-law
decays of survival probabilities of this system. In Sec. III,
we discuss decay properties of FTLLEs in escape systems
with many hard disks, and investigate connections between
decay properties of the survival probabilities and the FTLLEs.
Finally, we give conclusions and remarks on the contents of
this paper in Sec. IV.
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II. ESCAPE PROPERTIES OF
MANY-HARD-DISK SYSTEMS

A. Many hard disks in a square box with a hole

We consider the system consisting of many hard disks inside
a square box with a hole. Here, the mass and the radius of
the disks are m and r , respectively, and the length of each
side of the box is L, and a hole in the box is taken as the region
of the length r + (h/2) in both the sides from a single corner
of the box, as shown in Fig. 1 as a schematic illustration. Here,
the length h/2 is the effective length of each side of the hole,
where centers of disks can reach. In this system, movements of
each disk consist of uniform linear motions, elastic collisions
with other disks or walls, and an escape from the box via the
hole. Besides, it is assumed that any disk does not enter into
the box via the hole from its outside, and any disk is removed
from the box when it reaches the hole. As an important system
parameter, we use the particle density ρ ≡ Nπr2/L2 of the
system at the initial time t = 0.

B. Survival probabilities of many-hard-disk systems

To characterize escape behaviors of N disks from a square
box via a hole, we introduce the probability Pn(t), for which
at least n disks remain inside the box at time t , for n =
1,2, . . . ,N [49]. We call this probability Pn(t) “the n-particle
survival probability,” or simply the survival probability, as
a generalization of the well-known survival probability dis-
cussed in one-particle escape systems [32,35,36]. Starting
from almost arbitrary initial conditions, except for some
specific cases, for example, that disks move in a periodic orbit
without reaching the hole, the n-particle survival probability

r+h/2

r+h/2

2r

L

L

FIG. 1. Many hard disks with the radius r in a square box with the
length L of each side. The box has a hole with each length r + (h/2)
of both the sides from a corner of the box. The dotted lines in inner
sides of the box are for positions of the center of a disk closest to a
wall of the box.
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FIG. 2. (Color online) The n-particle survival probabilities Pn(t)
of a five-disk system as functions of time t for n = 5 (the solid line),
4 (the dashed line), 3 (the dotted line), 2 (the dashed-dotted line),
1 (the dashed-double-dotted line). The main figure is for graphs of
Pn(t) on log-log plots with a straight shin line for a fitting function
α1t

−1 to P1(t) with the fitting parameters α1. The inset is for graphs of
Pn(t) on linear-log plots with a straight shin line for a fitting function
exp(−α2t) to P5(t) with the fitting parameter α2.

goes to zero, i.e., limt→+∞ Pn(t) = 0, in the long time limit
t → +∞, and escape properties of many-particle systems are
characterized by decay behaviors of Pn(t).

In Fig. 2, we show graphs of the n-particle survival
probabilities Pn(t) of N hard disks as functions of time t for
n = 5 (the solid line), 4 (the dashed line), 3 (the dotted line),
2 (the dashed-dotted line), 1 (the dashed-double-dotted line)
with N = 5. Here, we used values of the parameters as m = 1,
r = 1/2, h = 0.1(L − 2r), and ρ = 0.1 (so L ≈ 6.27). For the
survival probabilities shown in Fig. 2, we calculated 5 × 108

number of ensembles from random initial conditions at t = 0
in which the disk positions and momenta are distributed into
the microcanonical distribution of the system without the hole
with the value N of energy E [50,51].

In the main figure of Fig. 2, we show the log-log plots
of the n-particle survival probabilities Pn(t), n = 1,2, . . . ,5.
As shown clearly as a straight line in this figure, the one-
particle survival probability P1(t) shows a power-law decay
after a long time. We fitted this power-law decay of P1(t) to a
power function α1t

−1 with the value α1 = 86.6 of the fitting
parameter α1. This result is simply explained by the fact that
only a single disk exists in the majority of times in the decay of
P1(t) and a single disk in the square box is not chaotic, leading
to the power-law decay ∼t−1 of the survival probability [32].
On the other hand, as shown in the inset of Fig. 2 as linear-log
plots of Pn(t), the N -particle survival probability PN (t) decays
exponentially in time. To clarify this property, we fitted the
graph of PN (t) to an exponential function exp(−α2t) with the
value α2 = 3.65 × 10−2 of the fitting parameter α2, which is
almost indistinguishable with the graph of PN (t) in the inset
of Fig. 2. It should be noted that an exponential decay of
the survival probability also appears in one-particle chaotic
systems [32].
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C. Exponential decays of survival probabilities

Now, we proceed to discuss decay properties of the n-
particle survival probabilities Pn(t) for the middle numbers
n = 2,3, . . . ,N − 1. The inset of Fig. 2 suggests that different
from the graph of PN (t), the graphs of Pn(t) for n =
2,3, . . . ,N − 1 do not seem to show simple exponential decays
at early times, although the dynamics of n disks in the square
box for n = 2,3, . . . ,N − 1 can be chaotic with disk-disk
collisions.

In order to describe decay behaviors of the survival
probabilities Pn(t), n = 2,3, . . . ,N − 1, at early times, we
introduce the probability density fk(τ ) of the time τ for the
kth disk escape to occur (i.e., the escape time τ of k disks),
for k = 1,2, . . . ,N . Using the escape-time probability density
fk(τ ) of k disks, the (N − k + 1)-particle survival probability
PN−k+1(t) for N − k + 1 disks to remain inside the box at time
t is represented as

PN−k+1(t) = 1 −
∫ t

0
dτ fk(τ ), (1)

so that we obtain

fk(τ ) = −dPN−k+1(τ )

dτ
, (2)

k = 1,2, . . . ,N . By Eq. (2), for example, if the N -particle
survival probability PN (t) decays exponentially in time, i.e.,

PN (t) = exp(−at) with a positive constant a as shown in
Fig. 2, then we obtain the escape-time probability density
f1(τ ) = f̃1(τ ; a) for the first escaping disk, in which f̃1(τ ; a)
is given by

f̃1(τ ; a) = ae−aτ (3)

for N > 1. Equation (1) or Eq. (2) also leads to the normaliza-
tion condition

∫ +∞
0 dτ fk(τ ) = 1 of the escape-time probabil-

ity density fk(τ ) as far as the survival probability PN−k+1(t)
goes to zero in the long time limit, i.e., limt→+∞ PN−k+1(t) =
0, noting the initial condition PN−k+1(0) = 1 of the survival
probability.

The escape time τ of k disks is represented as the sum
τ = ∑k

j=1 τj of the time interval τj ≡ tj − tj−1 from the time
tj−1 of the (j − 1)th escape to the time tj of the j th escape of
the k disks, defining t0 ≡ 0. For the case that the dynamics of k

disks inside the box is chaotic and the probability for each disk
to stay inside the box decays exponentially in time, we assume
that the probability density of the time τk for the kth escaping
disk is independent of other times τj , j = k − 1,k − 2, . . . ,1,
and the probability density fk(τ ) of the escape time τ satisfies
the recurrence relation fk(τ ) = ∫ τ

0 ds f1(τ − s)fk−1(s) with
f1(τk) = f̃1(τk; ak) and a positive constant ak . Under this
assumption, we obtain the probability density fk(τ ) = f̃k(τ )
of the escape time τ of the k disks with k � 2, in which f̃k(τ )
is given by

f̃k(τ ) =
∫ τ

0
dtkf̃1(τ − tk; ak)

∫ tk

0
dtk−1f̃1(tk − tk−1; ak−1)

×
∫ tk−1

0
dtk−2f̃1(tk−1 − tk−2; ak−2) . . .

∫ t3

0
dt2f̃1(t3 − t2; a2)f̃1(t2; a1) (4)

=
⎛
⎝ k∏

j=1

aj

⎞
⎠ k∑

j=1

e−aj τ

(a1 − aj )(a2 − aj ) . . . (aj−1 − aj )(aj+1 − aj )(aj+2 − aj ) . . . (ak − aj )
, (5)

in which we assumed the condition aj �= ak for j �= k. From Eqs. (1) and (5) we derive the (N − k + 1)-particle survival
probability PN−k+1(t) = P̃N−k+1(t), in which P̃N−k+1(t) is given by

P̃N−k+1(t) =
k∑

j=1

a1a2 . . . aj−1aj+1aj+2 . . . ake
−aj t

(a1 − aj )(a2 − aj ) . . . (aj−1 − aj )(aj+1 − aj )(aj+2 − aj ) . . . (ak − aj )
(6)

for k = 2, . . . ,N − 1. The derivation of Eq. (5) from Eqs. (3)
and (4), as well as the derivation of Eq. (6) from Eqs. (1)
and (5), are given in Appendix A. Here, the one-particle
survival probability P1(t) would not be justified by Eq. (6)
because the dynamics of the last single disk inside the box is
not chaotic.

In Fig. 3, we show fittings of the n-particle survival
probabilities Pn(t) for n = 5 (the circles), 4 (the triangles),
3 (the squares), and 2 (the diamonds) to the functions P̃n(t)
for n = 5 (the solid line), 4 (the broken line), 3 (the dotted
line), 2 (the dashed-dotted line), respectively, with fitting
parameters aj , j = 1,2, . . . ,4. Here, the n-particle survival
probabilities Pn(t) in this figure are the same as those in Fig. 2,
and we defined the function P̃N (t) by P̃N (t) ≡ exp(−a1t),
while the functions P̃n(t), n = 2,3, . . . ,N − 1, are given by

Eq. (6). In these fittings, we first fitted the N -particle survival
probability PN (t) to P̃N (t) with a fitting parameter a1, then
fitted the (N − j + 1)-particle survival probability PN−j+1(t)
to P̃N−j+1(t) with a fitting parameter aj and the already
fitted values of a1,a2, . . . ,aj−1, for j = 2,3, . . . ,N − 1. The
values of the fitting parameters aj , j = 1,2, . . . ,4, used for
the functions P̃n(t) shown in Fig. 3 are given from the data
for ρ = 10−1 and h/(L − 2r) = 10−1 in Table I. As shown in
Fig. 3, the function (6) fits the n-particle survival probability
Pn(t) reasonably well at early times for n = 2,3, . . . ,N − 1.

In Table I, we show the fitting values of the exponential
decay rates aj , j = 1,2,3,4, divided by the quantity ã ≡
hv0/(L − 2r)2 with the one-particle initial average speed
v0 ≡ √

2E/(mN ), for various initial particle densities ρ

and ratios h/(L − 2r) of the hole size h to the effective
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FIG. 3. (Color online) Fittings of the n-particle survival proba-
bilities Pn(t) of a five-disk system to the functions P̃n(t) as functions
of time t for n = 5,4,3,2 with the fitting parameters aj , j = 1,2,3,4,
on linear-log plots. Here, Pn(t) and P̃n(t) are shown as the open
circles and the solid line for n = 5, the triangles and the broken line
for n = 4, the squares and the dotted line for n = 3, and the diamonds
and the dashed-dotted line for n = 2, respectively.

side length L − 2r of the box, in the survival probabilities
Pn(t), n = 1,2,3,4, of five-disk systems at early times.
Here, the system parameters used to obtain these data, other
than those shown in Table I and the ensemble number 2 × 108

only for the case of (ρ,h/(L − 2r)) = (10−1,10−3), are the
same as those of the system whose survival probabilities are
shown in Fig. 2. The factor 1/ã used for the quantities aj/ã

in this table comes from the fact that the exponential decay
rate of the survival probability in escapes of a single chaotic
point particle via a small hole in a two-dimensional space
is proportional to hv0/S with the hole size h, the particle
speed v0, and the area S for the point particle to move before
escaping [32]. Table I suggests that the quantity aj /ã for
each value of j takes similar values for a wide variety of
initial particle densities ρ and hole size ratios h/(L − 2r) like
in escapes of a single particle, although the value of aj /ã
decreases as the index j increases.

D. Disk-disk collisions and power-law decays of
survival probabilities

Now, we discuss effects of disk-disk collisions in decays
of the n-particle survival probability Pn(t) after a long time.

TABLE I. Decay rates an, n = 1,2,3,4, divided by ã ≡ hv0/(L −
2r)2, for a five-disk system with various values of the initial particle
density ρ and the hole size ratio h/(L − 2r).

ρ L−2r h/(L−2r) ã a1/ã a2/ã a3/ã a4/ã

10−1 5.27 10−1 2.69 × 10−2 1.36 0.933 0.607 0.358
10−2 18.8 10−1 7.52 × 10−3 1.08 0.802 0.565 0.357
10−3 61.7 10−1 2.29 × 10−3 1.08 0.806 0.578 0.355
10−1 5.27 10−2 2.69 × 10−3 1.37 0.952 0.632 0.369
10−1 5.27 10−3 2.69 × 10−4 1.38 0.956 0.640 0.372
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FIG. 4. (Color online) The n0-particle survival probabilities
P ′

n0
(t) of a five-disk system without any disk-disk collision as

functions of time t for n0 = 5 (the solid line), 4 (the dashed
line), 3 (the dotted line), 2 (the dashed-dotted line), and 1 (the
dashed-double-dotted line), and the nc-particle survival probability
Pnc

(t) of a five-disk system with disk-disk collisions as functions of
time t for nc = 5 (the circles), 4 (the triangles), 3 (the squares), 2 (the
diamonds), and 1 (the inverted triangles), on log-log plots.

To clarify such effects, we compare decay features of survival
probabilities in two different types of many-particle systems:
the many-hard-disk systems with disk-disk collisions, and the
systems consisting of many disks which can overlap with
each other, i.e., without any disk-disk collision. Here, the disk
systems without any disk-disk collision may be regarded as
the systems consisting of N point particles in the square box
which has the side length L − 2r and the hole in the region of
the length r in both the sides from a single corner of the box.

Figure 4 is the graph of the n0-particle survival probabilities
P ′

n0
(t) of five disks without any disk-disk collision for n0 = 5

(the solid line), 4 (the dashed line), 3 (the dotted line), 2 (the
dashed-dotted line), and 1 (the dashed-double-dotted line), as
well as the nc-particle survival probabilities Pnc

(t) of five disks
with their collisions for nc = 5 (the circles), 4 (the triangles), 3
(the squares), 2 (the diamonds), and 1 (the inverted triangles).
Here, the survival probabilities Pnc

(t) are the same as in Fig. 2,
and all values of the system parameters of the system for the
survival probabilities P ′

n0
(t) are the same as those for Pnc

(t)
except for the conditions in which disks can overlap without
any impact in their time evolutions and the initial velocity
distribution of each particle is given by a uniform distribution
under the constraint for the speed of each particle to be 1,
imposing the microcanonical distribution for each independent
particle at the initial time t = 0.

It is shown in Fig. 4 that at some early times the
survival probability P ′

n(t) of the system without any disk-disk
collision can decay faster than the corresponding survival
probability Pn(t) of the system with disk-disk collisions, for
n = 4,3, . . . ,1. In contrast, after a long time the survival prob-
ability P ′

n(t) decays slower than the corresponding survival
probability Pn(t), for n = 5,4, . . . ,1. We can also recognize in
Fig. 4 that after a long time the survival probability P ′

1(t) shows
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a power-law decay ∼t−1, similar to the survival probability
P1(t).

It is clearly shown in Fig. 4 that unlike the survival
probability P ′

1(t), a decay behavior of the survival probability
P ′

n(t) is essentially different from that of the corresponding
survival probability Pn(t) for n = 2,3, . . . ,N − 1 after a long
time. On the other hand, it is not clear by the fittings of P ′

n(t),
n = 2,3, . . . ,N − 1, to power functions in Fig. 4 whether
these survival probabilities P ′

n(t) exhibit asymptotic power-law
decays in time or not. To clarify this point quantitatively, we
introduce the function Fn(t) defined by

Fn(t) ≡ d ln Pn(t)

d ln t
= t

Pn(t)

dPn(t)

dt
, (7)

which takes a constant value −ν of the power in the case that
the n-particle survival probability Pn(t) shows a power-law
decay ∼t−ν [52]. In Fig. 5(a), we show the slopes Fn(t) of
ln Pn(t) as functions of ln t for n = 5 (the solid line), 4 (the

F n (
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FIG. 5. (Color online) (a) The slopes Fn(t) of ln Pn(t), and
(b) the slopes F ′

n(t) of ln P ′
n(t), as functions of ln t for n = 5 (the

solid line), 4 (the dashed line), 3 (the dotted line), 2 (the dashed-dotted
line), and 1 (the dashed-double-dotted line) for five-disk systems. The
open circles in (a) are the points for the slope Fn(t) to cross the line
−(2n − 1) for n = 4, 3, and 2, and the line −1/2 for n = 1.

dashed line), 3 (the dotted line), 2 (the dashed-dotted line),
and 1 (the dashed-double-dotted line), for the five-disk system
with disk-disk collisions. [It may be noted that if the survival
probability Pn(t) decays exponentially in time as Pn(t) =
exp(−at) with a positive constant a, then the function (7)
becomes −at , leading to the initial value Fn(0) = 0 of the
function Fn(t) as shown in Fig. 5(a).] For a comparison, in
Fig. 5(b) we also show the slopes F ′

n(t) ≡ d ln P ′
n(t)/d ln t of

ln P ′
n(t) as functions of ln t for n = 5 (the solid line), 4 (the

dashed line), 3 (the dotted line), 2 (the dashed-dotted line),
and 1 (the dashed-double-dotted line), for the corresponding
five-disk system without any disk-disk collision. Here, we used
the systems whose n-particle survival probabilities Pn(t) and
P ′

n(t) are shown in Fig. 4.
Figure 5 shows that both the one-particle survival probabil-

ities P1(t) and P ′
1(t) exhibit a power-law decay ∼t−1 after a

long time, but power-law decay properties of other n-particle
survival probabilities Pn(t) and P ′

n(t) for n = 2,3, . . . ,N − 1
after a long time are different with each other. For the case
with disk-disk collisions, Fig. 5(a) shows that the survival
probabilities P2(t) and P3(t) exhibit a power-law decay ∼t−4

and ∼t−6, respectively, suggesting their asymptotic power-law
decays as

Pn(t)
t→+∞∼

{
η1t

−1 for n = 1,

ηnt
−2n for n = 2,3, . . . ,

(8)

with constants ηn, n = 1,2, . . ., although the graph of F4(t) in
Fig. 5(a) does not show clearly such an asymptotic power-law
decay of the survival probability P4(t) yet. In contrast, for
the case without any disk-disk collision, Fig. 5(b) shows that
the survival probabilities P ′

2(t), P ′
3(t), and P ′

4(t) decay with
a power law ∼t−2, ∼t−3, and ∼t−4, respectively, suggesting
their asymptotic decays as

P ′
n(t)

t→+∞∼ η′
nt

−n (9)

with a constant η′
n for n = 1,2, . . . . The difference between

Eqs. (8) and (9) would be regarded as an important effect
of disk-disk collisions in decays of the n-particle survival
probabilities.

III. FINITE-TIME LYAPUNOV EXPONENTS OF
ESCAPE SYSTEMS

A. Decays of finite-time Lyapunov exponents

The many-hard-disk system considered in this paper is
chaotic, as far as two colliding hard disks exist inside the box.
In order to characterize chaotic dynamics of the system with
a dynamical instability, we introduce the finite-time largest
Lyapunov exponent (FTLLE) λ(t) at time t , which is defined
by

λ(t) = lim
|δ�(0)|→0

1

t
ln

|δ�(t)|
|δ�(0)| . (10)

Here, δ�(t) is a small deviation of the phase space vector
(consisting of the position vector and the momentum vector)
of the hard disks inside the box at time t , and the dimension
of the vector δ�(t) reduces by four at every time when a
disk escapes from the hole. One may notice that using the
discretized times tk = k
t , k = 0,1, . . . ,K , with 
t ≡ t/K
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FIG. 6. (Color online) The finite-time largest Lyapunov expo-
nents (FTLLEs) as functions of time t on log-log plots; λ(t)
(circles) for a five-disk system with disk-disk collisions, and λ′(t)
(triangles) for one without any disk-disk collision. Here, the broken
vertical lines and the dotted ones indicate the times tn when the
nth escape of the disks from the box occurs with the value λn of
the FTLLEs λ(t) and λ′(t), respectively, for n = 1,2, . . . ,5. [In this
figure, the symbols tn and λn, n = 1,2, . . . ,5, are explicitly shown
only for the FTLLE λ(t).] The straight shin line is a fit to the FTLLE
λ(t) in the time period (300,t1] by the power function λ(t) = β1t

−β2

with the fitting parameters βj ,j = 1,2.

and a positive integer K , Eq. (10) is rewritten as

λ(t) = lim
|δ�(0)|→0

1

K

K∑
k=1

1


t
ln

|δ�(tk)|
|δ�(tk−1)| (11)

meaning that the FTLLE λ(t) is given from an average of the
quantities (1/
t) ln[|δ�(tk)|/|δ�(tk−1)|] indicating local time
dynamical instabilities in the limit of K → +∞, i.e., 
t →
+0, characterizing a majority of such dynamical properties in
the finite-time interval [0,t]. The well-known largest Lyapunov
exponent of the system in the nonescape case with h = 0 is
given by limt→+∞ λ(t). On the other hand, in the case for disks
to escape with h > 0, even if the system is chaotic initially, then
we have limt→+∞ λ(t) = 0 for almost any initial condition for
which no disk exists inside the box in the long time limit t →
+∞. Therefore, we could characterize chaotic or nonchaotic
properties of the system by a decay behavior of the FTLLE
λ(t) as a function of time t .

In Fig. 6, we show an example of time dependencies of
the FTLLE λ(t) as circles, as well as the times tn for the nth
escape of disks from the box as a vertical line (n = 1,2, . . . ,5).
Here, we used the five-disk system whose n-particle survival
probabilities Pn(t) are shown in Fig. 2. As expected in escape
systems, the FTLLE λ(t) decays globally, although it can
increase temporally by disk-disk collisions. It is important
to note for contents of this paper that some local decays of
λ(t) look like a straight line in Fig. 6 as a log-log plot of
λ(t) as a function of t . To specify this property quantitatively,
we fitted the FTLLE λ(t) in the time period (300,t1] after the
(N − 1)th disk escapes at the time t = t2 (< 300) until the
N th (i.e., the last) disk escapes at the time t = t1, to a power

function β1t
−β2 with fitting parameters β1 and β2, as shown the

straight shin line in Fig. 6. Here, we used the values β1 = 128
and β2 = 0.981 for these fitting parameters. In this time period,
there is only one disk inside the box with no disk-disk collision
and the system is not chaotic, so this result suggests that the
FTLLE decays almost with a power law ∼t−1 after a long time
for nonchaotic cases, while the FTLLE should approach to a
nonzero finite value for chaotic cases with disk-disk collisions.

For a comparison, we also show in Fig. 6 an example of time
dependencies of the FTLLE λ′(t) of the system without any
disk-disk collision as triangles. Here, for the calculation of the
FTLLE λ′(t) we used the same values of system parameters
and the initial distribution of δ�(0) as those for the FTLLE
λ(t) in Fig. 6 except for absence of the disk-disk collision, and
for the FTLLE λ′(t) the initial distribution of �(0) is taken
as same as the system whose n-particle survival probabilities
P ′

n0
(t) are shown in Fig. 4. Different from the FTLLE λ(t) for

the system with disk-disk collisions, the FTLLE λ′(t) in this
figure shows a smoothly decreasing function of time, except
for some abrupt changes of λ′(t) at escape times of disks.

B. Averages and fluctuations of the finite-time largest Lyapunov
exponents at escape times

In general, FTLLEs λ(t) at a finite time t take various values,
depending on the initial conditions of the phase space vector
�(0) and its deviation δ�(0). Therefore, we investigate decay
properties of FTLLEs by means of ensemble averages over an
initial distribution of �(0) and δ�(0).

In order to discuss such statistical properties of FTLLEs,
we use the value λn of a FTLLE λ(t) at the time t = tn
when the (N − n + 1)th particle escape from the box occurs
(n = 1,2, . . . ,N ), as shown for the FTLLE λ(t) in Fig. 6.
Here, the times tn for these estimations of FTLLEs are given
in a calculation for the n-particle survival probability Pn(t).
In order to calculate distributions of λn and tn, we use the
initial ensemble in which the initial phase space vector �(0) is
distributed into the microcanonical distribution with a constant
energy E, and components of the initial Lyapunov vector
δ�(0) are chosen as the ones uniformly distributed under the
constraint with a constant value of the amplitude |δ�(0)|.

In this Sec. III B, we pay attention mainly to the power-law
decay λ(t) ∼ t−1 of FTLLEs, which would characterize
nonchaotic dynamics of hard-disk systems. For this purpose,
we investigate graphs of local time averages of ln λn as
a function of ln tn, which show straight lines for their
power-law decays, as a useful presentation of differences
between their power-law decays and non-power-law
decays. For local averages to obtain their smooth graphs,
we use two kinds of local averages 〈. . .〉t and · · · for
Ne = 5 × 108 number of ensembles of λn = λ

(j )
n and

tn = t
(j )
n , j = 1,2, . . . ,Ne, with t (1)

n � t (2)
n � . . . � t (Ne)

n .
The first average 〈X(λn,tn)〉t of a function X(λn,tn) of
λn and tn means to take the arithmetic means of the data
over every Na = 5 × 103 values from the beginning of the
sorted group {X(λ(1)

n ,t (1)
n ),X(λ(2)

n ,t (2)
n ), . . . ,X(λ(Ne)

n ,t (Ne)
n )},

so that we obtain the local averages 〈X(λn,tn)〉t as
X(k)

n ≡ ∑kNa

j=1+(k−1)Na
X(λ(j )

n ,t
(j )
n )/Na , k = 1,2, . . . ,Ne/Na .

To smooth out a graph of the data X(k)
n without reducing their

data points, we further take the second local average
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FIG. 7. (Color online) The local time averages 〈ln λn〉t of ln λn as
functions of local time averages 〈ln tn〉t of ln tn, for n = 5 (the solid
line), 4 (the dashed line), 3 (the dotted line), 2 (the dashed-dotted
line), and 1 (the dashed-double-dotted line), for a five-disk system.

〈X(λn,tn)〉t as X
(k)
n ≡ ∑k+Ñk

l=k−Ñk
X(l)

n /(2Ñk + 1) with

Ñk = Min[103,(Ne/Na) − k,k − 1], k = 1,2, . . . ,Ne/Na .
The reason to use the second average · · · for FTLLEs is that
data points of FTLLEs λn for their power-law decays are
quite a little, so that a power-law decay behavior of FTLLEs
often disappears if we make a smooth graph of local averages
of FTLLEs by using only the first average 〈. . .〉t with a large
number of Na .

Figure 7 is the graph of the local time averages 〈ln λn〉t of
ln λn as functions of local time averages 〈ln tn〉t of ln tn, for
n = 5 (the solid line), 4 (the dashed line), 3 (the dotted line),
2 (the dashed-dotted line), and 1 (the dashed-double-dotted
line). The system is the same as that whose n-particle survival
probabilities were shown in Fig. 2. This figure suggests that a
local average of the N th FTLLE λN converges to the largest
Lyapunov exponent after a long time without decay, while the
other FTLLEs λn, n = 1,2, . . . ,N − 1, decay with a power
law after some times because there are quite few disk-disk
collisions in orbits taking long times up to the (N − n + 1)th
disk escape from the box, namely, almost nonchaotic orbits
with zero Lyapunov exponents. Therefore, a transition from
chaotic orbits to nonchaotic orbits would be characterized by
the time starting a decay of local averages of the FTLLEs.

In order to investigate quantitatively power-law decays of
local averages of the nth FTLLEs λn, n = 1,2, . . . ,N − 1,
after a long time, we calculate the slope Gn of the local
averages 〈ln λn〉t of ln λn as functions of the local averages
〈ln tn〉t of ln tn. A constant value of the slope Gn in time
suggests a power-law decay ∼tGn of the local average of
the nth FTLLEs λn. In Fig. 8(a), we plotted the slopes

as the local averages Gn of Gn ≡ [〈ln λn〉t (j+1) − 〈ln λn〉t (j )
]

/[〈ln tn〉t (j+1) − 〈ln tn〉t (j )
] as functions of the local average

l̃n tn of l̃n tn ≡ [〈ln tn〉t (j+1) + 〈ln tn〉t (j )
]/2, for n = 5 (the

solid line), 4 (the dashed line), 3 (the dotted line), 2 (the
dashed-dotted line), and 1 (the dashed-double-dotted line), in
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FIG. 8. (Color online) (a) The slopes Gn as functions of the local

average l̃n tn of l̃n tn for n = 5 (the solid line), 4 (the dashed line),
3 (the dotted line), 2 (the dashed-dotted line), and 1 (the dashed-
double-dotted line), for a five-disk system with disk-disk collisions.
Here, the open circles are the points for the slopes Gn, n = 4,3,2,1,
to have the value −1/2. (b) The slopes G′

n as functions of the local

average l̃n tn for n = 5 (the solid line), 4 (the dashed line), 3 (the
dotted line), 2 (the dashed-dotted line), and 1 (the dashed-double-
dotted line), for a five-disk system without any disk-disk collision.

which 〈ln λn〉t (j )
and its corresponding quantity 〈ln tn〉t (j )

, j =
1,2, . . . , Ne/Na , are the j th values of 〈ln λn〉t and 〈ln tn〉t , re-

spectively, with 〈ln tn〉t (1)
< 〈ln tn〉t (2)

< . . . < 〈ln tn〉t (Ne/Na )
.

Figure 8(a) with Fig. 7 suggests that the local averages of
the nth FTLLEs λn, n = 1,2,3, decay asymptotically with a
power law ∼t−1, while the one of the N th FTLLE λN seems
to converge to a positive value, i.e., the largest Lyapunov
exponent, without decaying to zero. For a comparison, in
Fig. 8(b) we show the slopes G′

n as functions of the local

average l̃n tn for the system without any disk-disk collision, for
n = 5 (the solid line), 4 (the dashed line), 3 (the dotted line), 2
(the dashed-dotted line), and 1 (the dashed-double-dotted line).
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FIG. 9. (Color online) The averaged ratios 〈
λ2
n〉t /〈λn〉t as func-

tions of the local averages 〈tn〉t of tn, for n = 5 (the solid line), 4 (the
dashed line), 3 (the dotted line), 2 (the dashed-dotted line), and 1 (the
dashed-double-dotted line) for a five-disk system. The open circles
are the points at which the quantities 〈
λ2

n〉t /〈λn〉t , n = 4,3,2,1, take
their local minima.

Here, the slopes G′
n were calculated in the same system and the

same calculation process as the one for the slope Gn except for
an absence of disk-disk collision and the initial distribution of
�(0) used in the system whose n-particle survival probabilities
P ′

n0
(t) are shown in Fig. 4. For the case without any disk-disk

collision, all of the slopes G′
n, n = 1,2, . . . ,N , seem to

approach gradually to the value −1 as the time goes to
infinity. In contrast, the slopes Gn, n = 1,2, . . . ,N − 1, for
the case with disk-disk collisions, show rapid decays from
values around zero to the value −1.

The FTLLEs λn as functions of the escape times tn for
n = 1,2, . . . ,N have large fluctuations, so that it would be
meaningful to discuss not only their averages, but also their
fluctuations. As a feature of fluctuations of the FTLLEs λn, in
Fig. 9 we show the graphs of the averaged ratios 〈
λ2

n〉t /〈λn〉t
between the local time averages 〈
λ2

n〉t of the variances 
λ2
n ≡

(λn − 〈λn〉t )2 of λn and the local time averages 〈λn〉t of λn, as
functions of local averages 〈tn〉t of tn, for n = 5 (the solid line),
4 (the dashed line), 3 (the dotted line), 2 (the dashed-dotted
line), and 1 (the dashed-double-dotted line), in the same system
as that whose n-particle survival probabilities were shown in
Fig. 2. This figure suggests that a fluctuation amplitude of the
N th FTLLE λN decreases monotonically as a function of time.
This is consistent with the fact that disks do not escape until the
time tN and the FTLLEs for the system without any disk escape
converges to a (positive) Lyapunov exponent as time goes to
infinity for almost any initial conditions, known as Oseledec’s
theorem [53]. In contrast, it is shown in Fig. 9 that variances
of the nth FTLLEs λn, divided by the local averages 〈λn〉t of
the FTLLEs λn, for n = 1,2, . . . ,N − 1, have local minima
(the open circles in Fig. 9) as functions of time. After their
local minima, the ratios 〈
λ2

n〉t /〈λn〉t , n = 1,2, . . . ,N − 1,
increase in time, then seem to reach almost to a constant value
as shown for n = 1,2 in Fig. 9, meaning that in this time

period variances of the nth FTLLEs λn keep to have a similar
amplitude to the local average of the FTLLEs which would go
to zero as time goes to infinity. These increases of the quantities
〈
λ2

n〉t /〈λn〉t as function of time are supposed to come from
nonchaotic orbits which take long times for the (N − n + 1)th
disk escape from the box.

C. Relations among transition times in decays of the survival
probabilities and the finite-time largest Lyapunov exponents

Now, we came to the stage of discussions on a direct connec-
tion between decays of survival probabilities (characterizing
escape properties) and FTLLEs (characterizing chaotic or
nonchaotic properties) for many-hard-disk systems. For such
discussions, we introduce three different types of times to
characterize decay transitions of the survival probabilities or
the FTLLEs as follows.

First, as discussed in Secs. II C and II D, decays of the
n-particle survival probabilities Pn(t), n = 2,3, . . . ,N − 1,
transfer from the superpositions (6) of exponential decays
to the power-law decays (8) for many-hard-disk systems. In
order to represent quantitatively intermediate times between
their decays (6) and (8), we introduce the times t (sur)

n as
the ones for the slope Fn(t) to cross the line −(2n − 1) for
n = 2,3, . . . ,N − 1. We also introduce the time t

(sur)
1 as the

one for the slope F1(t) to cross the line −1/2. The survival
probabilities at these times are indicated by the open circles in
Fig. 5(a).

Second, as discussed in Sec. III B, the local averages of
FTLLEs λn at the escape times tn, n = 1,2, . . . ,N − 1, show
a power-law decay ∼t−1 after a long time. These power-law
decays would be caused by nonchaotic orbits of disks which
would have longer escape times than those of chaotic orbits
with frequent disk-disk collisions. We introduce the times
t

(lya,ave)
n , n = 1,2, . . . ,N − 1, as those for the slopes Gn,
n = 1,2, . . . ,N − 1, to take the value −1/2, respectively, and
we use these times to estimate the times after which orbits are
almost nonchaotic. The local-averaged FTLLEs at the times
t

(lya,ave)
n , n = 1,2, . . . ,N − 1, are indicated by the open circles

in Fig. 8(a).
The third type of time to characterize a dynamical transition

is related to fluctuation properties of FTLLEs discussed
in Sec. III B. These times, represented as t

(lya,flu)
n , n =

1,2, . . . ,N − 1 in this paper, are defined by the times when the
averaged ratios 〈
λ2

n〉t /〈λn〉t , n = 1,2, . . . ,N − 1, take their
local minima, respectively. The averaged ratios 〈
λ2

n〉t /〈λn〉t
at these times are indicated by the open circles in Fig. 9.

In order to discuss relations among these times
t (sur)
n , t

(lya,ave)
n , and t

(lya,flu)
n , we show in Fig. 10

the points (ãt (sur)
n ,ãt

(lya,ave)
n ), n = 1,2,3,4, for

[ρ,h/(L − 2r)] = (10−1,10−1) (the closed circles),
[ρ,h/(L − 2r)] = (10−1,10−2) (the closed triangles),
[ρ,h/(L − 2r)] = (10−2,10−1) (the closed squares),
and the points (ãt (sur)

n ,ãt
(lya,flu)
n ), n = 1,2,3,4, for

[ρ,h/(L − 2r)] = (10−1,10−1) (the open circles),
[ρ,h/(L − 2r)] = (10−1,10−2) (the open triangles),
[ρ,h/(L − 2r)] = (10−2,10−1) (the open squares), for
the five-disk systems whose system parameters are the same
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FIG. 10. (Color online) The points (ãt (sur)
n ,ãt

(lya,ave)
n ),

n = 1,2,3,4, for [ρ,h/(L − 2r)] = (10−1,10−1) (the closed
circles), [ρ,h/(L − 2r)] = (10−1,10−2) (the closed triangles),
[ρ,h/(L − 2r)] = (10−2,10−1) (the closed squares), and the points
(ãt (sur)

n ,ãt
(lya,flu)
n ), n = 1,2,3,4, for [ρ,h/(L − 2r)] = (10−1,10−1)

(the open circles), [ρ,h/(L − 2r)] = (10−1,10−2) (the open
triangles), [ρ,h/(L − 2r)] = (10−2,10−1) (the open squares) for
five-disk systems. The index number at the right-low side of each
point corresponds to the value n of each data for its point. The
straight line shows the cases in which ãt (sur)

n is equal to ãt
(lya,ave)
n or

ãt
(lya,flu)
n .

as the corresponding ones used in Table I. Here, the index
number at the right-low side of each point indicates the value
n of each data for its point, and the factor ã = hv0/(L − 2r)2

is the same as that used in Table I.
It is shown in Fig. 10 that the time t (sur)

n takes a quite similar
value to the time t

(lya,ave)
n , n = 1,2, . . . ,N − 1, for different

particle densities ρ and hole size ratios h/(L − 2r), noting
that the points (ãt (sur)

n ,ãt
(lya,ave)
n ) are close on the straight line

to indicate the relation ãt (sur)
n = ãt

(lya,ave)
n . This result gives a

supportive evidence that a transition from a decay represented
as a superposition (6) of exponential decays to a power-
law decay (8) for the n-particle survival probability Pn(t)
corresponds to a transition of the FTLLE λn to its power-law
decay caused by nonchaotic properties of the system. In other
words, the origin of power-law decays of the n-particle survival
probabilities would be nonchaotic orbits of many hard disks.
It should also be noted that the points (t (sur)

n ,t
(lya,ave)
n ) are well

scaled by multiplying the factor ã, and especially the points
(t (sur)

n ,t
(lya,ave)
n ) for different hole sizes with h/(L − 2r) = 10−1

and 10−2 almost coincide in Fig. 10. On the other hand, we
could not find such kinds of equivalence and scaling between
the time t (sur)

n and t
(lya,flu)
n , although ãt (sur)

n and ãt
(lya,flu)
n have

similar orders of magnitudes, as shown in Fig. 10. This figure
also shows that the quantities ãt

(lya,flu)
n , n = 1,2, . . . ,N − 1,

decrease as the hole size ratio h/(L − 2r) decreases, while
they increase as the initial particle density ρ decreases.

IV. CONCLUSIONS AND REMARKS

In this paper, we have discussed escape properties of many
hard disks from a square box via a hole. To investigate
disk escapes, the n-particle survival probability Pn(t) was
introduced as the probability for n (� N ) disks to remain
inside the box without escaping up to the time t (� 0),
starting from N disks inside the box at the initial time t = 0.
At early times, the probabilities Pn(t),n = 2,3, . . . ,N − 1,
decay as superpositions of exponential functions, while after
a long time the probabilities Pn(t),n = 1,2, . . . ,N − 1, show
power-law decays. Especially, as an important effect of disk-
disk collisions, the exponent of the power-law decay for the
probability Pn(t) after a long time is given by −n for n = 1
and −2n for n = 2,3, . . . [as shown in Eq. (8)], in contrast to
the case without any disk-disk collision in which the exponent
of the power-law decay for the n-particle survival probability
P ′

n(t) after a long time is simply given by −n for n = 1,2, . . .

[as shown in Eq. (9)]. These power-law decays of the n-particle
survival probabilities after a long time for many-hard-disk
systems can be verified in various particle densities, hole sizes,
particle numbers, including the cases shown in Table I. This
suggests a possibility to obtain information on the particle
number inside the box and particle-particle interactions from
decay behaviors of the n-particle survival probabilities. We
also discussed scaling properties for exponential decay rates
of the probabilities Pn(t) for various hole sizes and initial
particle densities.

In order to discuss escape features based on dynamical
characteristics of many-particle systems, we further discussed
properties of the finite-time largest Lyapunov exponents
(FTLLEs) in escape systems consisting of many hard disks.
The FTLLE is defined as the exponential rate of expansion or
contraction of the absolute magnitude of a small deviation of
the phase space vector of the system at a finite time, and it
converges to a nonzero finite value as the largest Lyapunov
exponent for chaotic systems with a dynamical instability
in the long time limit. The dynamics of an escape system
consisting of many hard disks in a box should be chaotic at
early times for disk-disk collisions, but it becomes nonchaotic
in the long time limit because only a single (or even zero)
disk exists inside the box after a long time when other disks
have already escaped from the box via a hole. In this sense,
a transition from a chaotic dynamics to nonchaotic dynamics
occurs in such escape systems consisting of many hard disks.
In this paper, this dynamical transition was discussed by decay
behaviors of FTLLEs of the escape systems. We introduced
the FTLLE λn of a many-hard-disk system in a box with a
hole at the time t = tn when the (N − n + 1)th disk escape
from the box via the hole occurs. It was shown that local time
averages of the FTLLEs λn, n = 1,2, . . . ,N − 1, decay with a
power law ∼t−1 after a long time, suggesting that the transition
from a chaotic dynamics to a nonchaotic dynamics in escape
systems could be described by the transition from the value 0
of the slope of a local time average of ln λn with respect to a
local time average of ln tn to its value −1. We estimated this
transition time as the time when this slope of the local time
average of ln λn takes the intermediate value −1/2, and showed
that this time could be strongly correlated to the transition time
for a power-law decay of the n-particle survival probability.
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This result would give a quantitative evidence on a connection
between the escape features of many-hard-disk systems and
their chaotic or nonchaotic dynamical characteristics. It was
also shown that these transition times show scaling behaviors
on initial particle densities and hole size ratios. We also
discussed a fluctuation property of the FTLLEs λn in the sense
that a local time average of the variation of λn divided by a local
time average of λn takes a local minimum, then it would take an
almost constant value locally in time for n = 1,2, . . . ,N − 1,
as a function of time.

In the escape models discussed in this paper, we put a single
hole for disks to escape, which consists of two regions over two
sides from a single corner of the box. This hole configuration
is chosen so that orbit properties for a disk bouncing between
two confronting walls without any collision with other disks,
the so-called bouncing ball (or sticky) orbits, are the same
for two kinds of the confronting walls. The bouncing ball
orbits are known to play an essential role in power-law
decays of survival probabilities in escapes of single-particle
two-dimensional billiard models [35,42]. On the other hand, it
would be meaningful to note what happens in particle escapes
for different hole configurations. As such an example, in
Fig. 11 we show the n1-particle survival probabilities P ′′

n1
(t)

of a five-disk system as functions of time t for n1 = 5 (the
circles), 4 (the triangles), 3 (the squares), 2 (the diamonds),
and 1 (the inverted triangles) for the hole of the length r + h

in a single side from a single corner of the box. Here, except
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FIG. 11. (Color online) The n1-particle survival probabilities
P ′′

n1
(t) of a five-disk system as functions of time t for n1 = 5 (the

circles), 4 (the triangles), 3 (the squares), 2 (the diamonds), and 1
(the inverted triangles) for the hole of the length r + h in a single
side from a single corner of the box; and the n2-particle survival
probabilities Pn2 (t) of a five-disk system as functions of time t for
n2 = 5 (the solid line), 4 (the dashed line), 3 (the dotted line), 2 (the
dashed-dotted line), 1 (the dashed-double-dotted line) for the hole of
the length r + (h/2) in both the sides from a single corner of the box.
The main figure and the inset are for their graphs on log-log plots and
linear-log plots, respectively.

for the hole position we used the same values of the system
parameters and the same initial distributions as the system
whose survival probabilities are shown in Fig. 2. [In Fig. 11,
for comparisons with the survival probabilities P ′′

n1
(t), we also

show graphs of the n2-particle survival probabilities Pn2 (t)
for n2 = 5 (the solid line), 4 (the dashed line), 3 (the dotted
line), 2 (the dashed-dotted line), 1 (the dashed-double-dotted
line), which are the same as in Fig. 2.] Figure 11 shows
that the n-particle survival probabilities P ′′

n (t) of the escape
system with the hole in the single side of the box decay faster
than the n-particle survival probabilities Pn(t) of the system
with the hole in both sides of the box for n = 2,3, . . . ,N , while
the survival probability P ′′

1 (t) decays slower (faster) than the
survival probability P1(t) after a long time (at early times).
It should be also noted that the power-law decay ∼t−1 of the
survival probability P ′′

1 (t) after a long time looks to be much
weaker than that of P1(t). In general, escape behaviors of disks
from the box could depend on where we put a hole, because
of not only the properties of bouncing ball orbits but also
finite size effects of disks [54]. Another problem involving
finite size effects of disks would be an accurate evaluation of
decay rates of survival probabilities based on the ergodicity of
many-hard-disk systems.

The n-particle survival probability is given from times for
one of a finite number of disks to escape from the box in many
ensembles of orbits. In this sense, it could be discussed as
escapes of a single particle in a high-dimensional coordinate
space. Recently, escape behaviors of a single particle in a
high-dimensional chaotic system, such as asymptotic decays
of a survival probability in the high-dimensional Lorenz gas
model, have been discussed [55,56]. As another related topic
on dynamical decays of many-particle systems, an asymptotic
power-law decay ∼t1−κ of the probability for κ particles of not
colliding before time t with periodic boundary conditions was
discussed in Ref. [57]. In these works, a special type of particle
orbits without any collision with other disks plays an essential
role in asymptotic decays of survival probabilities, etc. On the
other hand, the difference between Eqs. (8) and (9) suggests
that for many hard disks in a box with a hole, disk-disk colli-
sions are not negligible even in orbits with long escape times.
Actually, we can check, for example, that even in the orbit
with the longest escape time t1 in the 5 × 108 ensembles of our
numerical calculations for the escape system whose n-particle
survival probabilities are represented in Fig. 2, there are dozens
of disk-disk collisions before all disks to escape from the box.
Therefore, it would be an important future problem to clarify
what types of orbits dominate asymptotic power-law decays of
n-particle survival probabilities in many-hard-disk systems.

As a dynamical description of escape phenomena in chaotic
systems with a single particle, the escape rate formalism is
known [19–22]. This formalism describes the escape dynamics
by the repeller [21,58], which is introduced as the set of
phase space points remaining inside an initially confined
region forever in escape systems. By its definition, a particle
on a repeller never leave the initially confined region, and
finite-time Lyapunov exponents of the particle on the repeller
can approach nonzero values (as Lyapunov exponents) for
chaotic systems in the long time limit. Based on these
Lyapunov exponents, the escape rate formalism shows that
a difference between the sum over the positive Lyapunov
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exponents and the Kolmogorov-Sinai entropy on the repeller
gives an escape rate of the exponential decay of a survival
probability of one-particle escape systems. In contrast, in this
paper we discussed finite-time Lyapunov exponents for orbits
of escaping particles. In these orbits, any particle escapes
from the box at a finite time, so that finite-time Lyapunov
exponents for these orbits of particles inside an initially
confined region go to zero at a finite time, different from
the Lyapunov exponents on the repeller. There could exist
repellers in many-particle systems, but it is very difficult to
analyze them analytically or numerically at the present time.
It would be interesting to discuss how we apply dynamical
theories for the repeller of escape systems, such as the escape
rate formalism, to many-particle systems or nonexponential
decays of survival probabilities.

Dynamical features on many-particle effects in escape
phenomena have been discussed recently in quantum systems
by using the survival probabilities for all particles to remain
inside a finite region [37,59,60]. It was shown in these
works that the survival probabilities in quantum systems with
noninteracting and identical many particles show power-law
decays asymptotically in time, and exponents of their power
decays depend on the quantum statistics, i.e., whether the
particles are identical fermions or bosons. Many interesting
features, such as effects of various particle-particle interactions
or many holes and quantum-classical correspondences, etc.,

would remain as open problems on escape phenomena of
many-particle systems.

APPENDIX: DERIVATIONS OF EQS. (5) AND (6)

In this appendix, we derive Eq. (5) from Eqs. (3)
and (4), as well as Eq. (6) from Eqs. (1) and (5).
First, we introduce the Laplace transformation f̂1(ω; a) ≡∫ +∞

0 dτ f̃1(τ ; a) exp(−ωτ ) of the function f̃1(τ ; a) of τ (> 0),
which is given by

f̂1(ω; a) = a

ω + a
(A1)

for ω + a > 0, by using Eq. (3). Second, using Eq. (A1)
and the convolution formula of Laplace transformations, the
Laplace transformation f̂k(ω) ≡ ∫ +∞

0 dτ f̃k(τ ) exp(−ωτ ) of
the function (4) for k � 2 is given by

f̂k(ω) =
k∏

j=1

f̂1(ω; aj ) (A2)

=
k∑

j=1

Aj

ω + aj

(A3)

in a form of the partial fraction under the assumption aj �= ak

for j �= k. Here, Aj is a constant and is given by

Aj = lim
ω→−aj

(ω + aj )
k∑

l=1

Al

ω + al

= lim
ω→−aj

(ω + aj )
k∏

l=1

f̂1(ω; al)

=
∏k

l=1 al

(a1 − aj )(a2 − aj ) . . . (aj−1 − aj )(aj+1 − aj )(aj+2 − aj ) . . . (ak − aj )
. (A4)

From Eq. (A3), the inverse transformation f̃k(τ ) of the function f̂k(ω) is represented as

f̃k(τ ) =
k∑

j=1

Aje
−aj τ . (A5)

By inserting Eq. (A4) into (A5), we obtain Eq. (5).
Using Eqs. (A2) and (A3) and the normalization condition

∫ +∞
0 dτ f̃1(τ ; a) = f̂1(0; a) = 1 of the probability density f̃1(τ ; a),

we obtain ∫ +∞

0
dτ f̃k(τ ) = f̂k(0) =

k∏
j=1

f̂1(0; aj ) = 1 =
k∑

j=1

Aj

aj

, (A6)

which includes the normalization condition of the probability density f̃k(τ ). From Eqs. (1), (A5), and (A6), we derive

P̃N−k+1(t) = 1 −
k∑

j=1

Aj

1 − e−aj t

aj

=
k∑

j=1

Aj

aj

e−aj t (A7)

for the survival probability PN−k+1(t) = P̃N−k+1(t) in the case of the probability density fk(τ ) = f̃k(τ ) of the escape time τ of
the k disks. By inserting Eq. (A4) into (A7), we obtain Eq. (6).
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[58] P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and

G. Vattay, Chaos: Classical and Quantum (Niels Bohr Institute,
Copenhagen, 2014).

[59] A. del Campo, Phys. Rev. A 84, 012113 (2011).
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