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Localized lasing modes of triangular organic microlasers
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We investigated experimentally the ray-wave correspondence in organic microlasers of various triangular
shapes. Triangular billiards are of interest since they are the simplest cases of polygonal billiards and the existence
and properties of periodic orbits in triangles are not yet fully understood. The microlasers with symmetric shapes
that were investigated exhibited states localized on simple periodic orbits, and their lasing characteristics like
spectra and far-field distributions could be well explained by the properties of the periodic orbits. Furthermore,
asymmetric triangles that do not feature simple periodic orbits were studied. Their lasing properties were found
to be more complicated and could not be explained by periodic orbits.
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I. INTRODUCTION

Two-dimensional (2D) billiards long have been studied
as model systems with Hamiltonian dynamics. This is in
great part due to their seeming simplicity that contrasts the
wealth of different dynamical behaviors that they can exhibit,
including integrable, chaotic, pseudointegrable, and mixed
dynamics. One interesting class of 2D billiards are polygons,
of which triangles are the simplest case. While some classes
of triangular billiards are well understood, many unsolved
problems remain for triangles of asymmetric shape. These
open questions concern, for example, the existence, number,
and stability with respect to geometric perturbations of their
periodic orbits (POs) [1–7]. While the existence of at least
one PO, the so-called Fagnano’s orbit, is assured for acute
triangles, and the existence of POs for obtuse triangles with no
angle greater than 100◦ has also been proven [6], it is not known
whether any PO exists at all in an arbitrary obtuse triangular
billiard. But even for triangles that are known to have one or
more POs, their actual construction is often nontrivial, and
even the shortest POs can be quite complicated. The search
for POs in triangular billiards hence stays a field of active
research.

Two-dimensional billiards are also studied in the context
of quantum and wave-dynamical chaos [8,9] to understand
the manifestation of ray dynamics in the properties of the
corresponding wave-dynamical systems. Early experiments
concentrated on microwave and acoustic resonators [10–13],
and new interest has arisen with the advent of applications
like optical microcavities and -lasers [14,15]. In particular,
the influence of POs on the spectral and emission properties
of microlasers is important in view both of a fundamen-
tal understanding of these devices and their applications
[16–19].

While many microcavities have circular or deformed
circular shape, different types of polygonal microresonators
also have been investigated. Examples of such structures
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include semiconductor [20,21], organic [19,22] and crystal
microlasers [23], silicon and silica microresonators [24–26],
vertical-cavity surface-emitting lasers (VCSELs) [27–30],
and hexagonal zinc oxide nanocavities and -rods [31–33].
These studies, however, examined only equilateral polygons,
while very few experimental investigations of nonequilateral
polygonal resonators have been reported [34,35]. Furthermore,
the scattering properties of triangular and other polygonal
structures have been studied [36–38]. Thus the properties
of nonequilateral triangular and polygonal microcavities
are poorly understood. In this article we study the lasing
characteristics of triangular organic microlasers of different
shapes with an emphasis on the role of symmetries and their
absence.

A laser resonator is usually designed to confine light on
a specific periodic ray trajectory and the active medium is
positioned to provide optimal overlap with the corresponding
resonant states. In the experiments reported here, the point of
view was reversed: The geometry of the cavity was given and
defined the various possible POs and the distribution of the
active medium, but it was not known a priori on which PO, if
any, the lasing modes would be based. The laser was essentially
left free to decide which PO was being favored. While that
PO could often be guessed in advance for simple, symmetric
triangles, the question of which specific PO is chosen was
particularly interesting in cases where even the shortest POs
are long and complicated or the POs are even not known at
all. Furthermore, the lasing modes need not necessarily be
based on a particular PO. The aim was therefore to understand
which parameters determine the dominant PO, to what extent
the properties of the lasing modes can be explained by that
orbit, and which features of triangular microlasers are beyond
simple ray-optical explanations.

The article is organized as follows. Section II summarizes
the key characteristics of classical triangular billiards and
their POs, and Sec. III treats their implications for dielectric
resonators. Section IV explains the fabrication of our micro-
lasers and the experimental setup for their characterization.
The experimental results for different triangular microlasers
are presented in Sec. V, starting with highly symmetric and
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FIG. 1. (Color online) Fagnano’s orbit in an acute triangle. The
orbit (thick solid red line) connects the feet of the altitudes (dashed
black lines). A trajectory parallel to Fagnano’s orbit but starting at a
different position closes after two round trips (dotted red line).

well-understood cases and going all the way to completely
asymmetric cavities. Section VI concludes with a summary of
the results.

II. CLASSICAL DYNAMICS OF TRIANGULAR BILLIARDS

Triangles are the simplest type of polygons and hence
can serve in many respects as paradigms for more general
polygons. The dynamics of a classical polygonal billiard with
M vertices depends on the internal angles αj at the vertices,
where j = 1 . . . M is the index of the vertex. A polygonal
billiard is called rational if all of its angles can be written
as a rational multiple of π , that is, αj = mjπ/nj , where the
mj and nj are coprime integer numbers. All other polygons
are called irrational. The topology of the phase space of a
rational polygon is determined by its genus G, which is a
function of the mj and nj [39]. For G = 1 the phase space has

the topology of a torus and the billiard is integrable. The three
cases of integrable triangle billiards are the equilateral triangle,
the right isosceles triangle, and the triangle with angles π/2,
π/3, and π/6, which is an equilateral triangle cut in half [5].
For G > 1, the phase space resembles a G-handled sphere and
its dynamics are said to be pseudointegrable [39]. Irrational
polygons have ergodic dynamics [40]. It should be noted
that the subset of rational polygons is dense in the set of all
polygons, that is, each irrational polygon can be approximated
by a rational triangle to arbitrary precision.

One type of trajectory that plays an important role in the
dynamics of both classical and wave-dynamical billiards are
periodic orbits, that is, orbits that retrace themselves after a
finite number of reflections. One example is shown in Fig. 1.
While it has been proven that POs exist in any billiard with
a smooth (C1) contour [41], there is no such theorem for
polygonal billiards: It is not known whether any PO exists
in an arbitrary polygonal billiard. There are, however, several
results for specific cases, one of the oldest concerning acute
triangles. It was proven back in the 18th century by Fagnano
that the PO connecting the feet of the three altitudes (thick
solid red line in Fig. 1) is the shortest of all possible POs
in such triangles [3]. It is hence called Fagnano’s orbit. The
existence of other POs in irrational acute triangles is, however,
not evident.

The POs in rational and several other types of triangles
can be constructed with the so-called unfolding technique as
demonstrated in Fig. 2(a) for an isosceles triangle with a top
angle of 110◦. We follow a trajectory [red (dark gray) line] that
starts perpendicularly to the height of the triangle by reflecting
the triangle each time that the boundary is encountered so the
trajectory unfolds into a straight line. The trajectory returns to
its starting point after a finite number of reflections. The actual
PO is obtained by folding the red line back into the triangle
as shown in Fig. 2(b). Furthermore, there are estimates for
the number of POs up to a given length in rational triangles,

(a)

(b)

FIG. 2. (Color online) Double bow-tie orbit in the isosceles triangle with top angle 110◦ (a) unfolded and (b) folded back into the triangle.
The red (dark gray) line indicates the isolated PO at the center of the PO channel (gray area) that is restricted by the thin black lines touching
the top corner of the triangle. The dotted black lines indicate the height of the triangle and the black dots indicate its orientation.
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and it has been shown that the POs are dense in their phase
space [4]. One particular class of rational triangles for which
even stronger theorems concerning the POs are known are the
so-called Veech triangles [1,5,42].

Much less is known for irrational triangles. The POs
in right and isosceles triangles can also be constructed by
unfolding [2]. It should be noted, though, that even in cases
where POs can be constructed with the unfolding technique,
the shortest PO can be long and complicated compared to the
simple examples shown in Figs. 1 and 2. Furthermore, the
existence of POs in triangles with all angles smaller than 100◦
has been proven [6]. However, no general theorems are known
concerning the existence of POs in obtuse triangles with one
angle larger than 100◦.

All trajectories in polygonal billiards are marginally stable
with respect to perturbations of their initial conditions. POs
with an odd number of reflections like Fagnano’s orbit or the
double bow-tie orbit in Fig. 2 are isolated, while POs with an
even number of reflections are part of a family of POs with
parallel trajectories [43,44]. Hence, repeating an isolated PO
an even number of times yields a nonisolated PO. For example,
the PO indicated as dotted red line in Fig. 1 belongs to the fam-
ily of the twice-repeated Fagnano’s orbit. The complete family
of a PO can be found by unfolding since its other members
cover a strip parallel to the PO. This strip is called the PO
channel. The PO channel of the double bow-tie orbit in the
isosceles 110◦ billiard is indicated as a gray strip in Fig. 2. The
PO channel is bounded by two trajectories (thin black lines)
that touch the corners of the triangle. These lines are the optical
boundaries of the PO channel. Parallel trajectories beyond
these line are not members of that family as can be verified by
unfolding them. Depending on the PO and the triangle, the PO
channel can cover either a part of the billiard like in Fig. 2 or
the complete billiard. For example, the POs of the equilateral
and right isosceles triangles cover them completely since these
triangles tessellate the plane when unfolding.

III. DIELECTRIC RESONATORS AND PERIODIC ORBITS

The flat organic microlasers studied in this article are treated
as 2D passive open dielectric resonators since the lasing modes
close to threshold can usually be well described by the modes
of the passive cavity. A passive resonator is governed by the
scalar Helmholtz equation

[� + n2(x,y)k2]�(x,y) = 0, (1)

where k is the free-space wave number and n(x,y) is the
effective refractive index neff for (x,y) inside the resonator
and the refractive index of the surrounding medium (air with
n = 1) on the outside. The wave function � corresponds either
to the z component of the electric field, Ez, for transverse
magnetic (TM) modes or to that of the magnetic field, Bz, for
transverse electric (TE) modes. The wave functions inside and
outside of the resonator are connected by the usual boundary
conditions for dielectric interfaces [19,45,46].

Since the typical size of the cavities considered here is in the
range of several hundred wavelengths, the resonators are in the
so-called semiclassical regime which is the transition regime
from classical physics (≡ ray optics) to quantum mechanics (≡
wave optics). Semiclassical methods permit to explain various

properties of the resonators using concepts and quantities from
the dynamics of the corresponding classical billiard systems
[44], the POs playing an important role in such approxima-
tions. Two well-known cases are trace formulas that connect
the density of state with the POs [44,47,48] and resonant states
localized on POs, so-called scars [49] and superscars [50,51].
Trace formulas and scars were mainly investigated in the con-
text of closed resonators with Dirichlet boundary conditions,
but the underlying principles can be extended to dielectric
resonators. In fact, a trace formula for dielectric resonators has
been developed [22,52–55], and modes of dielectric resonators
localized on classical trajectories are often observed. This
includes Gaussian modes that are localized on stable POs
[16,56], scar states localized on unstable POs [17,18], and
superscar states localized on families of marginally stable POs
[19,57] or classical tori [58]. It has been shown in Ref. [59] for
resonators with Dirichlet boundary conditions that superscar
states are localized inside the PO channel (see Fig. 2) due
to repeated diffraction at the corners that define the optical
boundaries. A similar effect has been proposed in Ref. [19] for
dielectric resonators even though the diffraction at dielectric
corners is not understood [60]. Therefore we expect to find
superscarred lasing modes in triangular dielectric resonators
with pseudointegrable classical dynamics.

The influence of a PO on the properties of a resonator
depends on several factors, among them its length, its stability
or, in the case of nonisolated orbits, the area covered by its
family and its refractive losses [44,52,61]. The losses depend
on the refractive index and the angles of incidence of a PO
since a ray traveling in a dielectric resonator is reflected and
refracted at the side walls according to the Fresnel formulas.
The emission directions of the refracted rays are determined
by Snell’s law. The most long-lived modes of passive dielectric
cavities hence mainly exhibit the influence of the shortest and
best-confined POs [54]. On the other hand, modes based on
POs that are not confined by total internal reflection can be
observed for laser cavities. The threshold condition for a ray
traveling along a PO with length �geo in an active medium with
linear gain g is given by

exp(g�geo)
∏

j

|rj |2 = 1, (2)

where rj is the Fresnel reflection coefficient for the reflection
at the j th vertex and the product runs over all vertices of the
PO. The threshold gain gth is hence

gth = − 2

�geo

∑

j

ln(|rj |) . (3)

We use Eq. (3) as a simple estimate for the threshold of a mode
localized on a PO. In practice, however, also other parameters
can be of importance like the overlap between the gain region
and the mode profiles [62,63] or the coupling between the
molecules of the gain medium and the electric field of a mode
[64]. Therefore, we do not expect quantitative agreement of the
measured lasing thresholds with Eq. (3). More sophisticated
approaches are necessary for a quantitative understanding of
the lasing thresholds.

It should be noted that even though the POs of a classical
billiard can explain many properties of the corresponding
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(a) (b)
100 μm

10 μm

FIG. 3. SEM images of a microlaser with equilateral triangle
shape and 300-μm side length.

resonators, wave effects such as tunneling and diffraction
can also have a significant influence. One example is the
existence of so-called diffractive orbits that have one vertex at a
diffractive corner of the billiard. Diffractive corners are corners
with an angle that is not equal to π/m, where m is an integer.
The reflection of a ray at such a corner is not defined in classical
mechanics. In contrast, a wave impinging on it is diffracted and
hence scattered into various directions. This enables to close
ray trajectories that impinge on a diffractive corner and thus
diffractive orbits can appear in wave-dynamical billiards (i.e.,
resonators). For example, they contribute to the trace formula
for resonators with diffractive corners or point scatterers
[55,65,66]. Another important point is that the dynamics of
wave systems is less sensitive to geometric perturbations than
that of classical systems. Therefore the influence of a PO on a
wave system can survive geometric perturbations even though
the perturbation completely eliminates that PO in the classical
dynamics [67,68].

IV. EXPERIMENTAL TECHNIQUES

The organic microlasers consisted of poly(methyl
methacrylate) (PMMA) doped with 5 wt% of the laser dye
DCM.1 A solution of PMMA and DCM was spin coated on a
silicon wafer with a 2-μm-thick layer of silica. The thickness
of the PMMA layer was about 700 nm. The desired cavity
shapes were written by 100-kV electron-beam lithography.
This process allowed us to define the cavity boundaries with
nanometric precision and achieve vertical side walls and
sharp corners and edges [69]. Scanning electron miscroscope
(SEM) images of an equilateral triangle cavity are presented in
Fig. 3. The triangular microlasers considered here had typical
side lengths a in the range of 200 to 400 μm, i.e., several
hundred times larger than the wavelength λ ≈ 600 nm. They
are considered two-dimensional (2D) systems with an effective
refractive index of neff = 1.50 since they are only about one
wavelength thick and support only a single vertical excitation
for each polarization [19].

The experimental setup was similar to the one described
in Ref. [70]. The microlasers were pumped by a pulsed
frequency-doubled Nd:YAG laser (532 nm, 500 ps, 10 Hz,
teem photonics PNG-002025-140) that impinged perpendic-
ularly to the cavity plane. The intensity and the polarization
of the pump beam were controlled independently using half-
and quarter-wavelength plates and polarizers. A circularly

14-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-
pyran (by Exciton).

polarized pump beam was used, and the pump intensity was
normally chosen only slightly above threshold. The pump
beam had an approximately Gaussian intensity profile and
its diameter was adjusted to cover the complete area of a
single microlaser. The lasing emission in the plane of the
microlasers was collected in the far field by a lens 18 cm away
from the sample and transferred by a fiber to a spectrometer
(Spectra Pro 2500i, Acton Research) and a cooled CCD
camera (PIXIS 110B, Princeton Instruments). The spectra
were integrated over 10 pump pulses. The samples could
be rotated to record the spectra in all possible directions
in the plane of the cavity and thus measure the azimuthal
far-field distributions. The polarization of the lasing emission
was determined using a linear polarization filter [64]. All of
the microlasers presented in the following emitted transverse
electrically (TE) polarized light, i.e., the lasing emission had an
electric field parallel to the plane of the cavities. Furthermore,
a complementary metal-oxide–semiconductor sensor camera
(UI324xCP-C, IDS Imaging) with a zoom lens (Zoom 6000,
Navitar) was used to take photographs of the lasing cavities.
The observation angle of the camera was chosen at a 10◦ tilt
angle above the plane so the whole cavities could be surveyed.

The POs that the lasing modes might be localized on can be
deduced from the various experimental observables. It should
be noted, however, that not all lasing modes are in fact localized
on specific classical trajectories. Therefore, a careful analysis
of all available data is needed to determine the nature of the
observed resonant states. The lasing thresholds are related to
the lifetime of the cavity modes and hence to the losses of a
possible underlying PO [cf. Eq. (3)]. The far-field distributions
are often concentrated around a few specific directions. From
these directions one can infer the possible trajectories within
the resonator via Snell’s law. The photographs indicate from
which parts of the cavities the light is emitted.

The spectra typically exhibit multimode lasing with several
tens of resonances. They are often organized in sequences of
equidistant resonances. If a set of lasing modes is localized on
a certain PO, their resonance wave numbers are given by

km = 2πm + θ

neff�geo
, (4)

where m is an integer and θ a constant phase shift. The
resonance spacing km+1 − km is hence inversely proportional
to the optical length �opt of this PO, which can be conveniently
obtained from the Fourier transform (FT) of the spectrum that
exhibits peaks at �opt and its multiples [19]. It can also be
deduced from the free spectral range (FSR), λFSR, via the
relation

�opt = λ2

λFSR
, (5)

where λ is the wavelength of the lasing emission. The
geometric length of the PO, �geo, is related to the optical length
by �opt = ng�geo, where ng is the group refractive index. The
latter differs from the effective refractive index since it also
takes into account dispersion. It has a value in the range of
ng = 1.60 to 1.64 depending on the sample [19]. The precise
value for each sample can be determined from calibration
measurements with ribbon-shaped Fabry-Pérot cavities since
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they sustain only a single type of PO, the well-known bouncing
ball or Fabry-Pérot orbits.

V. EXPERIMENTAL RESULTS

Seven different triangles with varying degrees of symmetry
and different types of classical dynamics were investigated.
We start with the simplest and most symmetric triangles
and gradually pass to less symmetric and accordingly more
complicated ones. The first examples are the equilateral and
the right isosceles triangle that have both integrable classical
dynamics. The next two triangles are isosceles triangles
with top angles 100◦ and 110◦. They are rational triangles
with pseudointegrable classical dynamics. Since these four
(pseudo-)integrable triangles feature short and simple POs it
is expected to find lasing modes localized on some of these
orbits. The fifth triangle is an irrational right triangle. It also
exhibits a short and simple PO due to its right angle but
has ergodic classical dynamics in contrast to the previous
examples. Since the rational triangles are a dense subset
of all triangles, it is interesting to see if the properties of
rational and irrational triangle microlasers significantly differ.
The final two triangles are perturbations of the equilateral
triangle and the 100◦ isosceles triangle. They are irrational
and hence have ergodic dynamics. They were chosen because
no simple POs are known for them except for Fagnano’s
orbit in the quasiequilateral triangle. In addition, they permit
us to study the influence of geometric perturbations on the
microlasers’ properties and in particular the effect of breaking
their mirror symmetry.

A. Equilateral triangle (ET)

The equilateral triangle (ET) is the triangle with the highest
degree of symmetry, and microlasers with equilateral trian-
gular shape have been intensely studied [20,21,27–30,71–76].
The equilateral triangle has integrable classical dynamics, and
the corresponding cavity problem with Dirichlet or Neumann
boundary conditions can be solved analytically [44]. This
problem was already investigated in the context of vibrating
membranes by Lamé in the 19th century [77]. There is,
however, no analytical solution in the case of the dielectric
boundary conditions considered here. All POs of the ET
are known, but none of them is confined by total internal
reflection. This is due to the relatively low value of n = 1.5 that
corresponds to a critical angle of αcrit = arcsin(1/n) ≈ 42◦.
The same is true for the other triangular microlasers. The lack
of good confinement required comparably large cavities to
provide sufficient gain. The side length of the ET microlaser
was a = 300 μm.

Figure 4(a) shows the lasing spectrum I (λ) of the ET
microlaser for a pump energy just above the threshold in
the direction ϕ = 0◦ [see Fig. 5(a) for the definition of the
azimuthal angle]. The spectrum exhibits a clear structure of
equidistant peaks. The Fourier transform of the spectrum,
|FT(I )|, is plotted with respect to the optical length �opt in
Fig. 4(b). It features several equidistant peaks with decreasing
amplitude as expected for a series of equidistant resonances.
The first peak at �opt = 843 μm corresponds to the FSR,
λFSR = 0.44 nm, of the lasing spectrum, and the further peaks
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FIG. 4. (Color online) (a) Spectrum of the equilateral triangle
microlaser in the direction ϕ = 0◦ (as indicated in the inset).
(b) Fourier transform of the spectrum. The two arrows indicate the
optical lengths of Fagnano’s orbit and the quasi-Fabry-Pérot orbits.

)b()a(

(c)

ϕ

1000

2000

3000

4000

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

FIG. 5. (Color online) (a) Fagnano’s orbit in the equilateral trian-
gle billiard. The arrows outside the billiard indicate the corresponding
emission directions. The azimuthal angle ϕ is the angle with respect
to the horizontal axis. (b) Several members of the family of the
quasi-Fabry-Pérot orbit (solid red, dashed blue, and dotted green
lines). The arrows indicate the corresponding emission directions.
(c) Measured far-field distribution of the equilateral triangle micro-
laser. The maximal intensity of the spectrum is plotted with respect
to the azimuthal angle ϕ. The gray triangle in the center indicates the
orientation of the cavity.

052922-5



C. LAFARGUE et al. PHYSICAL REVIEW E 90, 052922 (2014)

FIG. 6. (Color online) Photograph of the lasing equilateral trian-
gle microlaser with side length a = 300 μm in the direction ϕ = 0◦.
The black lines indicate the two other side walls of the cavity.

are harmonics. The two shortest types of POs in the ET
billiard are Fagnano’s orbit with �geo = 3a/2 = 450 μm [see
Fig. 5(a)] and the so-called quasi-Fabry-Pérot (qFP) orbits
shown in Fig. 5(b). A qFP orbit has two reflections with
perpendicular incidence and two reflections with an angle of
incidence of 60◦ with respect to the surface normal. It has
a length of �geo = √

3a = 519.6 μm. The family of the qFP
orbits in the ET is constructed as follows: First, one qFP orbit
[e.g., the solid red line in Fig. 5(b)] is shifted perpendicularly
to its trajectory (yielding, for example, the dashed blue lines)
and, second, the qFP orbits can be rotated by ±120◦ (yielding,
for example, the dotted green lines). The family of qFP orbits
covers the whole surface of the ET. The calculated optical
lengths corresponding to Fagnano’s orbit and the qFP orbit are
�calc

opt = 729 μm and �calc
opt = 842 μm, respectively. They are

indicated by the arrows in Fig. 4(b). Obviously, the observed
optical length corresponds to the qFP orbit while Fagnano’s
orbit is too short. All other POs are significantly too long.

Further evidence is gained from the azimuthal far-field
distribution in Fig. 5(c). The lasing emission is concentrated
in the three directions perpendicular to the cavity side walls.
This is the behavior expected from modes localized on the qFP
orbit as shown in Fig. 5(b). Note that there is no emission from
the reflections with angle of incidence 60◦ since this angle
is larger than the critical angle. On the other hand, Fagnano’s
orbit would correspond to six emission directions with an angle
of ϕ = 48.6◦ with respect to the surface normals as indicated
in Fig. 5(a), but no emission was found in these directions.
It should be furthermore noted that the lasing threshold of
the ET microlaser is only about 20% higher than that of a
Fabry-Pérot (FP) cavity of corresponding width. Altogether
this proves that the observed lasing modes are localized on
the qFP orbit. Finally, a photo taken from the direction ϕ = 0◦
and presented in Fig. 6 shows that the whole side wall of the
cavity is lasing. This was expected since the family of the
qFP orbit covers the whole triangle, though also all other PO
families do so. Photos taken from ϕ = 120◦ and 240◦ show
the same behavior, whereas no lasing light was observed with
the camera in all other directions. In summary, the qFP orbit
was identified unambiguously from the experimental data as
the orbit supporting the lasing modes.

It is at first surprising that the dominant lasing modes are
localized on the qFP orbit and not on Fagnano’s orbit like
in Refs. [20,21]. First, however, the refractive index of the
semiconductor materials used in Refs. [20,21] was signifi-
cantly higher so Fagnano’s orbit was confined by total internal
reflection, which is not the case here. Second, the lasing modes
that we observed were TE polarized, i.e., their electric field
was parallel to the plane of the resonator. In fact, TE polarized
modes are favored by the properties of the lasing dye and

FIG. 7. (Color online) Right isosceles triangle with the quasidia-
mond orbit (thick solid red line) and the qFP orbit (dash-dotted blue
line). The arrows indicate the emission directions of these two POs.
The thin solid red line is the PO along the height of the triangle. The
dashed black line indicates the corresponding square billiard and the
red dashed line and the dotted blue line indicate the continuation of
the quasidiamond and qFP orbit in it, respectively.

the pumping scheme that is used here [64]. Since the angle
of incidence of Fagnano’s orbit, 30◦, is close to the Brewster
angle αB = arctan(1/n) = 33.7◦, a TE mode localized on this
PO would suffer from very high losses. From Eq. (3) we
calculate gth = 359 cm−1 as the threshold of Fagnano’s orbit
and gth = 124 cm−1 for the qFP orbit. Thus, the dominance of
the qFP modes can be well explained by taking into account
the peculiarities of the organic microlasers. It should be noted
that the modes of the other triangular microlasers considered
in the following were all TE polarized as well.

B. Right isosceles triangle (RIT)

The second triangle that was investigated is the right
isosceles triangle (RIT), which is essentially a square cut
in half along a diagonal. The RIT billiard is integrable like
the square and equilateral triangle billiards. Both classical
and quantum right triangle billiards have been studied and
their POs investigated [2,7,78]. A property well known by
opticians is the fact that a corner with a right angle sends a
ray back parallel to its initial direction regardless of the angle
of incidence. From this follows directly the existence of a
family of POs that impinge perpendicularly on the hypotenuse
as indicated by the thick solid red line in Fig. 7. We call this
orbit quasidiamond orbit in analogy to the diamond PO in
the square billiard, indicated by the dashed red line in Fig. 7.
Another important PO is indicated by the dash-dotted blue
line. It is reflected perpendicularly at the two short sides of the
RIT and with an angle of incidence of 45◦ at the hypotenuse.
Since it corresponds to the Fabry-Pérot orbit of the square
billiard (indicated by the dotted blue lines in Fig. 7), it is also
called the qFP orbit. These are the two shortest POs of the
RIT, and both PO families cover the whole area of the billiard.
The qFP orbit exists in all isosceles triangles, with the angle of
incidence on the long side and the area covered by its family
depending on the top angle of the triangle.

Two spectra measured in the directions perpendicular to
the hypotenuse and one of the short sides, respectively,
are shown in Fig. 8. Both spectra consist of families of
equidistant resonances that have, however, a different FSR
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FIG. 8. (Color online) (a) Spectrum of the right isosceles triangle
microlaser measured in the direction ϕ = 270◦ (see left inset). The
right inset shows the FT of the spectrum. (b) Spectrum of the right
isosceles triangle microlaser measured in the direction ϕ = 135◦ (see
left inset). The right inset shows the FT of the spectrum, with the
arrow indicating a small peak at �opt = 1270 μm.

each. The largest peak in the FT of the spectrum for ϕ = 270◦
is at �opt = 1270 μm. As expected for this direction, the
corresponding PO is the quasidiamond orbit with a geometric
length of �geo = 2a = 789.6 μm, where a = 394.8 μm is the
length of the hypotenuse, and a calculated optical length of
�calc

opt = 1263 μm. The FT also features a smaller peak at half
this optical length. It stems from the slight modulation of the
resonance amplitudes [see Fig. 8(a)], i.e., the fact that every
second resonance has a somewhat smaller amplitude than its
neighbors. It is interesting to note that there is an isolated PO
along the height of the triangle, indicated as thin solid red line
in Fig. 7, that has half the length of the quasidiamond orbit. The
physical origin of the modulation of the resonance amplitudes
and whether it is connected to this PO remains, however,
unclear. In contrast, the FT of the spectrum at ϕ = 135◦ shows
a peak at �opt = 894 μm. This corresponds to the qFP orbit
with a geometric length of �geo = √

2a = 558.3 μm and an
optical length of �calc

opt = 893 μm. An unexpected find is a small
peak at �opt = 1270 μm [indicated by the black arrow in the
inset of Fig. 7(b)] that corresponds to the quasidiamond orbit.
It originates from another family of barely visible resonances
in the spectrum.

The far-field distribution shown in Fig. 9 features several
emission lobes with differing amplitudes. The strongest
emission lobe is in the direction of ϕ = 270◦ and is due to
the quasidiamond orbit. It was cut off in the inset of Fig. 9
since its amplitude of ≈26 500 counts far exceeds that of the
other emission lobes. It should be noted that the emission
lobe at 135◦ is about 5 times larger than that at 45◦, whereas
the two lobes are expected to have equal amplitudes due to
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FIG. 9. (Color online) Measured far-field distribution of the right
isosceles triangle microlaser. The maximal intensity of the spectrum
is plotted with respect to the azimuthal angle ϕ. The inset shows the
far-field distribution in polar coordinates where the gray triangle in
the center indicates the orientation of the cavity.

the mirror symmetry of the triangle. A significant asymmetry
of the microcavity itself was excluded. Further experiments
demonstrated that the ratio between the amplitudes at ϕ = 45◦
and 135◦ depended sensitively on how precisely the cavity was
pumped, that is, for example, on the size and position of the
pump beam.

According to Fig. 7, modes localized on the qFP orbit
should emit in the directions of 45◦ and 135◦, and indeed
the spectra measured in these directions exhibit a FSR corre-
sponding to its optical length. However, small contributions
also of the quasidiamond orbit were found in the spectra at 45◦
and 135◦ as demonstrated in Fig. 8(b). In addition, two small
lobes at ϕ = 225◦ and 315◦ were found that are also related to
the quasidiamond orbit. The origin of these can be elucidated
by the photos shown in Fig. 10. The photos taken from ϕ = 45◦
show a strong emission from the side wall perpendicular to the
camera perspective as predicted for the qFP orbit. Classically,
it is expected that the whole side wall emits like in Fig. 6
since the qFP orbit family covers the whole triangle. Why
this is not observed experimentally remains unclear. It could
also be related to the strong sensitivity of the emission to
the pumping conditions. In addition, a weak emission from
the side wall parallel to the camera perspective was observed.
This is best seen in the top right panel of Fig. 10. A similar
grazing emission was also observed at ϕ = 135◦, 225◦, and
315◦. It is not expected classically since the quasidiamond

45◦

270◦

45◦

270◦

FIG. 10. (Color online) Photographs of the right isosceles trian-
gle microlaser with a 394.8-μm-long hypotenuse taken from 45◦ (top
panels) and 270◦ (bottom panels) with background illumination (left
panels) and without (right panels).
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FIG. 11. (Color online) Spectrum of an isosceles 100◦ triangle
microlaser. The inset shows the geometry of the cavity and the angle
of observation.

orbit is totally reflected at the two short sides. The same kind
of grazing emission is also observed for the diamond orbit
modes of square organic microlasers and will be discussed
elsewhere [79]. The photo taken at ϕ = 270◦ finally shows
emission from the whole hypotenuse as expected for modes
localized on the quasidiamond orbit.

The key characteristics of the RIT microlaser can be
well explained by simple POs of the corresponding billiard
as in the case of the equilateral triangle. But in contrast
to the equilateral triangle, the RIT microlaser features two
families of modes localized on different POs that coexist.
A calculation of the thresholds according to Eq. (3) reveals
that they are very close to each other since both POs have
the same losses and nearly the same lengths. This prediction
agrees qualitatively with the measured thresholds. Another
interesting observation is the grazing emission of the modes
localized on the quasidiamond orbit that is not expected from
the ray dynamics. It demonstrates that some properties of the
triangular microlasers need a more careful treatment taking
into account wave-dynamical effects.

C. Isosceles triangle with top angle 100◦ (IT100)

The most general class of triangles with a symmetry are
isosceles triangles. Microlasers with an isosceles triangle
shape have been investigated, for example, in Ref. [34]. The
POs of isosceles triangles can be constructed by the unfolding
technique [2]. The simplest PO that exists in all isosceles
triangles is the qFP orbit already known from the right isosceles
triangle. Another, more complicated example is the double
bow-tie orbit shown in Fig. 2. It exists for top angles between
90◦ and 111.5◦. The first of two obtuse isosceles triangles
that are discussed here is the one with top angle α = 100◦
(abbreviated IT100 in the following). Its classical dynamics is
pseudointegrable.

The spectrum of the IT100 microlaser measured in the
direction ϕ = 50◦, i.e., perpendicular to one of the short
side walls, is shown in Fig. 11. The FSR of the equidistant
resonance family corresponds to an optical length of �opt =
833 μm. The underlying PO is hence the qFP orbit shown in
Fig. 12(a) that has a length of �geo = 2a sin(40◦) = 514.2 μm,
where the length of the long side is a = 400 μm, which
corresponds to an optical length of �calc

opt = 833 μm. The
far-field distribution presented in Fig. 12(b) shows four major
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FIG. 12. (Color online) (a) Geometry of the isosceles 100◦ trian-
gle. A qFP orbit and its emission directions are indicated as red line
and red arrows, respectively. (b) Measured far-field distribution of
the isosceles 100◦ triangle microlaser. The gray triangle in the center
indicates the orientation of the cavity.

emission lobes. Their directions, ϕ = 50◦, 130◦, 194◦, and
344◦, are precisely the ones expected classically for the qFP
orbit. There are also some smaller emission lobes at, e.g., 240◦
and 300◦, hardly visible in Fig. 12(b). The spectra in these
directions also have a FSR corresponding to the qFP orbit.
These directions cannot, however, be explained by the ray
dynamics of the qFP orbit.

Figure 13 presents photographs of the IT100 microlaser
taken from two of the major emission directions. The pho-
tographs taken from ϕ = 130◦ in Fig. 13(a) show that the
whole side wall is emitting with the exception of a small part
next to the corner with the long side to the right. This is
in fact the part of the boundary that is expected classically
to emit, indicated by the thick red (dark gray) line in the
sketch in the right panel of Fig. 13(a), because the family of
the qFP orbit covers only a part of the billiard (indicated as
the gray area) in contrast to the right isosceles triangle. The
photographs taken from ϕ = 345◦ in Fig. 13(b) demonstrate
that the most intense emission into that direction originates
from the middle part of the long side (to the left in the photo),
again in good agreement with the classical prediction shown
in the right panel. However, also the smaller side wall (to the
right in the photo) emits light, though with lesser intensity. This
emission cannot be explained classically with the properties
of the qFP orbit family. In summary, most of the observed
lasing characteristics of the IT100 microlaser are in very good
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FIG. 13. (Color online) Photographs of the isosceles 100◦ trian-
gle microlaser (left panels) taken from the directions (a) 130◦ and (b)
345◦ with (top panels) and without background illumination (bottom
panels). The right panels show the isosceles 100◦ triangle triangle
with the qFP orbit [thin red (dark gray) line]. The solid black lines
are the two qFP orbits that define the optical boundaries of the surface
covered by the orbit family (gray area), and the parts of the side walls
that are accordingly expected to emit in the direction of the arrows
are indicated by the thick red (dark gray line). The length of the long
side is 400 μm.

agreement with the classical predictions for the qFP orbit,
while only some details are beyond a simple ray-dynamical
analysis as in the case of the right isosceles triangle microlaser.

D. Isosceles triangle with top angle 110◦ (IT110)

The second isosceles triangle that was investigated is
the one with a top angle of 110◦ (abbreviated IT110
in the following). It is also pseudointegrable. The spectrum
of the IT110 microlaser at ϕ = 125◦ is shown in Fig. 14(a).
It shows a single family of resonances, the FSR of which
corresponds to �opt = 744 μm. The corresponding PO is again
the qFP orbit with geometric length �geo = 2a sin(35◦) =
458.9 μm and optical length �calc

opt = 743 μm, where the length
of the long side is a = 400 μm. The spectrum measured at
ϕ = 302◦ is presented in Fig. 14(b). Its structure is less clean
than that of the one at 125◦, but its FT (see inset) shows
clear peaks at �opt = 1139 μm and multiples of this length.
The corresponding FSR of λFSR = 0.32 nm is the FSR of the
dominant family of modes [see Fig. 14(b)]. The spectrum also
exhibits a second family of modes with smaller amplitude and
the same FSR. This optical length as well as the emission
direction correspond well to the double bow-tie orbit (shown
as inset) with a geometric length of �geo = a[1 − cos(140◦)] =
706.4 μm and an optical length of �calc

opt = 1144 μm. It should
be noted that the measured threshold of the modes localized on
the qFP orbit is almost 3 times higher than that of the modes
localized on the double bow-tie orbit. This agrees qualitatively
with Eq. (3), which predicts a 2.1 times higher threshold.
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FIG. 14. (Color online) (a) Spectrum of the isosceles 110◦ tri-
angle microlaser measured at ϕ = 125◦. The inset indicates the
geometry of the triangle, a qFP orbit [red (dark gray) line], and
its emission directions [red (dark gray) arrows] as well as the
observation direction (black arrow). (b) Spectrum of the isosceles
110◦ triangle microlaser measured at ϕ = 302◦. The left inset
indicates the geometry of the triangle, the double bow-tie orbit [red
(dark gray) line], and its emission directions [red (dark gray) arrows]
as well as the observation direction (black arrow). The right inset
shows the FT of the spectrum.

The far-field distribution of the IT110 microlaser is pre-
sented in Fig. 15. The six principal emission directions agree
very well with those calculated for the double bow-tie orbit that
are indicated by the black arrows [see also inset of Fig. 14(b)].
The amplitudes of the emission lobes lack, however, the
expected symmetry as in the case of the right isosceles triangle
microlaser. No emissions lobes corresponding to the qFP orbit
were observed since the microlaser was pumped slightly above
the threshold of the double bow-tie orbit modes but well below
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FIG. 15. (Color online) Experimental far-field distribution of the
isosceles 110◦ triangle microlaser. The predicted emission directions
of the double bow-tie orbit are indicated by the black arrows. The
gray triangle in the inset indicates the orientation of the cavity.

052922-9



C. LAFARGUE et al. PHYSICAL REVIEW E 90, 052922 (2014)

the threshold of the qFP orbit modes. The photos shown in
Fig. 16 were taken with the same pump intensity as for the
measurement of the far-field distribution. The directions of
observation correspond to the major emission directions. All
photos show that the most intense part of the laser emission
originates from those parts of the side walls that are covered
by the family of the double bow-tie orbit [indicated by the red
(dark gray) lines in the drawing of the IT110]. This confirms
that the lasing modes with the lowest threshold are localized
on the double bow-tie orbit. However, the photos also show
weak emission from other parts of the side walls that are
not covered by the family of the double bow-tie orbit. A
possible explanation is that even though the field distributions
of superscarred resonant states are strongly concentrated inside
the PO channel, they also have a nonvanishing field outside
of the PO channel due to coupling to nonscarred states
[51,80,81].

In conclusion, the IT110 microlaser is another example
like the right isosceles triangle where two families of modes
localized on different POs coexist. In contrast to the case
of the right isosceles triangle, however, there is a significant
difference between the thresholds of the two mode families so
one of them is easily selected by keeping the pump intensity
sufficiently low. Furthermore, it should be noted that the
dominant PO, the double bow-tie orbit, is selected because
it has the lowest losses even though it is longer and more
complicated than the qFP orbit. The double bow-tie orbit also
exists in the IT100 billiard but has a higher threshold than
the qFP orbit in that case. Lasing modes based on the double
bow-tie orbit were not found experimentally for the IT100
microlasers even at considerably higher pump energies. This
demonstrates that the change of a single geometric parameter,
the top angle in this case, can significantly modify the lasing
characteristics.

E. Pythagorean triangle (PT)

The fifth triangle that was investigated is a Pythagorean
triangle (PT) with side length ratio 3:4:5 as shown in Fig. 17. Its
hypotenuse is a = 5 × 75 μm = 375 μm long. In contrast to
the other triangles studied so far, it is irrational and exhibits no
symmetry. It exhibits a qFP orbit that impinges perpendicularly
on the hypotenuse as shown in Fig. 17 in analogy to the
right isosceles triangle. The POs of right triangles can also
be constructed by unfolding [2] even if they are irrational like
the PT.

The lasing spectrum of the corresponding PT microlaser
observed in the direction perpendicular to the hypotenuse is
presented in Fig. 18(a). It exhibits a single family of equidistant
resonances. Its FT, shown in Fig. 18(b), features a dominant
peak at �opt = 1170 μm that corresponds to the FSR of the
spectrum. The length of the qFP orbit is �geo = 48a/25 =
720 μm, which yields an optical length of �calc

opt = 1166 μm
that is in good agreement with the optical length observed in
the FT. In complete analogy to the case of the right isosceles
triangle, there is an additional, smaller peak at half this
optical length that stems from a modulation of the resonance
amplitudes, and there is a PO along the height of the triangle
with half the length of qFP orbit (indicated as dashed blue line
in Fig. 17). It should be noted that the relative amplitude of the

peaks at 1170 and 585 μm depends sensitively on the pump
beam position and other details of the excitation scheme.

The far-field distribution presented in Fig. 19 has three
major emission directions, ϕ = 53◦, 209◦, and 335◦. The lasing
spectra in these directions exhibit the same modes as the one
shown in Fig. 18(a). The emission directions predicted for the
qFP orbit according to Snell’s law for n = 1.5 are ϕ = 53◦,
206◦, and 334◦, respectively (see Fig. 17). They are indicated
in Fig. 19 by the black arrows and agree quite well with the
observed ones. It should be noted that no emission is expected
from the left (smallest) side of the PT since the angle of
incidence of the qFP orbit on it is larger than the critical angle.
The amplitude of the emission lobe at 335◦ is considerably
smaller than that of the lobe at 209◦ while an equal amplitude
is expected classically. In fact, the relative amplitude of the
lobes strongly depended on the position and size of the
pump beam as in the case of the right isosceles triangle
microlaser.

Furthermore, the directions of these two lobes are not
symmetric as well. According to the geometry of the qFP
orbit, their angles with respect to the surface normal should
be equal, but in reality they are 270◦ − 209◦ = 61◦ and
335◦ − 270◦ = 65◦, respectively, and thus differ by 4◦. This
is a significant deviation that is within the resolution of the
setup. The third emission lobe on the contrary has precisely the
expected direction perpendicular to the hypotenuse. In contrast
to the previously considered triangles, however, the PT cavity
itself exhibits no symmetry, and symmetric emission directions
are only expected due to the properties of the underlying qFP
orbit.

A completely unexpected experimental result are the three
smaller and broader emission lobes around ϕ = 40◦, 220◦,
and 330◦. The spectra in these directions feature the same
structure and FSR as those in the three major emission lobes;
however, these three emission directions cannot be related to
the dynamics of the qFP orbit.

Photographs of the PT microlaser taken from the three
major emission directions are shown in the left panels of
Fig. 20. The sketches in the right panels indicate the parts
of the side walls that are expected to emit in these directions
according to the geometry of the qFP orbits. Indeed, the
brightest areas of emission in the photos correspond well
to these classical predictions. In contrast, also some weak
emissions are observed from the side wall on the left side
at 208◦ and from the side wall at the right side at 336◦, which
are not expected classically.

In summary, the spectra, the far-field distribution, and
the photos clearly evidence that the observed lasing modes
are localized on the qFP orbit family. In detail, however, there
are deviations from the ray-dynamical predictions. First, the
directions of the two emission lobes at 209◦ and 335◦ do
not exhibit the expected symmetry; second, there are three
additional emission lobes the directions of which have no
apparent connection to the qFP orbits; and, third, parts of the
lasing emission stem from sections of the cavity boundary
that are not expected to emit classically. So even though
the underlying PO could be identified, the properties of the
PT triangle microlaser cannot be explained with the same
precision and completeness as in the previous cases. This might
be related to the fact that the PT billiard is neither rational nor
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FIG. 16. (Color online) Photographs of the isosceles 110◦ triangle microlaser taken from the main emission directions of the modes
localized on the double bow-tie orbit. The length of the long side is a = 400 μm. The sketch in the center indicates the area in the isosceles
110◦ triangle that is covered by the family of the double bow-tie orbit (gray area) and the parts of the side walls that are accordingly expected
to emit [red (dark gray) lines]. The solid black lines indicate the two POs that form the optical boundaries.

symmetric, and in fact its POs can be constructed easily only
due to its right angle.

F. Quasiequilateral triangle (QET)

While all the triangles considered so far had symmetries
or other properties that enabled an easy construction of
their POs, the case considered in the following has none
of these. It is a deformation of the equilateral triangle and
hence called quasiequilateral triangle (QET) in the following.
Its side lengths are a = 316.7 μm, 0.95a = 308.8 μm, and
0.9a = 285.0 μm, respectively, as indicated in Fig. 21. It is
an irrational triangle and we hence cannot easily construct any

53.1◦

205.8◦ 334.2◦

3

4

5

FIG. 17. (Color online) Pythagorean triangle with side lengths
having the ratio 3:4:5. The thick red (dark gray) line and arrows
indicate an example of the qFP orbit family and the corresponding
emission directions. The gray area is the surface covered by the qFP
orbits that is bounded by the limit orbit indicated as thin black line.
The isolated PO along the height of the triangle is indicated as a
dashed blue line.
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FIG. 18. (Color online) (a) Spectrum of the Pythagorean triangle
microlaser. The inset indicates the direction of observation, ϕ = 53◦.
(b) Fourier transform of the spectrum.

PO besides Fagnano’s orbit. In particular, the qFP orbits no
longer exist due to the lack of symmetry.

A typical spectrum, observed at ϕ = 267◦, is shown in
Fig. 22(a). The structure of the spectrum is not as clear as
for the previously shown ones; nonetheless, a small sequence
of equidistant resonances can be identified. The FT of the
spectrum shows a peak at �opt = 830 μm and its approximate
multiples. The corresponding FSR of λFSR = 0.44 nm matches
that of the resonance sequence in the spectrum. This optical
length is close to that of the qFP orbit in an equilateral triangle
with side length a, but the qFP orbit no longer exists in the QET.
There are, however, three diffractive POs along the heights
of the triangle that have nearly the same lengths. They are
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FIG. 19. (Color online) Measured far-field distribution of the
Pythagorean triangle microlaser. The emission directions of the qFP
orbit are indicated by the black arrows. The gray triangle in the inset
indicates the orientation of the cavity.

depicted in Fig. 21 and called A, B, and C in the following.
They are called diffractive orbits because one of their vertices
is at a diffractive corner of the billiard (cf. Sec. III). It should
be noted that for an equilateral triangle, the orbits along the
heights belong to the family of the qFP orbit. Thus, these
three diffractive POs can be considered as the remnants of the
qFP orbit family. Their lengths are �(A)

geo = 518.2 μm, �(B)
geo =

547.0 μm, and �(C)
geo = 492.2 μm. The corresponding optical

lengths are indicated by arrows in Fig. 22(b) and are indeed
close to the peaks observed in the FT of the spectrum.

The far-field distribution of the QET microlaser is plotted in
Fig. 23(a). It features three broad bundles of emission lobes the
centers of which are roughly perpendicular to the cavity side

(a)

(b)

(c)

53◦

53◦

208◦

208◦

336◦

336◦

FIG. 20. (Color online) Photographs of the Pythagorean triangle
microlaser (left panels) taken from the directions (a) ϕ = 53◦,
(b) 208◦, and (c) 336◦ with (top panels) and without background
illumination (bottom panels). The right panels show the Pythagorean
triangle with a qFP orbit [thin red (dark gray) line], the area covered
by its family (gray area), and the parts of the side walls that are hence
expected to emit [thick red (dark gray) lines] in the direction of the
arrows. The length of the hypotenuse is 375 μm.

0.950.9
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FIG. 21. (Color online) Geometry of the quasiequilateral trian-
gle. The side lengths are indicated in units of the largest side length
a. The solid red, dotted green, and dash-dotted blue lines along the
heights of the triangle indicate the diffractive POs A, B, and C,
respectively. The dashed lines indicate an equilateral triangle with
side length a for comparison.

walls. The FT of the spectra measured at different azimuthal
angles is shown in Fig. 23(b). The dominant optical lengths
vary somewhat with ϕ, but they always stay close to the lengths
of the three diffractive POs, the optical lengths of which are
indicated by the vertical white lines. This corresponds to the
fact that the spectra always feature a similar FSR even though
their structure and quality varies significantly, leading to a
relatively high noise level in the FT. No evidence of Fagnano’s
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FIG. 22. (Color online) (a) Spectrum of the quasiequilateral tri-
angle microlaser. The observation angle of ϕ = 267◦ is indicated in
the inset. The indicated FSR corresponds to the dominant peak in the
FT of the spectrum. (b) FT of the spectrum. The triplets of arrows
indicate the optical lengths of the three diffractive POs A, B, and C

and their multiples.
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FIG. 23. (Color online) (a) Measured far-field distribution of the
quasiequilateral triangle microlaser. The gray triangle in the center
indicates the orientation of the cavity. (b) FT of the spectra with
respect to the optical length and azimuthal angle ϕ. The vertical
white lines indicate the optical lengths of the three diffractive POs
and their multiples.

orbit was found like in the case of the equilateral triangle since
its angles of incidence are close to the Brewster angle. So
while the FSRs approximately match those corresponding to
the diffractive orbits, other observations do not indicate that
the modes are localized on them. For example, the directions
of maximal emission are not exactly perpendicular to the side
walls as one would naively expect.

The photos shown in Fig. 24 enable a better understanding
of the nature of the resonant modes. They show the lasing QET
from the directions approximately perpendicular to the side
walls. All of them show that the points of origin of the lasing
emission are more or less broadly distributed over the side
walls. The expectation for modes localized on the diffractive
POs, in contrast, would be that the origin of emission is
strongly concentrated around the feet of the heights that are
roughly in the middle of the side walls. Another expectation
for this kind of mode would be strong emission coming from
the corners of the triangle. This is, however, not observed in

36◦

150◦

270◦

FIG. 24. (Color online) Photographs of the quasiequilateral tri-
angle microlaser taken from the directions perpendicular to the side
walls, ϕ = 36◦ (top), 150◦ (middle), and 270◦ (bottom). The largest
side is a = 316.7 μm long.

any direction. In fact, the images shown in Fig. 24 are typical
also for other directions in which the QET microlaser emits.

In conclusion, the lasing characteristics of the QET mi-
crolaser cannot be explained by any PO of the QET billiard.
The observed FSRs correspond to an optical length similar
to that of the qFP orbits of an equilateral triangle. A possible
explanation is that the observed modes are the perturbed modes
of the equilateral triangle microlaser that were localized on
the qFP orbit. Due to the small perturbation, their FSR stays
approximately the same, but the far-field distribution broadens
around the emission directions of the qFP orbit that are
perpendicular to the side walls. The same effect was observed
in Ref. [67] for triangular resonators with Dirichlet boundary
conditions. Some modes were shown to be localized on
so-called ghost POs, i.e., the POs of a geometrically different,
but similar, triangle. An analogous case is the persistence of
the influence of the bouncing ball orbits in a quantum stadium
billiard when the originally parallel side walls of the stadium
are slightly tilted [68]. The reason for these effects is that
while the classical dynamics can exhibit singular behavior
with respect to perturbations of the billiard geometry, e.g., POs
suddenly vanishing completely, wave-dynamical systems react
in a continuous manner to geometric perturbations, essentially
smoothing out the singularities of classical mechanics. The
data presented here lead us to believe that the modes of the
quasiequilateral triangle microlasers are localized on the ghost
qFP orbit, but numerical investigations of the wave functions
will be necessary to confirm this notion.

G. Quasi-isosceles triangle (QIT)

The last triangle is again a deformation of one of the
previous triangles. The triangle was constructed by moving
the right vertex of the isosceles 100◦ triangle by 10 μm to the
left while keeping the other two vertices fixed as demonstrated
in Fig. 25(a). Hence it is called quasi-isosceles triangle (QIT).
It is irrational and therefore no simple POs are known since
the qFP and the double bow-tie orbit of the isosceles 100◦
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FIG. 25. (Color online) (a) Geometry of the quasi-isosceles trian-
gle. It is a deformation of the isosceles 100◦ triangle that is indicated
by the dashed lines. The gray line indicates the height. (b) Three
diffractive POs of the quasi-isosceles triangle. The solid red and
dashed green lines indicate the two diffractive qFP orbits, respectively,
and the dotted blue line the height orbit. The arrows indicate the
corresponding emission directions.

triangle are destroyed by the geometric perturbation. There
are, however, three diffractive POs [see Fig. 25(b)] similar to
the case of the quasiequilateral triangle. One is along the height
of the triangle (called the height orbit in the following), and
the other two have one perpendicular reflection at a short side
wall and one at the top vertex. They can be considered as the
remnants of the qFP orbits of the isosceles 100◦ triangle and
are called diffractive quasi-Fabry-Pérot orbits in the following.

Two spectra of the QIT microlaser observed in different
directions are plotted in Fig. 26. Both spectra show a relatively
clear structure of equidistant modes. However, their FSRs
and the corresponding optical lengths differ as can be seen
in the FTs shown as insets. The optical length for the spectrum
at ϕ = 62◦ is �opt = 546 μm. This can only correspond to
the height orbit with �geo = 335.6 μm and �calc

opt = 547 μm.
The optical length for the spectrum at ϕ = 332◦ is 819 μm
and corresponds approximately to the lengths of the two
diffractive qFP orbits. The geometric and optical length of
the left diffractive qFP orbit [solid red line in Fig. 25(b)]
are �geo = 514.2 μm and �calc

opt = 838 μm, respectively, and
are identical to those of the qFP orbit in the isosceles 100◦
triangle, while the geometric and optical length of the right
diffractive qFP orbit [dashed green line in Fig. 25(b)] are
�geo = 503.1 μm and �calc

opt = 820 μm, respectively. So the
QIT microlaser exhibits (at least) two different families of
modes that have similar thresholds but different FSRs.

Next, we investigated what family of modes emitted in
which directions. The far-field distribution in Fig. 27 shows
a large number of emission lobes with varying amplitudes,
though the emission is not as broadly distributed as in the case
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FIG. 26. (Color online) (a) Spectrum of the quasi-isosceles tri-
angle microlaser observed at ϕ = 62◦. (b) Spectrum of the quasi-
isosceles triangle microlaser observed at ϕ = 332◦. The insets in (a)
and (b) indicate the observation direction and the FT of the spectrum,
respectively.

of the quasiequilateral triangle. The directions in which the
spectra exhibit the optical length of the diffractive qFP orbits
and the height orbit are indicated by the solid red and dotted
blue arrows, respectively. Note that for some of the smaller
emission lobes the corresponding optical length could not be
clearly determined due to indistinct spectra. In fact, some of
the most prominent emission lobes point approximately in
the directions expected for a diffractive qFP orbit which are
indicated by the black double arrows [see also Fig. 25(b)].
There remain, however, significant deviations between the
emission directions of the presumed diffractive qFP modes
and the directions predicted by ray optics. These deviations
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FIG. 27. (Color online) Measured far-field distribution of the
quasi-isosceles triangle microlaser. The gray triangle in the inset
indicates the orientation of the cavity. The solid red and dotted
blue arrows indicate the directions in which the FT of the spectrum
exhibited the optical length of the diffractive qFP and the height orbit,
respectively. The black double arrows indicate the emission directions
predicted for the diffractive qFP orbits.
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56◦56◦

136◦136◦

332◦332◦

FIG. 28. (Color online) Photographs of the quasi-isosceles trian-
gle microlaser taken in the main emission directions featuring the
optical length of the diffractive qFP orbits, ϕ = 56◦ (top), 136◦

(middle), and 332◦ (bottom), with background illumination (left
panels) and without (right panels). The largest side is 390 μm long.

cannot be consistently explained by a different refractive index
either. Regarding the presumed height orbit modes, there
are several emission lobes around, though not precisely in,
the direction of 270◦ predicted classically. Furthermore, the
two emission lobes close to 90◦ seem reasonable for such
modes, too. The strong emission in the direction of ϕ = 244◦
from the presumed height orbit modes and in the direction
of 16◦ from both families of modes, however, defy any
simple ray-dynamical explanation. Thus, the dynamics of the
diffractive POs can explain the observed emission directions
at best on a qualitative level.

The photos taken in the main emission directions of the
presumed diffractive qFP modes are presented in Fig. 28. They
show that the emission originates from almost the whole side
walls and not just small portions of it as would be expected for
the isolated diffractive qFP orbits. The photos rather resemble
those of the equilateral and isosceles triangle microlasers. In
addition, a part of the emission originates from those side walls
that are not directly facing the camera. Emission from these
side walls is not at all expected from any Fabry-Pérot-like
modes. The photos in Fig. 29 were analogously taken in the
main emission directions of the presumed height orbit modes.
The lasing emission is not as broadly distributed along the side
walls as in the cases presented in Fig. 28 but shows nonetheless
no single points of concentration. In particular, the photos

86◦86◦

94◦94◦

244◦244◦

FIG. 29. (Color online) Photographs of the quasi-isosceles trian-
gle microlaser taken in the main emission directions featuring the
optical length of the height orbit, ϕ = 86◦ (top), 94◦ (middle), and
244◦ (bottom), with background illumination (left panels) and without
(right panels).

at ϕ = 86◦ and 94◦ demonstrate that the emission in these
directions is not predominantly originating from the vertex of
the triangle as expected for a mode localized on the diffractive
height orbit.

In summary, the photos evidence that both families of
lasing modes cover more or less the whole microlaser and
are not strongly concentrated along the isolated diffractive
orbits shown in Fig. 25. We are hence led to believe that
one family of modes is localized on the ghost qFP orbits,
i.e., they are the perturbed qFP modes of the isosceles
100◦ triangle, analogously to the case of the quasiequilateral
triangle. The situation for the other family of modes with
an FSR corresponding to the height orbit is less clear since
a (nondiffractive) height PO does not exist in the isosceles
100◦ triangle, and no family of modes with a similar FSR was
observed for the isosceles 100◦ triangle microlaser. In any case,
further investigations are necessary for a full understanding of
the QIT microlaser’s behavior. It is interesting to note that even
though a PO is known to exist in the QIT since its angles are
all less than 100◦, the dominant lasing modes are clearly not
localized on any classical PO. It can be presumed that even
the shortest PO in the QIT is too long or has too high losses
to support lasing modes with a reasonably low threshold and
that therefore other types of lasing modes are predominant.

VI. CONCLUSIONS

While there are still open questions regarding the existence
and properties of POs in classical triangular billiards and this
remains a domain of active research, it is also very interesting
to explore the influence of the POs on the properties of the
corresponding wave-dynamical billiards. Of particular interest
are billiards for which the POs cannot be easily constructed
or are not even known because they are irrational and lack
symmetries. One of the objectives of the experiments presented
here was therefore to see whether the resonant states in these
cases are localized on POs, and, if yes, on which ones or
if, on the contrary, they have no relation to specific POs. We
investigated this ray-wave correspondence in experiments with
organic microlasers of triangular shape. The shapes that were
chosen correspond to different types of classical dynamics
featuring diverse types of POs and were hence expected to
exhibit very different lasing characteristics. Even though each
triangle microlaser had properties distinct from the others and
had to be treated separately, it is possible to draw some general
conclusions from the experiments.

Several examples of triangles with well-understood classi-
cal dynamics and relatively simple POs were studied, namely
the equilateral triangle and several rational isosceles triangles.
They all exhibit lasing modes that are clearly localized on
POs. The most important observables were the FSR of the
spectra and the directions of the emission lobes in the far
field that could be measured with high precision and showed
excellent agreement with ray-optical predictions. In contrast,
the amplitudes of the emission lobes proved to be very sensitive
to small changes in the experimental setup. Photographs of the
lasing cavities allowed further insight into the characteristics
of the lasing modes and showed good qualitative agreement
with the classical predictions. It seems to be a general rule
for polygonal billiards having simple, short POs with not too
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high losses that the modes of the corresponding microlasers
are localized on these POs [19,22,54,58]. Nonetheless, even
for these simple and symmetric triangles some details of
the observed spectra and far-field distributions were beyond
simple ray-dynamical explanations. This underlines the need
to further refine the different models of modal localization
in dielectric resonators to better account for wave-dynamical
effects like diffraction.

The agreement with the ray-optical calculations was less
good for the case of an irrational right triangle, namely the
Pythagorean triangle. Due to its right angle, it still features
a simple PO, and the FSR of the spectra corresponded to its
optical length. The directions of the emission lobes, however,
showed deviations from the classical expectations, and several
emission lobes in addition to the predicted ones were found.
Also the photographs of the PT microlaser only partly agreed
with the classical expectations.

Finally, two examples of irrational triangles lacking any
symmetry and hence any simple POs (with the exception
of Fagnano’s orbit for the quasiequilateral triangle) were
investigated. Both cases were deformations of previously
investigated triangles. Their modes seemed to be localized
on ghost POs [67], i.e., they resembled the modes localized on
POs of the undeformed triangles. But even though their modes
retained some of the features of the unperturbed triangles,
their properties like the major emission directions could only
be explained qualitatively, if at all. This means that, contrary
to expectations, the lasing modes of triangular microlasers are
not based on a PO if no simple PO exists in the corresponding
billiard. It also demonstrates that there seems to be a signifi-

cant, qualitative difference between microlasers with the shape
of rational and irrational triangles which is surprising since any
irrational triangle can be approximated by a rational one.

The examples of irrational triangles demonstrate that the
predictive power of ray optics decreases for irrational triangles
like the Pythagorean triangle, and quantitative predictions are
no longer possible for irrational triangles without symmetries
and simple POs. There is apparently a transition from sym-
metric triangles with simple classical dynamics for which the
lasing properties can be very well explained by ray optics
to less symmetric triangles with increasingly complicated
classical dynamics for which ray-optical methods no longer
yield a good description of the lasing properties. So the
complexity of the classical dynamics is directly reflected in
the complexity of the corresponding microlasers. It remains
an interesting challenge to better understand the latter cases
by further experimental and numerical studies.
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