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Transverse compactlike pulse signals in a two-dimensional nonlinear electrical network
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We investigate the compactlike pulse signal propagation in a two-dimensional nonlinear electrical transmission
network with the intersite circuit elements (both in the propagation and transverse directions) acting as nonlinear
resistances. Model equations for the circuit are derived and can reduce from the continuum limit approximation
to a two-dimensional nonlinear Burgers equation governing the propagation of the small amplitude signals
in the network. This equation has only the mass as conserved quantity and can admit as solutions cusp
and compactlike pulse solitary waves, with width independent of the amplitude, according to the sign of
the product of its nonlinearity coefficients. In particular, we show that only the compactlike pulse signal
may propagate depending on the choice of the realistic physical parameters of the network, and next we
study the dissipative effects on the pulse dynamics. The exactness of the analytical analysis is confirmed by
numerical simulations which show a good agreement with results predicted by the Rosenau and Hyman K(2,2)
equation.
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I. INTRODUCTION

Over the years, solitons have been the focal point of intense
investigations in several physical branches including Bose-
Einstein condensates [1], nonlinear optics [2], and nonlinear
electrical lattices [3] through their dynamical equations, which
requires usually a fine balance between nonlinearity and
dispersion. Among the equations admitting solitary wave as
solution, there is the Korteweg–de Vries (KdV) equation
admitting pulse soliton as solution, which can propagate
over long distance maintaining its characteristics namely the
shape and the speed, and conserve these properties even
after multiple collisions with other solitons. Observing the
real phenomena in nature, we can realize that stationary
and dynamical patterns are usually finite in extent although
most equations that admit solitary wave yield solutions that
are infinite in extent and which can cause long-distance
interaction. To solve the adequacy problem of soliton with
natural phenomena, Rosenau and Hyman [4] generalizing the
KdV equation found in 1993 a new class of solitary wave which
is localized in a finite region of space and requires a balance
between the standard nonlinearity and nonlinear dispersion,
which as solitons can survey collisions and had been named
compactons.

Since this pioneering work of Rosenau and Hyman,
compactons have been studied in diverse physical systems
in order to put forward this new concept. We can mention
the analysis of patterns on liquid surfaces [5], the nonlinear
dynamics of surface internal waves in a stratified ocean under
the Earth’s rotation [6], the modeling of DNA opening with 1D
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Hamiltonian lattice [7], the dynamics of a chain of
autonomous, self-sustained, dispersively coupled oscilla-
tors [8,9], the motion of melt in the Earth [10,11]; all
these studies were performed by means of the compacton
concept. On the same pathway, multidimensional continuum
model (including two and three dimensions) of the Rosenau
compacton was proposed by Rosenau, Hyman, and Staley
in 2007 [12]. Another interesting application of compactons
is whether they can be supported by real systems such as
nonlinear electrical transmission lines (NLTLs).

NLTLs have been intensively investigated during the past
few decades to produce localized solitons in both one and
two spatial dimensions [13]. Several investigations have been
done for managing dispersion [14,15] and for introducing non-
linearity to develop times-invariant envelope pulses [16,17].
In particular, the two-dimensional NLTLs have been studied
and they exhibit extraordinary refractive properties [13,18]. It
has been demonstrated that the nonlinear uniform electrical
line can be used: for extremely wide band signal shaping
applications [19], for waveform equalizer in the compensation
scheme for signal distortion caused by optical fiber polar-
ization dispersion mode [20], for doubling repetition rate of
incident pulse streams [21], and in the scheme for controlling
the amplitude (amplification) and the delay of ultrashort
pulses through the coupled propagation of the solitonic and
dispersive parts, which is important in that it enables the
characterization of high-speed electronic devices and raises the
possibility of establishing future ultrahigh signal processing
technology [22]. The emergence of compactons in NLTLs
can improve considerably the practical results concerning the
distortionless signal in ultrahigh-speed signal processing tools
and in electronic devices where they may be used to codify
data [23]. Recently, Compte and Marquié [24] have outlined
that when the nonlinear resistances are introduced in their
series branches, NLTLs modeling the front propagation in
reaction-diffusion equations can lead to the compactification
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of kink solitary waves. Since these pioneering works of
Compte and Marquié, other works on compactons have
followed in NLTLs. To name just few examples, Yemélé and
Kenmogne [25,26] have demonstrated that if the nonlinear
capacitors are introduced in the series branches of NLTL,
it may exhibit dynamics compact dark solitary wave, while
very recently, Ndjanfang and co-workers [27] pointed out that
the NLTL with nonlinear resistances in their series branches
can be interpreted by the nonlinear diffusive Burgers (NLDB)
equation which can admit the traveling pulse solitary wave
with compact support.

Our purpose of this work is to show that compactlike
pulse signals can propagate in the two-dimensional electrical
network with well-defined basic characteristics and also in the
two-dimensional continuum limit. To this end, the structure of
the paper is as follows. In Sec. II, we present the basic char-
acteristics of the electrical network under consideration and
derive the discrete equations governing the dynamics of signal
voltage in the network. In Sec. III we focus on deriving the
two-dimensional NLDB equation governing small amplitude
signal in the network. In Sec. IV, exact analytical expressions
of solutions, which include the cusp and the compactlike pulse
solutions of the system, are obtained, and the dissipative effects
of the network on the pulse motion is analyzed by means of the
two-dimensional NLDB equation and the simple perturbation
theory. Numerical investigations are performed in Sec. V
in order to verify the validity of the theoretical prediction
of the propagation of two-dimensional compactlike pulse
solitary waves. Finally, in Sec. VI, concluding remarks are
presented.

II. MODEL DESCRIPTION AND FUNDAMENTAL
PROPERTIES OF THE TWO-DIMENSIONAL

ELECTRICAL NETWORK

We consider a two-dimensional electrical network which
consists of the number of identical cells connected as il-
lustrated in Fig. 1. The nodes of the network are labeled
with two discrete coordinates n and m, where n specifies
the nodes in the propagation direction of the signal, while
m labels the nodes in the transverse direction. In each unit
cell, L1 and NLR1 are respectively the inductance and the
nonlinear resistance in the direction of propagation (that is
in n direction), while L2 and NLR2 are the inductance
and the nonlinear resistance in transverse (or m) direction.
The standard nonlinearity is introduced in the network by
varicap diodes whose capacitances vary with applied voltages.
Denoting by Qn,m(t) the nonlinear electrical charge at the
(n,m)th node and by Vn,m(t) the corresponding voltage, we
assume that the charge has a voltage dependence similar to the
one of an electrical Toda lattice [28]

Qn,m = C0V0 ln(1 + Vn,m/V0), (1)

where C0 and V0 are constants characterizing the operating
point. The nonlinear resistances (NLRs) under consideration
are the standard diodes with the following current-voltage
characteristics

i = I0(exp(δV/VT ) − 1), (2)

where δV is the voltage difference across the nonlinear
resistance, VT = kBT /|q| is the thermal voltage, kB is the

FIG. 1. Schematic representation of the two-dimensional nonlinear transmission network. Each cell contains the nonlinear capacitor C(V )
in the shunt branch which induces the standard nonlinearity, while in the series propagation and transverse branches, we have the linear inductors
L1 and L2, and the nonlinear resistances (NLR1) and (NLR2). The nonlinear resistances introduce nonlinear dispersion in the network, which
is responsible for the compactification of pulse signal.
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Boltzmann constant, I0 the saturation current, and q

the electron charge. However, let us mention that
NLR were introduced in NLTLs for signal processing
applications and particularly for image and wave

amplification [29–32] and are usually made of opera-
tional amplifiers, transistors, or multipliers. From Kirch-
hoff’s laws, the circuit equations for the network are
given by

dQn,m

dt
= (in − in+1) + (im − im+1),

Vn−1,m − Vn,m = L1
d
(
iL1
n

)
dt

, Vn,m−1 − Vn,m = L2
d
(
iL2
m

)
dt

,

in = iL1
n + iNLR1

n , n = 1, . . . ,N − 1,

im = iL2
m + iNLR2

m , m = 1, . . . ,M − 1, (3)

where iL1
n and iL2

m are the current passing through the self L1 and L2, respectively, while iNLR1
n and iNLR2

m are the current passing
through the NLR in n and m directions, respectively. From Eqs. (1) and (2), the circuit equations (3) can be combined and
rewritten into the following set of differential equations governing the propagation of the signal voltage in the network:

C0V0
d2

dt2
[ln(1 + Vn,m/V0)] = 1

L1
(Vn+1,m + Vn−1,m − 2Vn,m) + 1

L2
(Vn,m+1 + Vn,m−1 − 2Vn,m) + I01

d

dt

[
exp

(
Vn−1,m − Vn,m

VT

)
− exp

(
Vn,m − Vn+1,m

VT

)]
+ I02

d

dt

[
exp

(
Vn,m−1 − Vn,m

VT

)
− exp

(
Vn,m − Vn,m+1

VT

)]
. (4)

Assuming that the signal voltage amplitude is sufficiently weak, Eq. (4) can be expanded as a power series of the local signal
voltage Vn,m to give the following set of differential equations governing small amplitude signal voltage in the network:

d2Vn,m

dt2
+

(
u2

01 + u01g01
d

dt

)
(2Vn,m − Vn+1,m − Vn−1,m) +

(
u2

02 + u02g02
d

dt

)
(2Vn,m − Vn,m+1 − Vn,m−1)

= α
d2V 2

n,m

dt2
+ u01γ1

d

dt
[(Vn−1,m − Vn,m)2 − (Vn,m − Vn+1,m)2] + u02γ2

d

dt
[(Vn,m−1 − Vn,m)2 − (Vn,m − Vn,m+1)2], (5)

where u01 = 1/
√

L1C0 and u02 = 1/
√

L2C0 are characteristic
frequencies of the network in n and m directions, respectively.
The parameters are as follows: α = 1/(2V0) is the measure
of the standard nonlinearity, γ1 = I01/(2C0u01V

2
T ) and γ2 =

I02/(2C0u02V
2
T ) are the measure of the diffusion nonlinearity,

while terms proportional to g01 = I01/(C0u01VT ) and g02 =
I02/(C0u02VT ) may be viewed as losses of the network,
respectively, in n and m directions.

The linear properties of the network can be studied by
assuming a dissipative sinusoidal wave in the form

Vn,m(t) = V0 exp[−(χ1n + χ2m)]

× exp[j (k1n + k2m − ωt)] + c.c., (6)

where ki and χi , i = 1,2 are the real and imaginary parts
of the wave number k̃, ω is the angular frequency of the
signal, and c.c. stands for the complex conjugation of the
first term. Substituting Eq. (6) into Eq. (5) and equating real
and imaginary parts, neglecting nonlinear terms leads to the
following dispersion relation:

ω = u01g01 sinh(χ1) sin(k1) + u02g02 sinh(χ2) sin(k2)

+ [(u01g01 sinh(χ1) sin(k1) + u02g02 sinh(χ2) sin(k2))2

+ 2u2
01(1 − cosh(χ1) cos(k1))

+ 2u2
02(1 − cosh(χ2) cos(k2))]1/2. (7)

Similarly, χi , with i = 1,2 are expressed as follows:

χi = ln

[ωg0i + sin(ki)
√

u2
0i + ω2g2

0i

u0i sin(ki) + ωg0i cos(ki)

]
, i = 1,2. (8)

It is easy to show that, when g01 = g02 = 0, that is in the
absence of losses, Eq. (8) reduces to the following dispersion
relation of the nondissipative two-dimensional NLTL

ω = 2
[
u2

01 sin2(k1/2) + u2
02 sin2(k2/2)

]1/2
. (9)

This relation justifies the low pass filter character of the
network with the cutoff frequency ωc = 2

√
u2

01 + u2
02. The

expression (8) for the rate of dissipation of the signal amplitude
in the network indicates that the amplitude of the signal
decreases in the n and m directions as a function of the wave
number in both directions.

III. TWO-DIMENSIONAL NONLINEAR DIFFUSIVE
BURGERS EQUATION AND SOME PROPERTIES

Equation (5) is the set of N × M differential equations
which in general are very difficult to solve, and their solutions
need to be approximated via the integrable equations easy
to solve. Assuming that the wavelength is sufficiently large
as compared to the length of one section, we can use
the continuum medium approximations by introducing the
continuous space variables x = nh and y = mh, and replacing
the differences by differentials. Hence the signal voltage at

052921-3
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(n,m)th node, Vn,m(t), is replaced by the function of real
variables x, y, and t , that is V (x,y,t), where h is the
lattice spacing. Accordingly, Eq. (5) leads to the following
two-dimensional partial differential equation:

∂2V

∂t2
− u2

01
∂2V

∂x2
− u2

02
∂2V

∂y2
− α

∂2(V 2)

∂t2

+u01γ1
∂2

∂t∂x

[(
∂V

∂x

)2]
+ u02γ2

∂2

∂t∂y

[(
∂V

∂y

)2]
= u01g01

∂3V

∂t∂x2
+ u02g02

∂3V

∂t∂y2
, (10)

where, without loss of generality, the lattice spacing h is taken
equal to one so that the space variables x and y are given in unit
of cell, since in NLTL the width of unit cell is less relevant
because it does not characterize the spatial extension of the
cell as it is the case for other systems, such as in solid-state
physics [26]. We first introduce a small parameter ε � 1 and
the following change of variables:

V = εφ(X,Y,τ ), X = ε0(x − vp1t),
(11)

Y = ε0(y − vp2t), τ = ε1t,

in order to eliminate linear dispersion and guarantee the
balance between higher and diffusive nonlinearities. Next,
substituting the set of Eqs. (10) into Eq. (11), assuming
g01 = ε2λ1 and g02 = ε2λ2 (which means that the dissipa-
tion effect of the network is weak), and assembling the
resulting equationlike powers of ε, we obtain a sequence of
nonlinear equations. At the lowest order, that is at order ε,
one has(
v2

p1 − u2
01

) ∂2φ

∂X2
+ (

v2
p2 − u2

02

) ∂2φ

∂Y 2
+ 2vp1vp2

∂2φ

∂X∂Y
= 0.

(12)

Next, considering terms of order ε2, it follows that

L̂

(
2
∂φ

∂τ
+ αvp1

∂

∂X
(φ2) + αvp2

∂

∂Y
(φ2) + 2u01γ1

∂φ

∂X

∂2φ

∂X2

+ 2u02γ2
∂φ

∂Y

∂2φ

∂Y 2
− εu01λ1

∂2φ

∂X2
− εu02λ2

∂2φ

∂Y 2

)
= 0,

(13)

where the operator L̂ = vp1
∂

∂X
+ vp2

∂
∂Y

is the linear combi-
nation of differentiations ∂

∂X
and ∂

∂Y
. Integrating once this

equation and setting the constant of integration to zero, yields
the following perturbed two-dimensional NLDB equation:

∂φ

∂τ
+ αvp1

2

∂(φ2)

∂X
+ αvp2

2

∂(φ2)

∂Y

+u01γ1
∂φ

∂X

∂2φ

∂X2
+ u02γ2

∂φ

∂Y

∂2φ

∂Y 2

= ε

(
u01λ1

2

∂2φ

∂X2
+ u02λ2

2

∂2φ

∂Y 2

)
, (14)

where the dissipation is introduced by terms proportional
to ε. Let us notice that in the absence of the dissipa-
tive terms (that is when λ1 = λ2 = 0), the above equation

reduces to

∂φ

∂τ
+ αvp1

2

∂(φ2)

∂X
+ αvp2

2

∂(φ2)

∂Y
+ u01γ1

∂φ

∂X

∂2φ

∂X2

+u02γ2
∂φ

∂Y

∂2φ

∂Y 2
= 0. (15)

As the one-dimensional nonlinear extended KdV equation
introduced by Rosenau and co-workers [4], this equation
is invariant under the transformation φ → νφ, τ → τ/ν, ν

being an arbitrary constant, which had been proved to be
the necessary condition to have compact solutions whose
width is independent of the amplitude. Similarly, this equation
possesses the mass as a conserved quantity (see the Appendix)

I1 =
∫

φ dη, (16)

where η is the linear combination of space variables X

and Y (that is η = aX + bY ), meaning that in any arbitrary
propagation direction, there is a detailed balance between
nonlinear convection (terms proportional to α) and nonlinear
diffusion. When vp2 = γ2 = 0, this equation reduces to the
well-known one-dimensional NLDB equation obtained in [27]
admitting the pulse solitary wave with compact support as a
solution. Equation (15) appears then as the two-dimensional
generalization of this preceding one-dimensional case.

IV. SOLUTIONS OF THE TWO-DIMENSIONAL
NLDB EQUATION

The focal point here corresponds to the determination of
the solutions of Eqs. (14) and (15). Before the discovery of
solitons, mathematicians thought that nonlinear differential
equations could not be solved, at least not exactly. With the
development of soliton theory, many powerful methods for
obtaining the exact solutions of soliton equations have been
presented [33–38]. In the present paper, and in order to derive
the quantitative effects of the dissipation terms, we use an
approach based on the multiple time scale expansion [27,39]
which has been proved to be convenient for studying the
time-dependent perturbations on standard soliton motion and
nonlinear evolution equations admitting solitons with compact
shape as solution.

A. Undamped two-dimensional NLDB equation

Let us first start from the two-dimensional NLDB equa-
tion (15), which is just Eq. (14) with ε = 0. To find the
traveling-waves solutions of this equation, we define the single
variable

η = X cos(θ ) + Y sin(θ ) − vcτ, (17)

where vc is the front wave velocity and θ the propagation
direction of the wave. By taking into account this definition
into Eq. (12), the following ordinary differential equation is
obtained: [(

v2
p1 − u2

01

)
cos2(θ ) + (

v2
p2 − u2

02

)
sin2(θ )

+ 2vp1vp2 sin(θ ) cos(θ )
]
φ′′ = 0, (18)

where the prime stands for derivative with respect to η. The
above equation is unconditionally true if its coefficient is equal
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to zero, leading to

vp1 = u0 cos(θ ), vp2 = u0 sin(θ ),

u0 =
√

u2
01 cos2(θ ) + u2

02 sin2(θ ). (19)

By substituting (18) and (19) into Eq. (15), the following
nonlinear ordinary differential equation is obtained:

{−vc + αu0φ + [u01γ1 cos3(θ ) + u02γ2 sin3(θ )]φ′′}φ′ = 0.

(20)

From the above equation, the following first integral is
obtained:

φ′2 + μ̃

(
φ − vc

αu0

)2

= c1, (21)

with μ̃ = αu0/[u01γ1 cos3(θ ) + u02γ2 sin3(θ )], where c1 is the
constant of integration. It is important to mention that Eq. (20)
can be derived from the auxiliary Hamiltonian Ha or the
Lagrangian La defined as follows:

Ha = 1
2m(φ)[φ′2 + W (φ)],

(22)
La = 1

2m(φ)[φ′2 − W (φ)].

This Hamiltonian is viewed as the energy of a particle of
effective mass m(φ) = 1 moving in the effective potential

W (φ) = μ̃

(
φ − vc

αu0

)2

, (23)

where φ would represent the position and η the time. The
behavior of the system may be easily studied by means of
the phase plane plot which is the best way for observing the
evolution of the variable φ. It is obvious that Eq. (20) can be
transformed into the following autonomous dynamic system:

φ′ = 0, or

{
dφ

dη
= φ′,

dφ′
dη

= μ̃
(

vc

αu0
− φ

)
,

(24)

admitting (φ′ = 0, φ = vc/αu0) as a solution, which is the
equilibrium point of the system. From the linear stability
analysis [40], it appears that this equilibrium point is a
saddle point if μ̃ < 0 [provided that d2(W (φ))/dφ2 < 0 at
φ = vc/αu0], and a center point elsewhere. As φ′ = 0 is a
solution of Eq. (20), any arbitrary constant is the solution of
Eq. (15), meaning that the solution of Eq. (15) can be localized
in a finite region of space and would be a constant (including
zero) outside this region.

When μ̃ < 0, the phase-space plot (not sketched here)
shows trajectories passing through the origin corresponding
to solution decaying exponentially, which is the solution
verifying the nonvanishing boundary conditions, and subjected
to the constraints

lim
η→±∞ φ = A0, lim

η→±∞
∂nφ

∂ηn
, n = 1,2, . . . = 0. (25)

With the above constraints, and from Eq. (21) it follows that
the constant of integration c1 = 0 and the velocity of the wave
satisfies the relation

vc = αu0A0 (26)

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.05

0.1
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0.2

0.25
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0.4

0.45

0.5

η

φ

B=1.0
B=0.8
B=0.5

FIG. 2. Cusp solitary wave profile according to Eq. (27), with
parameters A0 = 0.5, μc = 0.25 and for different values of the depth
parameter B: 0.5, 0.8, and 1.

within these conditions; Eq. (21) admits the following solution

φ(η) = A0[1 − B2 exp(−μp|η − η0|)], (27)

where B is a free parameter and μp = √−μ̃, provided that
μ̃ is negative, that is α[u01γ1 cos3(θ ) + u02γ2 sin3(θ )] < 0,

which is the necessary condition for the system to exhibit this
solution. As presented in Fig. 2, the signal profile associated
with this solution exhibits a dip corresponding to the cusp
solitary wave. Parameters A0 and η0 represent the amplitude
and the dip localization, respectively, while B designates the
depth parameter.

For μ̃ > 0, the phase-space plot (not sketched here) exhibits
closed trajectories centered at the equilibrium point, which
evidences [associated to the fact that any arbitrary constant
is the solution of Eq. (16)] the existence of solution strictly
localized in a finite region of space and zero outside this
region, the compactlike pulse signal. This particular solution
verifies the following vanishing boundary conditions, and the
conditions at the maximum amplitude

lim
|η|→∞

dkφ

dηk
= 0, with k = 0,1,2,3, . . . . (28)

In addition, the maximum amplitude has to satisfy the relation

lim
η→η0

φ = A0, lim
η→η0

dφ

dη
= 0. (29)

Accordingly, c1 = μ̃v2
c /(α2u2

0) and vc = αu0A0/2, leading to
the following equation: φ′2 = μ̃φ(A0 − φ). This equation can
be integrated exactly to give the following solitary wave with
compact support:

φ(η) =
{
A0 cos2(μcη), |η| � π/(2μc),

0, |η| > π/(2μc),
(30)

with width parameter μc = (
√

μ̃)/2, provided that the follow-
ing constraint is satisfied: α[u01γ1 cos3(θ ) + u02γ2 sin3(θ )] >

0. The conserved quantity associated to this solution can be
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easily calculated from Eq. (16) and read

I1 = πA0

2μc

. (31)

In Fig. 2, the compacton width Lp = π/μc is plotted as
a function of the reduced propagation direction θ/π , for
α = 0.25, γ1 = 0.65476, and for different choice of other
parameters. This result indicates that in contrast to a one-
dimensional compact pulse where the width is constant and
solely set by the parameters of the waveguide, the compacton
widths obtained here are a function of the propagation
direction. In what follows, we will focus our attention in the
case μ̃ > 0 only, which as shown in Fig. 2 as the only case
adequate to the network under consideration.

B. Damped two-dimensional NLDB equation

In order to find the solution of Eq. (14) and then analyze
the dissipative effect of the network, it is important to mention
that many wave equations consist in generalizations of the
integrable equations like the KdV equation and, sometimes,
additional terms may be considered as small perturbations.
The basic idea of the perturbation approach is to look for a
solution of a perturbed nonlinear equation in terms of certain
natural fast and slow variables. We assume that a solution φ is
of the form

φ = φ0 + εφ1 + · · · , (32)

where φ1, . . . are corrections, while the independent variables
are transformed into several variables τj = εj τ , j = 0,1,2, . . .

and where φj satisfy the vanishing boundary conditions (28).
Substituting the above expression of φ into Eq. (14) and

collecting the powers of ε we obtain the series of equations
which lead at the lowest order ε0 to Eq. (15) with φ ≡ φ0,
where the solution given by Eq. (30) can be rewritten as

φ0(η̃) =
{
Ã0(τ1, . . .) cos2(μcη̃), |η̃| � π/(2μc),

0, |η̃| > π/(2μc),
(33)

with

∂η̃

∂τ0
= −vc(τ1, . . .) = −αu0Ã0(τ1, . . .)

2
,

∂η̃

∂X
= cos(θ ),

∂η̃

∂Y
= sin(θ ). (34)

The first-order term in ε obeys the following inhomoge-
neous linear differential equation in φ1:

L̂r (φ1) = u01λ1

2

∂2φ0

∂X2
+ u02λ2

2

∂2φ0

∂Y 2
− ∂φ0

∂τ1
, (35)

where L̂r is the linear operator defined by

L̂r = ∂

∂τ0
+ αvp1

(
φ0

∂

∂X
+ ∂φ0

∂X

)
+ αvp2

(
φ0

∂

∂Y
+ ∂φ0

∂Y

)
+u01γ1

(
∂φ0

∂X

∂2

∂X2
+ ∂2φ0

∂X2

∂

∂X

)
+u02γ2

(
∂φ0

∂Y

∂2

∂Y 2
+ ∂2φ0

∂Y 2

∂

∂Y

)
. (36)

Denoting by ρi (i = 1, . . . ,M) the ith solution of the homo-

geneous adjoint problem L̂r
A

(ρi) = 0, where L̂r
A

defined by

L̂r
A = ∂

∂τ0
+ αvp1φ0

∂

∂X
+ αvp2φ0

∂

∂Y
+ u01γ1

∂φ0

∂X

∂2

∂X2

+u02γ2
∂φ0

∂Y

∂2

∂Y 2
(37)

is the adjoint operator to L̂r , we obtain by multiplying Eq. (35)
by ρi the following differential equation:

L̂r (φ1)ρi − L̂r
A

(ρi)φ1

=
(

u01λ1

2

∂2φ0

∂X2
+ u02λ2

2

∂2φ0

∂Y 2
− ∂φ0

∂τ1

)
ρi. (38)

Using the boundary conditions (28) at infinity, this equation
may be integrated to give the following secularity condition
for Eq. (35):∫ π/(2μc)

−π/(2μc)
ρi

(
λ

2

∂2φ0

∂η̃2
− ∂φ0

∂τ1

)
dη = 0, (39)

with λ = u01λ1 cos2(θ ) + u02λ2 sin2(θ ). Then the secularity
condition (39) with ρ1 = φ0 leads to the following differential
equation ∂Ã0/∂τ1 + 2λμ2

cÃ0/3 = 0, which may be integrated
to give the following dependency of amplitude Ã0 on time τ1:

Ã0(τ1) = A0 exp
[− 2

3λμ2
cτ1

]
, (40)

which vanishes for increasing values of τ1. The function φ1

is a solution of the linear inhomogeneous ordinary differential
equation (35) which, according to the transformation (17),
yields the following differential equation:

∂2φ1

∂η2
+ 4μ2

cφ1 = 4μ2
c

αu0(∂φ0/∂η)

(
λ

2

∂2φ0

∂η2
− ∂φ0

∂τ1

)
. (41)

By substituting (33) into the above equation and solving
the resulting equation, we get

φ1(η̃) = λμc

3αu0

[
(2μc|η̃| − π ) cos(2μcη̃)

+ sin(2μcη̃) log

( | tan(μcη̃)|
2 cos2(μcη̃)

) ]
, (42)

|η̃| � π/(2μc).

As one can see, φ1 is not a decreasing function of time,
predicting then the widening of the pulse widths when the
initial signal amplitude decreases. By using original variables,
the dissipative compactlike pulse solitary wave solution of the
two-dimensional NLDB equation (14) is given by

φ(X,Y,τ ) = A0 exp

(
−2

3
ελμ2

cτ

)
cos2(μcη)

+ ελμc

3αu0

[
(2μc|η| − π ) cos(2μcη)

+ sin(2μcη) log

( | tan(μcη)|
2 cos2(μcη)

)]
,

|η| � π/(2μc), (43)
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while η ≡ η(X,Y,τ ) is obtained by solving Eq. (33), remembering that τ0 = τ and τ1 = ετ , leading to

η(X,Y,τ ) = X cos(θ ) + Y sin(θ ) − 3αu0A0

4ελμ2
c

[
1 − exp

(
−2

3
λμ2

cετ

)]
. (44)

Finally, we find the following two-dimensional dissipative compactlike signal voltage for the network:

Vn,m(t)=V0 exp

[
−2

3

(
u01g01 cos2(θ ) + u02g02 sin2(θ )

)
μ2

c t

]
cos2(μcηn,m(t)) + μc

3αu0
[u01g01 cos2(θ ) + u02g02 sin2(θ )]

×
{

(2μc|ηn,m(t)| − π ) cos(2μcηn,m(t)) + sin(2μcηn,m(t)) log

( | tan(μcηn,m(t))|
2 cos2(μcηn,m(t))

)}
, |ηn,m(t)| � π/(2μc), (45)

where ηn,m(t) is given by

ηn,m(t) = n cos(θ ) + m sin(θ ) − u0t − 3αu0V0

4(u01g01 cos2(θ ) + u02g02 sin2(θ ))μ2
c

×
[

1 − exp

(
−2

3
(u01g01 cos2(θ ) + u02g02 sin2(θ ))μ2

ct

)]
, (46)

while the signal velocity is obtained from vs = −d(ηn,m(t))/dt , leading to

vs = u0

[
1 + αV0

2
exp

(
−2

3
(u01g01 cos2(θ ) + u02g02 sin2(θ ))μ2

c t

)]
. (47)

It is obvious from this expression that there may be decay of the initial velocity and the amplitude of the compactlike pulse
solitary wave (45), which is qualitatively in agreement with the results previously obtained in some one-dimensional model by
Rosenau and Pikovsky [8] and recently by Rus and Villatoro [41] by means of conserved quantities of the K(2,2) equation.
When g01 = g02 = 0, Eqs. (45) and (46) lead to the following compactlike pulse signal:

Vn,m(t) =
⎧⎨⎩V0 cos2

[
μc

(
n cos(θ ) + m sin(θ ) − tu0

(
1 + αV0

2

))]
,

|n cos(θ ) + m sin(θ ) − tu0 (1 + αV0/2) | � π/(2μc),
0, |n cos(θ ) + m sin(θ ) − tu0 (1 + αV0/2) | > π/(2μc)

(48)

for the nondissipative two-dimensional electrical network, and
the envelope velocity (47) reduces to vs = u0 (1 + αV0/2) ,

which is linearly dependent of the amplitude V0 of the signal.

V. NUMERICAL EXPERIMENTS

A. Numerical details

In this section, we present the details and the results of
numerical integrations performed both on the realistic discrete
equations governing wave propagation along the network (5)
as well as on the two-dimensional NLDB-type equation (15)
describing the propagation of small-amplitude signal voltages
in the network. Our first goal is to validate our continuum
model by comparing their predictions against numerical
solutions of the underlying semidiscrete equations. Our second
goal is to demonstrate that the two-dimensional compact
pulse obtained in this work has properties similar to those
previously found by Rosenau and Hyman on their generalized
KdV equation. To this end, let us consider the network as
described in Sec. II, with the following numerical values: L1 =
L2 = 0.47 mH for the inductors in the n and m directions.
The nonlinear capacitor in the shunt branch is the varactor
diode with the characteristic parameters C0 = 320 pF and
α = 0.25V −1, at the operating point V0 = 2V . The nonlinear
resistors in the series branches are identical in both n and m

directions and are the standard diodes with the saturation cur-
rent I01 = I02 = 6.75346 × 10−7A, leading for VT = 25 mV
to the characteristic parameters γ1 = γ2 = 0.65476 cell−1V −1

and g01 = g02 = 3.2738 × 10−2 cell−1. With these numerical
values of the network elements, the characteristic parameters
can then be computed as u01 = u02 = 2.5786 × 106 cell/s,
which allows us to compute the compactlike pulse width
Lp = π/μp, plotted in Fig. 3 (solid line) as a function of the
reduced propagation direction θ/π . It is obvious that Lp � 1,
that is 11.5296 cells � Lp � 13.7110 cells, and consequently
the use of the continuum limit approximations may be justified.

B. Simulation results

1. Two-dimensional nonlinear diffusive Burgers equation:
Two-dimensional transverse pulse compactons

In order to verify the analytical predictions, we perform here
numerical integrations of the two-dimensional NLDB-type
equation (15), which is an approximation of the exact equation
governing signal propagation in the network. The fourth-order
Adams-Bashforth-Moulton predictor corrector method in time
and the finite difference method in space with nonreflecting
boundary conditions are used with normalized integration step
�τ = 0.0011. Similarly, we have used N = M = 1024 spatial
grid points and the finite difference method is implemented in
the computer by means of the gradient function of the MAT-
LAB toolbox. In order to rewrite Eq. (15) in a nondimensional
form more appropriate for numerical simulations, we have
defined the following dimensionless quantities T = αu0μcτ ,
X′ = 2μcX, and Y ′ = 2μcY .
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FIG. 3. Pulse widths Lp as a function of the propagation direction
θ and for parameters α = 0.25V −1, γ1 = 0.65476 cell−1V −1, and for
different values of u01, u02, and γ2.

Accordingly, for u01 = u02, γ1 = γ2, and ε = 0, one obtains

∂φ

∂T
+ cos(θ )

∂(φ2)

∂X′ + sin(θ )
∂(φ2)

∂Y ′ + 1

cos3(θ ) + sin3(θ )

×
[

∂

∂X′

((
∂φ

∂X′

)2)
+ ∂

∂Y ′

((
∂φ

∂Y ′

)2)]
= 0. (49)

As initial condition, we have considered the following pulse
compacton:

φ(η) =
{
A0 cos2

(
η′/2

)
, |η′| � π,

0, |η′| > π,
(50)

with η′ = (X′ − X′
0) cos(θ ) + (Y ′ − Y ′

0) sin(θ ) − A0T , which
is the exact solution of Eq. (49). With this dimensionless
form, the conserved quantity is given by I1 = πA0. Figure 4
illustrates the elastic collision of two pulselike compact
solitary waves, with different amplitudes A01 = 0.11 and

FIG. 4. (Color online) Propagation and elastic collision of two
compactons described by Eq. (50) for θ = π/64, with amplitudes
0.11 and 0.5. As one can see these compactons remained coherent
after collision.

A02 = 0.051 and with the propagation direction θ = π/64,
(a) is the representation in (X′,Y ′) plane, while (b) is the
projection in the (η′,T ) plane. Since the taller one moves
faster than the shorter one, it catches up and collides with
the shorter one and then moves away from it as time increases.
It is obvious that these compact solitary waves on collision
reemerge as compactons, with a tiny amount of energy going
into a zero mass ripple which eventually reemerges into
compacton-anticompacton pair of small (<5%) amplitude,
which is in full agreement with results found in numerical
experiments by Rosenau and Hyman [4] and recently by
Ndjanfang and co-workers [27]. Figure 5 illustrates the elastic
collision of above two-dimensional compactlike pulse solitary
waves and an anticompacton [in the (η′,T ) plane] propagating
in opposite directions. We note the production of the “pair” of
compacton anticompacton (with small amplitude ∼10−3A0).
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FIG. 5. (Color online) Propagation and elastic collision of two
compactons and the anticompacton for θ = π/64. The compactons
with amplitudes 0.11 and 0.5 propagate in the forward direction, while
the anticompacton with amplitude 0.07 propagate in the backward
direction. As one can see they remain coherent after collision, but we
note the “pair” production of small compacton and anticompacton
(with amplitude ∼10−3A0).
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1500
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2500

3000

FIG. 6. (a) Pulses with initial widths two times that of the
compacton of Eq. (50). It is obvious that the initial wide pulse
breaks into compactons that collide elastically. (b) Contour plot of
the evolution of the compactons.

Now, taking as initial conditions the compact wave packets
with a width two times larger than that of the exact compact
pulse solitary wave described by Eq. (50), as presented in
Fig. 6, the signal decomposes into many compact pulses which
collide elastically.

FIG. 7. (Color online) Compact signal voltage (in volts) as a
function of the propagating direction n and transverse direction m

of the network at given times of the propagation of wave: the initial
signal voltage (1) is the compactlike pulse solitary wave located at
cell (n0,m0) = (60,60) with the initial amplitude V0 = 0.25V , the
propagation direction θ = π/64, and the width Lp = 10 cells; (2)
and (3) show the signal at given times of propagation (in units of
u0 =

√
u2

01 cos2(θ ) + u2
02 sin2(θ ) = 2.5821 × 106): 96.3 and 192.6,

respectively. (a) is the simulation of Eq. (5) without dissipation (that is
for g01 = g02 = 0) and we note that the wave experiences a uniform
and stable propagation along the network with the speed vs/u0 =
1.02, which is in good agreement with the analytically predicted
value. (b) is the simulation of the exact Eq. (4) of the network. As
one can see, the signal amplitude decreases in propagation due to the
dissipation which cannot be neglected.

052921-9
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2. Two-dimensional transverse electrical pulse compacton

Next, we have integrated numerically the exact discrete
equations (4) and (5) of the network, using the fourth-order
Runge Kutta method with normalized integration time step
h = (

u2
01 cos2(θ )+ u2

02 sin2(θ )
)1/2

�t = 0.002 corresponding
to the sampling period T s = 0.77654 ns, with the initial
condition (48) and with the initial amplitude V0 = 0.25V .
Similarly, the number of cells is taken equal to N = M =
450 in the propagation and transverse directions. The corre-
sponding initial compact solitary wave parameters are θ =
π/64 for the propagation direction, μc = 0.3097 leading to
Lp = 10.143 cells for the width, and vp/u0 = (1 + αV0/2) =
1.02625 for the reduced speed according to the analytical
predictions.

In Fig. 7(a), we have shown the result obtained from
Eq. (5) in the absence of dissipative terms from where we
notice that the initial electrical signal voltage propagates with
constant amplitude, without distortion of shape, and with
constant reduced velocity 1.02, which is in agreement with
the analytical predicted value.

In Fig. 7(b), the results of the direct integration of the exact
Eq. (4) of the network is presented. It is obvious that the
stable motion of the initial compact signal is observed, but
with the decrease of its amplitude due to dissipation which
cannot be neglected. It appears also that the compact pulse
signal voltage widens as the amplitude decreases, which is
understandable and is justified by the fact that (48) is not the
exact solution of Eq. (4) and it eventually evolves into its exact
solution given by (45) containing correction terms, through
the network.

VI. CONCLUDING REMARKS

In this paper, the propagation of electrical compactlike pulse
solitary wave in a two-dimensional nonlinear network was
investigated both analytically and numerically. The compacti-
fication process results from the introduction of diodes, acting
as nonlinear resistances in the series branches of the network in

the propagation and transverse directions, respectively. Using
the continuum limit approximations, we have shown that the
dynamics of small amplitude signals in the network can be
described by a two-dimensional nonlinear dissipative and
diffusive Burgers equation. In the absence of the dissipative
terms, this equation admits only the mass as the conserved
quantity and can admit two types of solitary waves: the
cusp solitary wave and the pulse compacton according to the
magnitude of its coefficients. The exact analytical expression
of these solutions are found and they bear interesting properties
usually encountered in systems with nonlinear dispersion.
We found that although the width of these signals only is
independent of their amplitude, as is the case for KdV pulse
compactons, the widths obtained here are functions of the
direction of propagation of the signal voltage.

Next, using the perturbation method, the dissipation effects
of the network were studied and it was found that signal voltage
amplitude can decrease in propagation, but does not vanish
completely due to the nondependency of the correction term
on the input amplitude. Numerical integrations of the two-
dimensional NLDB equation as well as the exact equations of
the network have confirmed the analytical results.

Finally, it is important to mention that, since we have
focused our attention on the existence of two-dimensional
signal voltage localized only in one direction of space,
that is the propagation direction, it will be interesting to
extend this investigation in polar coordinates in order to seek
whether a two-dimensional compactlike pulse solitary wave,
strictly localized in all directions, could propagate in the
two-dimensional electrical network.

APPENDIX: CONSERVED QUANTITY

To justify that (16) is the conserved quantity, let us make in
Eq. (14) the change of variables η = aX + bY , that is ∂/∂X =
a∂/∂η and ∂/∂Y = b∂/∂η. By substituting these derivatives
into Eq. (14), we obtain the following differential equation:

∂φ

∂τ
+ 1

2

∂

∂η

[
α(avp1 + bvp2)φ2 + (au01γ1 + bu02γ2)

(
∂φ

∂η

)2
]

= ε

2
(au01λ1 + bu02λ2)

∂2φ

∂η2
. (A1)

Integrating this equation, taking into account that φ is localized in a finite region of space, the last two terms of the above equation
vanish, which lead to ∂

∂τ

∫
φ dη = 0, meaning that (16) is time independent and consequently is the conserved quantity.
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