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We study the formation of gap solitons in the presence of a parametric pump. It is shown that a parametric
pump can stabilize stationary solitons continuously emitting dispersive waves. The resonant interactions of the
radiation and the solitons are studied and it is shown that the solitons can be effectively controlled by the radiation.
In particular it is shown that the solitons can collide or get pinned to inhomogeneities due to the interactions
mediated by the resonant radiation.
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I. INTRODUCTION

The interaction of solitons is a key issue in the theory
of conservative solitons. One of the strict definitions of the
solitons is that they collide elastically, i.e., recover initial
velocities after collision, and experience no radiation in the
collisions [1–3].

The collisions of the solitons in a broad sense of the
term soliton (dissipative solitons [4] or cavity solitons in
optics [5,6]) are not elastic. Sometimes the solitons can
merge in a collision, sometimes they can form bound soliton
pairs [4,7–10]. Solitons can be utilized for solution of various
applied problems [11], in some cases intersoliton interaction
is a drawback, e.g., in the lines of information communication
based on solitons [12], sometimes the interaction can be useful,
e.g., for lasers [13,14] and supercontinuum generation [15,16].
Typically the solitons interact locally, due to overlap of their
shapes in space [7,17,18], although the global coupling was
also reported [19,20].

Recently, the dispersive wave mediated intersoliton inter-
actions have been discovered and reported in a number of
papers [21–25]. It is known that solitons can be in resonance
with the free propagating modes of the medium and then they
radiate on their own frequency. This radiation often referred
to as Cherenkov radiation [26–28] affects the dynamics of the
solitons and can lead to long-range interaction between the
solitons. The intersoliton interaction can also be mediated by
the radiation appearing because of the Hopf bifurcation leading
to the formation of oscillating solitons [23,29,30]. Different
scenarios have been predicted, where the radiation circulating
between the solitons either attracts solitons and causes them
to annihilate, or results in the formation of pairs of bound
solitons.

In the present paper we focus on the radiation of the
dispersive waves by band-gap solitons and on the inter-
soliton interactions caused by the radiation. The band-gap
solitons have their frequency lying in the gap of spectrum
of the linear problem [31,32]. The band-gap solitons do
not radiate via Cherenkov mechanism due to the absence
of the resonant modes in the band gap; however, they can
experience oscillatory instability [33] resulting in the energy
transfer from the soliton to delocalized dispersive waves. As
interpreted recently [34] two excitation quanta of the solitons

can annihilate and reappear—one in the upper, the other in the
lower band on a top and bottom of the band gap. When the
frequency of the soliton is around the middle or in the lower
half of the band gap such radiation process becomes very
efficient as the energy and the momentum conservation holds.
This is also very desirable for the purposes of this article, as
the frequency of the radiation is very distinct from that of the
soliton.

In conservative systems the emitting solitons can exist only
for a limited time because of radiative losses. It would be
desirable to design a configuration, where the gap solitons
would permanently emit the radiation: this would open new
possibilities of soliton interaction schemes. This has mostly
academic interest from the point of view of investigation
of complex interactions between gap solitons and dispersive
waves. However, in our opinion, the problem can potentially
be of practical interest for applications like information storage
and processing in the arrays of solitons interacting through the
common field of the dispersive waves.

Attempts to restore the decaying solitons by a linear gain
are also usually not fruitful: this amplification feeds not only
the solitons, but also the delocalized radiation, which destroys
the soliton state. The solution which we propose in the present
article is to use a highly frequency selective parametric gain
to amplify the solitons, and thus to prevent their decay. On
the other hand, if the dispersive radiation is of different
frequency than that of the soliton, then that radiation will be
not affected by the parametric gain. This would enable one to
have permanently radiating but stable solitons.

The aim of the article is to substantialize the above
outlined idea. We consider the model, where the field is
decomposed into two interacting waves. These components
depending on the physical system can be either forward-
backward propagating waves (for fiber Bragg solitons [31]), or
left-right propagating waves (spatial solitons [32,35–37]). The
mathematical description, in terms of two coupled equations,
meanwhile, is well established [32] and universal; therefore,
we do not consider the details of the physical system.

The structure of the paper is the following. First we consider
the mathematical model of the considered system. Then we
study the stability of the solitary solution of the system (gap
solitons) and show that the parametric pump can stabilize
solitons and make them stationary. In the following section the
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FIG. 1. (Color online) System considered in the paper is shown
schematically in panel (a). Thick lines are the mirrors forming the
cavity; gray rectangles are the periodical inhomogeneities built in the
cavity. The counterpropagating resonant waves are shown by green
arrows and marked as A1 and A2. In the bottom of the panel x axis
is shown. The external pump providing the parametric gain is shown
by the blue (for frequency ω1) and red (for frequency ω2) arrows;
the projection of the wave vector corresponding to the light with ω1

on x is equal to the half of the lattice constant κ/2. The dispersion
characteristics in the vicinity of the gap is shown in panel (b) by
thick black lines. The thin blue line at ω = 0 (gray in print) marks
the center of the gap. The detuning of the resonance frequency of
the parametric pump from the center of the gap is marked as δc. The
solitons can be characterized by the detuning of their frequency from
the center of the gap; this detuning is shown as δs . Let us note that
the detunings δc and δs have opposite signs, so the soliton is in the
resonance with the parametric pump if δc + δs = 0.

resonant interactions between solitons and dispersive waves
are studied and the radiation mediated intersoliton interactions
are considered. Next we show that the reflection of the soliton
emitted waves on an inhomogeneity can result in pinning of
the soliton to that inhomogeneity. Finally, in the conclusion
we briefly summarize the main results of the paper.

II. MODEL

We consider evolution of light in a system schematically
shown in panel (a) of Fig. 1. This is a cavity formed by the mir-
rors of high reflectivity at the frequency of solitons. The cavity
can support modes propagating to the right and to the left.
Inside the cavity there are periodical inhomogeneities shown
as gray rectangles with the period L = 2π/κ , where κ is the
lattice constant. Due to this inhomogeneity the waves with
wave vectors q = κ/2 propagating in opposite direction can
effectively interact with each other (Bragg scattering). This
results in a gap in the dispersion characteristics ω(k). The
dispersion in the vicinity of the gap is shown in panel (b) of
Fig. 1. Such linear cavities have been experimentally realized
and reported [38]

We also assume that the cavity has Kerr nonlinearity and
that it is pumped by two laser beams with the frequencies ω1

and ω2 such that ω2 − ω1 ≈ 2ω0, where ω0 is given by the
dispersion relation of the guided modes ω0 = ω(q).

The only difference between our system and the similar
systems considered in Refs. [32,37] is the external pump
at the frequencies ω1 and ω2. Let us briefly show how
these holding beams lead to the parametric pump for the
cavity modes. Assuming that the grating is relatively shallow
and the nonlinear effects are weak we can use a coupled

wave approach describing the field E in terms of the slow
varying amplitudes of the counterpropagating waves, E =
A1(t,x)eiqx−iω0t + A2(t,x)e−iqx−iω0t + c.c., where ω(k) is the
dispersion of the guided modes of the cavity. In the case of
shallow grating and weak nonlinear effects the holding beam
can be represented as

Ep = B1(z)eik1x−iω1t + B2(z)eik1x+iω1t + C(z)e−iω2t + c.c.,

where B1, B2, and C are the functions found from the solution
of the linear problem for the reflection and transmission of the
pumping beams on the cavity; k1 is the projection of the wave
vector of the beam with frequency ω1 on the horizontal axis.

We assume that the distribution of the pump field is
known (in the leading approximation order). Now we can
write the term describing the polarization caused by the Kerr
nonlinearity:

P = χ [ξA1(t,x)eiqx−iω0t + ξA2(t,x)e−iqx−iω0t

+B1(z)eik1x−iω1t + B2(z)eik1x+iω1t

+C(z)e−iω2t + c.c.]3. (1)

Here we denoted q = κ/2 and ω0 = ω(q), ξ (z) defines the
structure of the guided mode (along z), and χ (z) is the
nonlinear coefficient (function of z).

Under the assumption that ω2 − ω1 ≈ 2ω0 and k1 = 2q the
only term

3ξ (z)eiqx−iω0 (|A1|2 + 2|A2|2 + 2|B1|2 + 2|B2|2 + 2|C|2)A1

+ 2χ (z)ξ (z)∗ei(k1−q)x−i(ω2−ω1−ω0)tA∗
1B

∗
2 C (2)

can be in resonance with the guided mode A1e
iqx−iω0t . The

first two lines of (2) will result in the self-modulation term
∼(|A1|2 + 2|A2|2)A1 and the constant frequency shift in the
equation for slow varying amplitude A1. The last line will
produce a parametric term ∼B∗

2 Ce−i(ω2−ω1−ω0)tA∗
1. Note, that

the coefficient B∗
2 C can be set to be real without loss of

generality.
Analogously one can derive the equation for A2. Neglecting

the dynamics of the holding beams, we finally arrive to the
equation governing the dynamics of the light in the cavity
which in dimensionless variables reads

∂tA1 = −∂xA1 − i(|A1|2 + 2|A2|2)A1

+ iA2 + iδdA1 + iμA∗
1e

−2iδct − γA1 + f (t,x), (3)

∂tA2 = ∂xA2 − i(|A2|2 + 2|A1|2)A2

+ iA1 + iδdA2 + iμA∗
2e

−2iδct − γA2, (4)

where μ is the parametric gain coefficient, δc = (ω2 − ω1 −
2ω0)/
 is the detuning of the resonant frequency of the
parametric pump from the center of the gap normalized on the
gap width 
 [see panel (b) of Fig. 1], and γ is the coefficient
of the linear losses in the system. The dependence of f (x,t)
accounts for the driving force (the amplitude of a probe beam
pumping the system from the top, not shown in Fig. 1). The
parameter δd (t,x) accounts for possible dependency of the
position of the center of the gap on space and time. For most
of the paper δd = 0 apart from the section devoted to pinning
of solitons on spatial inhomogeneities. The time is normalized
on the gap width 
; the space coordinate is normalized
on 2ω(κ/2)

κ

. For numerical simulations we used absorbing
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boundary conditions in order to avoid wave reflections from the
boundaries. For the rest of the paper apart from the last section
we assume that f = 0 meaning that we do not have a direct
resonant pump in the system. Let us mention that the explicit
dependence on time can be removed from the equations by
changing the variables A → Ae−iδct .

For the case without losses γ = 0 and without parametric
pump μ = 0, the dispersion is very simple

δ± = ±
√

k2 + 1, (5)

where ± stands for the upper and the lower dispersion branch
correspondingly. The solitons with the frequency lying in
between these branches are known to exist, and are named
gap solitons. We study how these solitons can be stabilized
against radiative instability and investigate how the solitons
can interact with quasilinear propagating waves.

Before coming to the dynamics of parametrically pumped
solitons, which is the main aim of the paper, we briefly consider
the stability of conservative solitons without pump. Generally,
the two-parameter family of the solitons exist in conservative
limit, parametrized by the frequency and the velocity of the
solitons. We restrict our study to the case of resting solitons
since in the presence of the parametric pump only resting
solitons can exist. In other words, the dissipative solitons in the
presence of parametric pump bifurcate from the subfamily of
the resting conservative solitons. The properties of the weakly
pumped dissipative solitons will be similar to the properties
of the resting conservative solitons without pump considered
below.

The resting solitons can be characterized by their detuning
from the center of the gap δs [see panel (b) of Fig. 1]; the
amplitude and the width of the solitons are functions of the
detuning δs . The analytical solution of the zero velocity gap
soliton has the form

A1 =
√

1 − δ2
s

3
sech

(
x

1 − δ2
s

+ i

2 arccos(δs)

)
,

A2 = A∗
1. (6)

The stability of such solitons depends on δs [33], i.e.,
on their position inside the band gap. Here we recall the
results of the spectral analysis of the stability of the soliton.
We linearize (3) and (4) around the soliton solution (6)
and solve the corresponding spectral problem governing the
stability of the solitons. The solitons are unstable for negative
soliton frequency detuning; in other words, the solitons are
destabilized when their intensity exceeds a threshold limit.
The instability is generated when two imaginary eigenvalues
belonging to the discrete spectrum collide with the continuum
and produce a quartet of eigenvalues. A typical spectrum of
the unstable soliton is shown in panel (a) of Fig. 2. Panel (b)
shows the spatial spectrum of the eigenvector associated with
the instability. The eigenvector can be considered consisting of
two parts: the field localized in the core of the soliton and wide
wings of weakly localized radiation. The instability leads to the
oscillation of the soliton and to the emission of the waves with
the frequency Imω and the wave numbers k corresponding to
the narrow spectral lines in panel (b).

The results of the solution of the corresponding spectral
problem are confirmed by the direct numerical simulations of
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FIG. 2. (Color online) Panel (a) shows the spectrum for the
soliton solution with δs = −0.05. Four red dots (gray in print) show
the quartet of the eigenfrequencies generating the instability. The
spectrum of the eigenvector corresponding to the unstable mode
is shown in panel (b), the black line corresponds to A1 field, and
the purple (gray in print) line to A2 field. Panel (c) shows the
dynamics of the amplitude I = max(|A1|2 + |A2|2) of the soliton for
the conservative case in the absence of the parametric pump (black
line). The green line (gray in print) corresponds to the dissipative
case with parametric pump μ = 0.0125. The spectra calculated for
the conservative case (at t = 500) and for the cases with parametric
pumps with μ = 0.0125 and μ = 0.025 (at t = 20000) are shown in
panel (d). For all cases with parametric pump the loss is γ = 0.005
and the detuning is δc = 0.05. The spectra shown in panel (d) are
calculated in the interval x = [10,150].

the initial equations (3) and (4). As the initial conditions we
took the analytical soliton solution (6) [panel (a) of Fig. 3]
perturbed by weak noise. The results of numerical simulations
are presented in panels (b)–(d) of Fig. 3.

In panel (b) of Fig. 3 the evolution of the soliton is shown.
After some period of time the instability develops and radiation
starts to emerge from the soliton structure. Take notice that the
soliton starts to oscillate. The intensity of the radiation grows at
first because the developing instability increases the emission
rate of the dispersive waves from the soliton. To see this we can
watch how the energy of radiation is changing in the certain
interval (of fixed length) outside the soliton. The radiation
can come there only from the soliton; that is why initially the
energy of this radiation is practically zero and stays very low
until the instability develops and the emitted waves reach the
control area; see panel (c) of Fig. 3 showing this.

But the propagating waves, wings, take some of the solitons’
energy, so the intensity of the soliton goes down; see panel (c)
of Fig. 2 where the dependence of the soliton energy on
time is shown. The decrease of soliton intensity suppresses
the emission and the soliton gets stabilized at some intensity
smaller than the critical one. If we measure the radiation energy
in the control area outside the soliton we will see that it will
go down because very little radiation is now coming from the
soliton; see panel (c) of Fig. 3.
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FIG. 3. (Color online) Panel (a) shows an exact conservative
soliton solution for δs = 0. The solid black line corresponds to the
absolute value of the field, the solid green (gray in print) line to the
real part, and the dashed red (gray in print) line to the imaginary part.
A permanent oscillatory dynamics takes place, emitting waves and
keeping in balance the inbound and outbound energy of the soliton.
The dynamics of an unstable soliton with δs = −0.3 perturbed by
weak noise is shown in panel (b). Panel (c) shows the temporal
variation of energy E(t) = ∫ |A1|2 + |A2|2dx in the interval x =
[10,150] right of the soliton; the soliton parameter is δs = −0.1.
Panel (d) displays the dependencies of energy Es of unstable solitons
with initial δs = −0.1,−0.2,−0.3, and −0.4 on time. Energies are
normalized to the initial soliton energy Es0 = Es(t = 0).

To prove that the radiated field appears because of the
instability we can calculate the spectrum of the field emitted by
the soliton and compare it with the spectrum of the unstable
mode. To make the picture more instructive we remove the
contribution from the soliton calculating the spectrum in some
area situated on the right of the soliton relatively far from it.
This will be the spectrum of the emitted waves propagating
to the right. Of course, this procedure filters out the emitted
wave propagating to the left. The spectrum calculated in the
window x = [10,150] is shown in panel (d) of Fig. 2. In the
same panel the spectrum of the unstable eigenmode is shown.
It is seen that the positions of the spectral lines of the emitted
field practically coincide with the position of the spectral line
of the eigenvector governing the unstable mode.

We did numerical simulations for the solitons with different
initial δs and demonstrated that more intense solitons decay
faster than the low intensity solitons. Panel (d) of Fig. 3 shows
the dynamics of the normalized energy of the soliton on time.
It is seen that the intense solitons start to decay sooner and
decay faster than the solitons of low intensities. We have also
checked by direct numerical simulations that for the positive
δs the solitons are stable and can propagate for very long times
without any changes.

The next issue we are going to address is if we can pump
the gap solitons and compensate for their radiative losses.
It would open a possibility to obtain stable stationary gap
solitons constantly emitting dispersive waves. To prevent the
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FIG. 4. (Color online) Panel (a) shows a soliton with positive
δs = 0.2 which is set to radiating behavior by fixing the parametric
pump frequency below the stability threshold, at δc = 0.25 with
μ = 0.025. Panel (b) shows the evolution of a soliton with negative
δs = −0.05 with the parametric pump frequency being in resonance
with stable solitons δc = −0.1. The stabilization of the soliton
is clearly seen; no energy is emitted from the soliton after the
stabilization. The pump intensity is μ = 0.025 and the linear losses
in the system are γ = 0.005.

destruction of the solitons by growing linear waves we need
to provide a pump delivering energy to solitons but not to the
linear waves. This can be achieved by the frequency sensitive
parametric pump with the resonant frequency lying in the gap.
Since there are no linear waves with frequency lying in the gap,
the pump will not amplify the linear waves. On the contrary,
the soliton frequency lies in the gap and thus the parametric
gain can pump the soliton.

To obtain the dispersive wave emitting solitons we set the
frequency of the pump so that it is in the resonance with
an unstable soliton. In particular, we choose δc = 0.25 and
μ = 0.025 for the pump and as the initial condition we took a
soliton solution with δs = 0.2. We also introduced very small
linear losses γ = 0.005. In panel (a) of Fig. 4 one can see the
formation of the radiation wings and the stabilization of the
soliton developing into an oscillating localized structure. The
soliton energy is maintained in a narrow window of values, thus
finding a balance between the losses caused by the emission
and gain produced by the parametric pump. The presence of
small linear losses happens to be essential for the stabilization
of the solitons.

If the parametric pump is tuned to be in resonance with
stable solitons, then a nonoscillating state can form. Panel (b)
shows the case when the parametric pump has frequency δc =
−0.1 and amplitude μ = 0.025. The initial conditions were
chosen in the form of the unstable soliton given by formula (6)
with δs = −0.05. It is seen that after some oscillations the
soliton transforms into a nonoscillating stable solitary state.
Of course direct numerical simulations cannot give an ultimate
proof that the soliton is stable but we found that the solitons
can exist for very long times without any noticeable changes
in their shape or velocity. This gives a very strong indication
that the solitons are stable.

In panel (c) of Fig. 2 the evolution of the top intensity of
the soliton in time is shown for the case with parametric pump
and linear losses. It is seen that eventually an oscillating soliton
state is established. The spectrum of the field calculated from
the finite area on the right of the soliton is shown in panel (d).
One can see that for relatively low pump intensity μ = 0.0125
the spectral lines of the stationary field practically coincide
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with the corresponding lines of the spectrum of the unstable
eigenmode. However, for stronger pump μ = 0.025 the lines
shifts to the left. At the same time the sidebands become much
more pronounced.

We can conclude that the gap solitons in the presence
of a parametric pump can act as continuous sources of the
dispersive waves. In this light it is interesting to consider how
the dispersive radiation can affect the gap solitons.

III. RESONANT SCATTERING OF THE DISPERSIVE
WAVES ON GAP SOLITONS

In the previous section we have shown that the parametric
pump can stabilize radiating gap solitons. Now our purpose is
to address the interaction between gap solitons and the linear
waves. We start with the scattering of the quasilinear waves on
the conservative solitons without the parametric pump. We will
be looking for the soliton in the form A1,2 = u1,2 + As1,s2 +
Ap1,p2, where Ap1,p2 = Ap10,p20e

ikix−iδi t is the incident wave
with the wave vector ki and the frequency δi = δ(ki). The
linearized equation for the weak scattered waves u1,2 reads

∂tu1 + ∂xu1 − iA2 + 2i(|As1|2 + |As2|2)u1

+2iAs1A
∗
s2u2 + iA2

s1u
∗
1 + i2As1As2u

∗
2

= −2i(|As1|2 − |As2|2)Ap1 − 2iAs1A
∗
s2Ap2

−iA2
s1A

∗
p1 − i2As1As2A

∗
p2, (7)

∂tu2 + ∂xu2 − iA1 + 2i(|As2|2 + |As1|2)u2

+2iAs2A
∗
s1u1 + iA2

s2u
∗
2 + i2As2As1u

∗
1

= −2i(|As2|2 − |As1|2)Ap2 − 2iAs2A
∗
s1Ap1

−iA2
s2A

∗
p2 − i2As2As1A

∗
p1. (8)

Separating real and imaginary parts of u we can obtain
a linear equation with the right-hand side L̂�u = �f . The
expressions for L̂ and �f can easily be obtained; however,
the formulas are quite long and we omit them for the sake of
brevity. The important thing is that the operator L̂ has zero
eigenvalues. Equations (7) and (8) have stationary solution
only if �f is orthogonal to the eigenvectors of the adjoint
operator L̂+ corresponding to zero eigenvalues of the operator.
Otherwise, the resonance will take place and the solution will
contain radiation tails of low intensity but with lengths growing
with time.

Since the soliton solution As1,s2 is localized, the eigen-
vectors belonging to the continuum of the operator L̂ are
asymptotic in the form of plane waves and so can be
characterized by a wave vector k of their tails at x → ±∞. The
frequencies of such eigenmodes are given by the dispersion
δ±(k). The condition of the resonance is that the spectral
representation of �f contains harmonics having the same wave
vector and frequency as an eigenfunction of the operator L̂

corresponding to a zero eigenvalue. We skip the full length
derivation which is completely analogous to the derivation
performed in Refs. [39,40] and write down the final result.
The resonant condition of four-wave mixing of the solitons
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FIG. 5. (Color online) Panel (a) shows a soliton at δs = 0.4
interacting with a propagating low amplitude plane wave with
k = 1.5; one can see the transmitted and reflected waves. In panel
(b) the spectra of the transmitted (solid line) and reflected (dashed
line) waves at t = 160 are plotted. Panel (c) shows the temporal
spectrum St of the transmitted waves. In panel (d) the dispersion laws
given by (5) are shown by the black curves; the graphical solutions
of the resonance conditions (9),(10) are shown as the crossings of the
dispersion characteristics with two straight lines (the green and the
red ones; gray in print).

with linear waves gives us

δr = 2δs − δi, (9)

δr = δi, (10)

where δr = δ±(kr ) is the emerging resonant wave frequency
and kr is the wave vector of the resonantly scattered wave.
The condition is valid for a resting soliton but can easily be
reformulated for moving solitons. We note that the dispersion
relation (5) has two branches; thus four different modes with
two different frequencies can be involved in the process. This
is illustrated in Fig. 5, where panel (a) shows the evolution
of the soliton (the bright vertical stripe) and of the dispersive
waves envelope. One can see that the collision of the dispersive
pulse with the soliton results in partial reflection of the pulse
on the soliton.

We have calculated the spatial spectrum of the radiation in
the intervals on the right [the green curve in panel (b) of Fig. 5]
and on the left [the blue line in panel (b)] from the soliton after
the interaction, when the reflected and transmitted dispersive
waves and the soliton became well resolved in space again.
One can see that the modes with four different k are excited.
The temporal spectrum of the transmitted radiation is shown
in panel (c) of Fig. 5. The resonance conditions (9) and (10)
are graphically illustrated in panel (d). One can see in panel (c)
that the transmitted radiation has two frequencies. It means that
the transmitted radiation consists of two modes with different
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FIG. 6. (Color online) Panel (a) shows a stable δs = 0.25 soliton
interacting with a propagating plane wave injected at x = −20. The
dependency of the soliton velocity after the collision on the amplitude
of the incident wave Bp is shown in panel (b). The soliton parameter
is δs = 0.2 and the wave vector of the incident waves is k = 1.5.

k; in other words, the interaction of the dispersive waves with
the soliton results in the partial scattering of the radiation into
the second mode. The positions of the frequencies and the
wave vectors of the transmitted modes are predicted by the
resonant condition very well. The reflected waves contain two
different modes too; the wave vectors of the reflected radiation
are predicted by the resonance condition also very precisely.

The efficiency of the four-wave mixing depends on the
soliton intensity controlled by the parameter δs ; as expected
the scattering on more intense solitons is stronger than on the
solitons of smaller intensities.

Now let us consider how the radiation affects the dynamics
of the solitons. It is known that Cherenkov radiation and
four-wave mixing between solitons and dispersive wave can
affect the velocity of the soliton described by the generalized
nonlinear Schrodinger equation [40–43]. The influence of the
radiating waves on the soliton dynamics was also considered
in other works; see, for instance [44,45]. In the considered
case without pump and losses the solitons also form a family
parametrized by the soliton velocity [46,47] and so one can
expect that the recoil from the radiation affects the velocity
of the solitons. Indeed, one can see that the recoil due to the
four-wave mixing results in a change of the soliton velocity,
see Fig. 6, where the interaction of a soliton with quasilinear
but relatively intensive wave envelope is shown. It is seen that
the soliton velocity is changing in the course of the interaction.
The dependence of the soliton velocity after the collision on
the amplitude of the incident wave is shown in panel (b) of
Fig. 6. The final velocity depends not only on the intensity but
also on the duration and the frequency of the incident wave
and on the intensity of the soliton.

Finally, let us consider interaction between the dispersive
waves and the solitons in the presence of the parametric pump.
As discussed in the previous section, stable solitons can be
found in the presence of pump of appropriate amplitude and
frequency; an example is shown in Fig. 4. We take a soliton
with δs = 0.2 as the initial condition and let it propagate under
the action of the parametric pump with δc = 0.25 and μ =
0.025. We wait until a stationary oscillating soliton forms [as
in panel (a) of Fig. 4] and then irradiate it with a dispersive
pulse having wave vector k = 1.5. The collision changes the
soliton velocity and the soliton continues to propagate with
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FIG. 7. (Color online) Panel (a) shows a stationary soliton inter-
acting with a relatively strong incident dispersive wave with k = 1.5.
The pump detuning is δc = 0.25, the intensity of the parametric pump
is μ = 0.025, and the linear losses are γ = 0.005. Panel (b) shows
the same for the parametric pump detuning δc = −0.1.

some nonzero velocity emitting radiation as seen in panel (a)
of Fig. 7.

Panel (b) illustrates the scattering of the dispersive waves
on the stationary nonemitting soliton [shown in panel (b)
of Fig. 4]; the parameters are δc = −0.1, μ = 0.025, and
γ = 0.005. The soliton is affected by an envelope of dispersive
waves with k = 1.5 leading to the bending of the soliton
trajectory. The beginning seems much like panel (a) of Fig. 7
but, because of the action of the parametric pump, after the
interaction with the dispersive waves the soliton returns to a
resting state with no radiation wings. Of course the interaction
strength between the solitons and the dispersive waves depends
on the soliton velocity, but qualitatively the discussed effects
look very much the same. The detailed consideration of the
moving gap solitons interacting with the dispersive waves is
outside the scope of the present paper.

IV. SOLITON INTERACTION

We start with the case without parametric pump. Then two
stable solitons separated by relatively large distance (much
larger comparing to the characteristic size of the solitons)
do not interact and can propagate parallel to each other for
extremely long distances. But the injection of dispersive waves
between the solitons causes the scattering of the waves on
solitons and the scattering bends the trajectories of the solitons
toward each other. In Fig. 8 this dispersive wave mediated
interaction of two stable solitons is shown. One can see the
radiation bouncing between the attracting solitons and the
bending of soliton trajectories. Eventually the solitons collide
and annihilate.

In the case of radiating solitons no seeded radiation is
needed for long-range intersoliton interaction; the solitons
can interact through their radiation wings. In Fig. 9 different
types of radiating solitons interacting through the radiation
are depicted. One should expect that the solitons with larger
negative δs will interact stronger because they emit more
intense radiation. Consequently, more intense solitons should
collide sooner than the solitons with low intensity; it is
evidenced in panel (c) of Fig. 9 showing the collision time
as a function of soliton parameter δs . Let us note that the result
of the soliton collision can be different: it can be an annihilation
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FIG. 8. (Color online) Two stable δs = 0.25 solitons collide due
to dispersive waves injected at x = 0. The incident wave has the wave
vector k = 1.0 and the amplitude of B = 0.03.
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Δx=60

FIG. 9. (Color online) Panel (a) shows the propagation of a
radiating soliton with δs = −0.17. Panel (b) shows the propagation
of a radiating soliton with δs = −0.32. Panel (c) shows the collision
times for different δs for initial solitons distance 
x = 60 and

x = 120. Solitons separated by larger distance take longer to collide
since radiation has to travel for larger intersoliton distance. Panel
(d) shows two radiating solitons with δs = −0.17, the collision
destructs both solitons. Panel (e) shows the same but for solitons
with δs = −0.32; in this case the collision generates a lower-energy
soliton. Panel (f) shows the behavior of two radiating solitons with
δs = −0.4; the collision results in the formation of a “breatherlike”
type structure.
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FIG. 10. (Color online) Panel (a) shows the dynamics of radiat-
ing soliton with initial detuning δs = −0.1 pumped by the parametric
pump μ = 0.025 at the zero detuning δc = 0. Panel (b) shows the
collision of two solitons with the initial detuning δs = 0.1 in the
presence of the pump with the detuning δc = 0.36.

of soliton, the formation of one new soliton, or the formation
of an oscillating state; see panels (d)–(f).

Finally, we consider the interactions of the solitons in the
presence of the parametric pump. In this case, providing that
the pump has the right detuning and the sufficient intensity, the
interaction can take place even if the initial condition is taken in
the form of stable solitons. The pump will amplify the solitons
and the intense solitons will interact through their radiation.
This case is illustrated in Fig. 10 where the interactions and the
collisions of the radiating solitons are shown. Panel (a) shows
the collision in the case when the initial condition is taken in
the form of two unstable solitons with δs = −0.1, the pump
parameters are δc = 0 and μ = 0.025. In panel (b) the collision
of two solitons in the presence of the parametric pump with
δc = 0.36 is shown. As an initial condition stable solitons
with δs = 0.1 were used. The parametric pump amplifies
the solitons making their propagation constants negative, the
solitons start emitting waves, and the dispersive wave mediated
interaction results in the eventual collision of the solitons.

V. MOTION OF THE SOLITONS UNDER THE ACTION
OF THE DISPERSIVE WAVES

Let us consider the case when the frequency of the wave
launched onto the soliton is close to the frequency of the
dispersive waves emitted by the soliton. Then the mutual phase
ϕ(t) between these waves becomes important. One can see
that from the balance of conserving (without the pump and the
dissipation) quantities, the energy, and the momentum. Indeed,
the energy and the momentum densities of the incoming wave
are known. Calculating the energy and the momentum of
the wave scattered on the soliton we can find the variation
of the energy and the momentum of the soliton. The change of
the soliton energy and the momentum defines the change of the
soliton intensity and velocity. The waves propagating outward
of the soliton can be represented as a superposition of the waves
scattered on the soliton and those emitted by the soliton. So
the interference of these waves affects the momentum and the
energy densities in the waves propagating outwards from the
soliton. That is why the mutual phase between the soliton and
the incident wave is important.

We performed the following numerical experiment. We add
the spatially localized oscillating driving force in the form of
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FIG. 11. (Color online) Dynamics of the soliton under the action
of the waves emitted by the source f (x,t) = f0 sin(δs t) exp[−(x −
xs0)2/w2

s ]. Panel (a) shows the case of the unsynchronized soliton
when δs = 1.8775 and panel (b) shows the synchronized soliton when
δs = 1.9. The other parameters are f0 = 0.04, xs0 = −60, ws = 1,
μ = 0.025, δc0 = 0.05, and γ = 0.005.

Gaussian function f (x,t) = f0 sin(δst) exp[−(x − xs0)2/w2
s ]

[the specific shape of f (x) is not crucial] at the right-hand side
of Eq. (3), f0 is the amplitude, δs is the frequency, ws is the
width, and xs0 is the position of the center of the driving force.
The driving force works as a source of continuous dispersive
waves with fixed frequency. If we choose the frequency of the
source to be close to the frequency of the waves emitted by
the soliton, then the soliton starts to oscillate in the field of the
incident dispersive wave; see panel (a) of Fig. 11. Changing
the frequency of the source it is possible to synchronize the
soliton with the external source; the synchronization forces the
soliton to relax to the stable equilibrium position; see panel (b).

VI. RADIATIVE PINNING OF THE SOLITONS
ON INHOMOGENEITIES

The problem we address in this section is how inhomo-
geneities can affect the dynamics of the radiating solitons.
Indeed, if we have an inhomogeneity, for instance local
variation of the refractive index, then this inhomogeneity will
cause partial reflection of the waves emitted by the soliton.
The reflected waves will return to the soliton and interact with
it. Thus the velocity of the soliton will be changed because
of the resonant scattering of the waves previously emitted by
the same soliton. In this way the inhomogeneity can affect
the soliton even if the distance between the soliton and the
inhomogeneity is much larger than the soliton width.

It is interesting that if the wave reflected from the inhomo-
geneity returns to the soliton at the proper phase, then this
wave does not affect the velocity of the soliton. It means
that the soliton launched at a particular distance from the
inhomogeneity will get locked and keep the same distance
from the inhomogeneity. Panel (a) of Fig. 12 shows how the
soliton moves and gets pinned at the equilibrium position under
the action of the waves reflected from the inhomogeneity.

Since the described effect depends on the phase of the
reflected wave the pinning distances must be periodic given by
the ratio

kden = πn + ϕ0, (11)

where den is the equilibrium distance between the soli-
ton and the inhomogeneity, k is the wave number of the
mediating wave, n is an integer, and ϕ0 is a constant to
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FIG. 12. (Color online) Panel (a) shows the evolution of para-
metrically pumped soliton launched at the distance d = 42 from the
resting inhomogeneity. In panel (b) the trajectories of the solitons
launched at different distances from the resting inhomogeneity are
shown. The blue (the left column, gray in print) and red dots (the
right column, gray in print) show the predicted equilibrium distances;
see text for more details. Panels (c) and (d) show the dynamics of the
soliton when the position of the inhomogeneity oscillates in time with
the frequencies δd = 0.0001 and δd = 0.0005 correspondingly. The
profile of the inhomogeneity δd = δadsec[(x − xd )8/w8

d ] is shown
in the lower part of panel (c). The trajectory of the center of
the inhomogeneity xd = xd0 + xad sin(δd t) is shown by the white
curve. The parameters are δad = 0.05, wd = 2, xad = 5, μ = 0.025,
δc = 0.05, and γ = 0.005.

be found independently. This is illustrated in panel (b) of
Fig. 12. The inhomogeneity is chosen in the form δd =
δadsec[(x − xd )8/w8

d ], where δad characterize the strength of
the inhomogeneity, wd is the width, and xd is the position of
the inhomogeneity. The specific shape of the inhomogeneity
does not make any qualitative difference; however, it must
provide relatively strong scattering of the dispersive waves.
The trajectories of the solitons launched at different distances
from the inhomogeneity are shown in panel (b). It is seen that
after some transitional processes the solitons select and retain
the position from a discrete set of the equilibrium distances
from the inhomogeneity.

The locked states are stable and survive even if the position
of the inhomogeneity varies adiabatically: then the position of
the soliton varies too keeping the distance between the soliton
and the inhomogeneity constant. This process is illustrated
in panel (c) of Fig. 12. So the solitons stay pinned on the
inhomogeneity. The peculiarity of this pinning is that it is
mediated by radiative waves and so can take place at the
distances much larger than the width of the soliton when
the soliton does not “feel” the inhomogeneity directly. In the
presence of the linear losses the distance must be not too large;
otherwise, the radiated waves will simply decay and there will
be no reflected wave affecting the soliton. We notice that when
the position of the inhomogeneity varies fast then the soliton
cannot follow it and start drifting; see panel (d).
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To prove that the pinning happens because of the interaction
mediated by the soliton emitted waves we extracted the wave
number from the radiation spectrum of the soliton [the first
sideband, see panel (d) of Fig. 2, the curve for μ = 0.025]
and mark the equilibrium distances given by (11) by the
dots. The difference between the blue and red dots is that
the blue dots are shifted to give a perfect match for the
equilibrium distance den ≈ 15 and the red ones to give the
perfect match for the equilibrium distance den ≈ 45. One
can see that the predicted and the observed positions match
very well. However, a breakup of periodicity was observed
at around ds ≈ 25, probably because the mediating waves in
reality have many spectral lines.

VII. CONCLUSION

We have shown that the parametric pump can result in the
formation of stationary gap solitons emitting dispersive waves.
In numerical simulations we have observed the formation of
the stable solitons emitting dispersive waves if the resonant
frequency of the parametric pump lies in the gap of the
dispersion characteristics of the linear waves. This pump does
not amplify small excitations because their frequencies cannot
be in the gap and so these excitations are detuned from the
parametric resonance. In the same time the frequency of
the soliton is shifted because of nonlinear effect and lies in
the gap. So the energy can be delivered to the solitons by the
parametric gain. It allows one to compensate for the radiative
loss and make the emitting solitons stationary.

The analysis of the spectral properties of the soliton
radiation revealed that the effect responsible for the emission
of dispersive waves by the stationary solitary structures in
the presence of parametric gain is the same as the effect
leading to the instability of gap solitons in the absence of the
parametric pump. It was found that if the parametric pump is
weak, then the spectral characteristics of the emitted radiation
match well the spectrum of the mode generating the instability
of the conservative gap solitons. We claim that the formation
of radiating gap solitons can be understood as an interplay
of two effects. The first effect is the emission of radiation
because of resonant interaction between the linear waves and

the soliton. The second effect is amplification of the soliton by
the parametric gain.

The interaction of the solitons with the dispersive waves was
studied. We derived the condition of the resonant four-wave
mixing between the gap solitons and the dispersive waves.
By direct numerical simulations we investigated the scattering
of the envelopes of the dispersive waves on gap solitons and
found that the resonance conditions predict the wave vectors
and the frequencies of the scattered waves very well. We also
demonstrated that gap solitons separated by the distance much
larger than the soliton length can efficiently interact through
the exchange of the dispersive waves. This interaction results
in the mutual attraction and collision of the solitons; after the
collision the solitons can annihilate or produce a new soliton
or an oscillating localized state.

The interactions of a radiating soliton with dispersive waves
were also investigated. It is shown that if the frequency of the
incident dispersive wave is close to the frequency of the soliton
emitted radiation then the mutual phase between the soliton
and the incident radiation becomes important. It is shown that
the soliton can oscillate in the field of the continuous incident
wave or be synchronized with it.

The case when the emitting solitons are excited in the cavity
with spatial inhomogeneity is also studied in the paper. It was
shown that the wave reflected from the nonlinearity can interact
with the soliton and that this interaction selects an equilibrium
distance between the soliton and the inhomogeneity. So,
because of the dispersive wave mediated interaction, the
solitons can be pinned to an inhomogeneity even if the distance
between the soliton and the inhomogeneity is much larger than
the soliton length.

ACKNOWLEDGMENTS

A.V.Y. was financially supported by the Government of
the Russian Federation (Grant No. 074-U01) through ITMO
Early Career Fellowship scheme. K.S. acknowledges financial
support by Spanish Ministerio de Education y Ciencia and
European FEDER through Project No. FIS2011-29734-C02-
01.

[1] N. Zabusky and M. Kruskal, Phys. Rev. Lett. 15, 240 (1965).
[2] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering

Transform (SIAM, Philadelphia, 1981).
[3] A. C. Newell, Solitons in Mathematics and Physics (Society for

Industrial and Applied Mathematics, Philadelphia, 1985).
[4] N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Lecture

Notes in Physics Vol. 661 (Springer, Berlin, 2005).
[5] Z. Chen, M. Segev, and D. N. Christodoulides, Rep. Prog. Phys.

75, 086401 (2012).
[6] K. Staliunas and V. J. Sanchez-Morcillo, Transverse Patterns

in Nonlinear Optical Resonators, Springer Tracts in Modern
Physics Vol. 183 (Springer-Verlag, Berlin, 2003).

[7] J. P. Gordon, Opt. Lett. 8, 596 (1983).
[8] F. Reynaud and A. Barthelemy, Europhys. Lett. 12, 401 (1990).
[9] W. Krolikowski, B. Luther-Davies, C. Denz, and T. Tschudi,

Opt. Lett. 23, 97 (1998).

[10] G. I. Stegeman and M. Segev, Science 286, 1518
(1999).

[11] Optical Solitons: Theoretical Challenges and Industrial Per-
spectives, edited by V. E. Zakharov and S. Wabnitz (Springer-
Verlag, Berlin, 1999).

[12] A. Hasegawa and Yu. Kodama, Solitons in Optical Communica-
tions, Oxford Series in Optical and Imaging Sciences (Clarendon
Press, Oxford, 1995).

[13] P. Grelu and N. Akhmediev, Nat. Photon. 6, 84 (2012).
[14] S. K. Turitsyn, B. Bale, and M. P. Fedoruk, Phys. Rep. 521, 135

(2012).
[15] D. V. Skryabin and A. V. Gorbach, Rev. Mod. Phys. 82, 1287

(2010).
[16] S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M.

Kobtsev, S. Kukarin, and S. K. Turitsyn, Opt. Fiber Techn. 12,
122 (2006).

052918-9

http://dx.doi.org/10.1103/PhysRevLett.15.240
http://dx.doi.org/10.1103/PhysRevLett.15.240
http://dx.doi.org/10.1103/PhysRevLett.15.240
http://dx.doi.org/10.1103/PhysRevLett.15.240
http://dx.doi.org/10.1088/0034-4885/75/8/086401
http://dx.doi.org/10.1088/0034-4885/75/8/086401
http://dx.doi.org/10.1088/0034-4885/75/8/086401
http://dx.doi.org/10.1088/0034-4885/75/8/086401
http://dx.doi.org/10.1364/OL.8.000596
http://dx.doi.org/10.1364/OL.8.000596
http://dx.doi.org/10.1364/OL.8.000596
http://dx.doi.org/10.1364/OL.8.000596
http://dx.doi.org/10.1209/0295-5075/12/5/004
http://dx.doi.org/10.1209/0295-5075/12/5/004
http://dx.doi.org/10.1209/0295-5075/12/5/004
http://dx.doi.org/10.1209/0295-5075/12/5/004
http://dx.doi.org/10.1364/OL.23.000097
http://dx.doi.org/10.1364/OL.23.000097
http://dx.doi.org/10.1364/OL.23.000097
http://dx.doi.org/10.1364/OL.23.000097
http://dx.doi.org/10.1126/science.286.5444.1518
http://dx.doi.org/10.1126/science.286.5444.1518
http://dx.doi.org/10.1126/science.286.5444.1518
http://dx.doi.org/10.1126/science.286.5444.1518
http://dx.doi.org/10.1038/nphoton.2011.345
http://dx.doi.org/10.1038/nphoton.2011.345
http://dx.doi.org/10.1038/nphoton.2011.345
http://dx.doi.org/10.1038/nphoton.2011.345
http://dx.doi.org/10.1016/j.physrep.2012.09.004
http://dx.doi.org/10.1016/j.physrep.2012.09.004
http://dx.doi.org/10.1016/j.physrep.2012.09.004
http://dx.doi.org/10.1016/j.physrep.2012.09.004
http://dx.doi.org/10.1103/RevModPhys.82.1287
http://dx.doi.org/10.1103/RevModPhys.82.1287
http://dx.doi.org/10.1103/RevModPhys.82.1287
http://dx.doi.org/10.1103/RevModPhys.82.1287
http://dx.doi.org/10.1016/j.yofte.2005.07.004
http://dx.doi.org/10.1016/j.yofte.2005.07.004
http://dx.doi.org/10.1016/j.yofte.2005.07.004
http://dx.doi.org/10.1016/j.yofte.2005.07.004
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