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Dynamics and statistics of wave-particle interactions in a confined geometry
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A walker is a droplet bouncing on a liquid surface and propelled by the waves that it generates. This macroscopic
wave-particle association exhibits behaviors reminiscent of quantum particles. This article presents a toy model
of the coupling between a particle and a confined standing wave. The resulting two-dimensional iterated map
captures many features of the walker dynamics observed in different configurations of confinement. These features
include the time decomposition of the chaotic trajectory in quantized eigenstates and the particle statistics being
shaped by the wave. It shows that deterministic wave-particle coupling expressed in its simplest form can account
for some quantumlike behaviors.
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I. INTRODUCTION

In recent experiments, Couder and co-workers have in-
vestigated the coupling between a classical particle and a
wave. The particle is a millimetric droplet that bounces at the
surface of a vertically vibrated liquid bath (Fig. 1) [1–3]. The
droplet creates a circular capillary wave every time it impacts
the surface. As this wave travels away, it excites standing
Faraday waves in its wake. The damping time of Faraday
waves increases as the amplitude of the forcing vibration
approaches the Faraday instability threshold. The memory M

is defined as this damping time divided by the time between
successive rebounds. Consequently, the droplet impacts on a
liquid surface corrugated by the Faraday waves resulting from
its last M impacts. When M � 1, the wavy surface then gives
a small horizontal impulse to the droplet, which starts walking
on the liquid surface. The Faraday wave is sustained only
by the local excitation of the droplet, which in turn moves
horizontally only because of the wave. Therefore, this system,
now referred to as a walker, exhibits a strong coupling between
a wave and a particle.

At high memory (typically M � 30), walkers show prop-
erties that are highly reminiscent of quantum particles in
many different contexts (including diffraction and double-slit
interferences [4], tunneling [5], and the Zeeman effect [6]).
A recent review summarizes our current understanding of this
analogy after a decade of investigations [7]. Of more interest
for the present work, individual walkers have been experimen-
tally observed to follow quantized orbital trajectories in three
different contexts that all involve some confinement:

(i) in a rotating frame (Coriolis force) [8–10],
(ii) in a central force field (harmonic potential) [11],
(iii) in a confined geometry (potential well) [12,13].
Several properties are invariantly seen in experiments of

types (i)–(iii). For example, in (i) and (ii), it has been
shown that at relatively low memory (M ∼ 10), the walker
follows stable regular orbits whose spatial extension varies
continuously with the control parameter [rotation rate in (i)
and potential width in (ii)] as in classical mechanics. It is also
expected that in (iii) these orbital radii would vary continuously
with cavity size. At higher memory (M ∼ 50) the walker

*Tristan.Gilet@ulg.ac.be

often revisits regions where the waves from previous visits
are still present, and the trajectory usually becomes chaotic.
More exactly, it follows unstable regular orbits assimilated to
eigenstates. The walker stays in each of them for a certain
time before it switches to another (Fig. 10 in Ref. [9], Fig. 6
in Ref. [11]). These orbital eigenstates are quantized and now
insensitive to the control parameters. Their spatial extension
is always an integer multiple of half the Faraday wavelength
2π/kF , which can then be seen as the analog of the de Broglie
wavelength [8]. The probability of finding the walker in a
given state is proportional to the relative amount of time spent
in this state. In addition, in the confined geometry (iii), it
was shown that the probability distribution function (PDF)
of the walker position is directly shaped by the resonant
eigenmodes of the cavity. A realistic model of walker dynamics
has recently been developed by Oza et al. [3,10]. The resulting
integro-differential equation for the droplet horizontal position
accurately reproduces the experimental results obtained for
(i). Nevertheless, the evident similarity of walker behavior in
different configurations (i)–(iii) suggests that this dynamics is
shared by a much larger set of wave-particle systems.

In Sec. II, a general framework for the description of
wave-particle interaction with geometry confinement is first
established. The model is then particularized (Sec. III) and
simplified to the point where both wave and particle dynamics
are each represented by a single scalar recurrence relation.
The iterated map involves a wave function �(x) which
prescribes the shape of the standing wave. The fixed points and

FIG. 1. (Color online) Macroscopic wave-particle coupling. A
walker is a millimetric oil droplet that bounces onto a vertically
vibrated liquid pool. The Faraday waves generated by the droplet
impacts propel this latter horizontally.
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stability are then calculated analytically. In Sec. IV, numerical
simulations are performed for seven particular functions �(x).
The transition to chaos is analyzed in Sec. V, as well as
the statistical behavior in the chaotic regime. Finally, the
intermittent switch between unstable eigenstates is discussed
in Sec. VI.

II. WAVE-PARTICLE COUPLING IN A CONFINED
GEOMETRY

This paper first presents a model of a walker confined to a
domain �. This model is intended to represent the geometry
confinement of experiment (iii), although most of its features
are thought to be generic for any confinement. The standing
Faraday wave field hn(x) resulting from the n first impacts is
decomposed in the discrete basis of eigenmodes �k(x) of the
domain:

hn(x) =
∑

k

Wk,n�k(x), Wk,n =
∫

�

hn(x)�∗
k (x)d�, (1)

where �∗
k is the conjugate of �k . These eigenmodes are

orthonormal on � and satisfy n · ∇�k = 0 at the boundary
∂� of normal vector n. Traveling capillary waves are neglected
since they spread their initial energy in two dimensions (2D)
and they are not energized by the vertical forcing [1], so they
do not likely affect the long-term statistics. Only when the
particle comes close to the boundary could these capillary
waves significantly modify the local trajectory. But this effect
would then be localized in space and time, so it is not expected
to strongly affect the particle statistics.

At rebound n, the walker impacts the liquid bath at
position xn and creates a crater of shape z = f (y) in the
wave field, where y = r − xn and y = ||y||. This crater can
be decomposed in the basis of �k:

f (y) =
∑

k

ck�k(r), ck =
∫

�

f (y)�∗
k (r)d�. (2)

The crater is localized in a region of radius R about the impact
point, so

ck �
∫ 2π

0
dθ

∫ R

0
f (y)ydy�∗

k (xn + y). (3)

If R is much smaller than the characteristic wavelength of �k ,
then �∗

k (xn + y) � �∗
k (xn) + y · ∇�∗

k ]xn
and therefore

ck � �∗
k (xn)

∫ 2π

0
dθ

∫ R

0
f (y)ydy

+∇�∗
k

]
xn

·
∫ 2π

0
dθ

∫ R

0
yyf (y)dy (4)

The second term is zero by symmetry, so ck � A�∗
k (xn), where

the constant

A =
∫ 2π

0
dθ

∫ R

0
f (y)ydy �

∫
�

f (y)d� (5)

corresponds to the volume of liquid displaced by one impact.
The crater is finally represented by

f (y) = A
∑

k

�∗
k (xn)�k(r) = Aδ(r − xn). (6)

The crater is thus assumed equivalent to a δ function at the
impact point, weighted by the volume of liquid displaced. The
contribution of the impact to each wave eigenmode A�∗

k (xn)
strongly depends on the particle position. We now normalize
the wave field hn(x) by A.

For all forcing conditions, a damping factor μk ∈ [0,1] can
be associated with each �k(x). It is defined as the amplitude
of mode k right before impact n + 1, divided by its amplitude
right after impact n. It can be estimated by spectral methods
[14]. By definition μ

Mk

k = e−1, where Mk is the memory
associated with mode k. The Faraday threshold instability
corresponds to max(μk) = 1. The amplitude of each mode
Wk,N then satisfies the recurrence relation

Wk,n+1 = μk[�∗
k (xn) + Wk,n]. (7)

At each impact, the particle is shifted proportionally to the
gradient of the wave field at the impact position:

xn+1 = xn − C
∑

k

Wk,n∇�k]xn
(8)

where C > 0 is a constant that represents the strength of
the wave-particle coupling. This hypothesis is different from
previous models (e.g., [13]), where the force (instead of the
velocity) is proportional to the wave slope. Equations (7)
and (8) form an iterated map that describes the evolution of the
walker in configuration (iii). Nevertheless, this modal approach
is also likely relevant to configurations (i) and (ii) where
confinement does not originate from physical boundaries.
Especially in (ii) [11], Graf’s addition theorem states that the
wave field can always be decomposed in cylindrical harmonics
centered on the force field. Each harmonic is then excited
according to the walker position, similarly to (7).

III. A TOY MODEL FOR THE WAVE-PARTICLE
COUPLING

A detailed analysis of this map (7) and (8) and comparison
to the experiments in (iii) is the object of another work. This
work aims at reaching the simplest model that still captures
the features of confined wave-particle coupling observed
experimentally. We thus now consider the map where only
one direction x and one mode �(x) ∈ R of damping μ are
kept:

wn+1 = μ[wn + �(xn)],
(9)

xn+1 = xn − Cwn�
′(xn).

The map allows for two families of fixed points:

(xa,wa), where �(xa) = 0, wa = 0 (10)

and

(xb,wb), where � ′(xb) = 0, wb = μ

1 − μ
�(xb).

(11)

For convenience, we denote �a = �(xa), � ′
b = � ′(xb), and

so on.
Fixed points of the first family correspond to a position

where an impact does not excite any wave. Their linear stability
is assessed by analyzing the growth rate of a small perturbation
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(x̃,w̃) = (x − xa,w − wa). The resulting linear map

w̃n+1 = μw̃n + μ� ′
ax̃n,

(12)
x̃n+1 = x̃n − C� ′

aw̃n

has a characteristic equation

z2 − (μ + 1)z + μ
[
1 + C�

′2
a

] = 0 (13)

that is solved by substituting z = ρeiθ :

cos θ = ρ(1+μ)

ρ2+μ

(
1+C�

′2
a

) ,

(14)
sin θ

[
ρ2 − μ

(
1 + C�

′2
a

)] = 0.

Each fixed point xa becomes marginally stable (ρ = 1) for a
specific damping μ = μa . When the eigenvalues z of the linear
map are real (θ = 0), imposing ρ = 1 yields μa = 0. It is also
straightforward to show that when θ = 0, ρ ∈ [0,1] for every
μ ∈ [0,1] so real eigenvalues always correspond to stable fixed
points. If θ �= 0 (complex conjugate eigenvalues) then ρ2 =
μ(1 + C�

′2
a ), so the stability condition ρ � 1 becomes

μ < μa = 1

1 + C�
′2
a

∈]0,1]. (15)

Eigenvalues are complex when

μ > μc = 1 + 2C�
′2
a −

√(
1 + 2C�

′2
a

)2 − 1. (16)

Since μc < μa , the bifurcation in μ = μa is a Neimark-Sacker
bifurcation (discrete equivalent of the Hopf bifurcation). It is
shown numerically that this bifurcation is supercritical. It gives
rise to a stable limit cycle centered on (xa,wa) when μ > μa .

The linear map for the perturbations (x̃,w̃) = (x − xb,

w − wb) about fixed points of the second family is

w̃n+1 = μw̃n,
(17)

x̃n+1 =
[

1 − μC

1 − μ
�b�

′′
b

]
x̃n.

The manifold along the w direction is always stable, as μ ∈
]0,1[. The x direction is stable when

z = 1 − μC

1 − μ
�b�

′′
b ∈] − 1,1[. (18)

If �b�
′′
b < 0, this x manifold is unstable for all μ ∈]0,1[ and

the fixed point is a saddle. If �b�
′′
b > 0, the fixed point is

stable when

μ < μb = 1

1 + C�b�
′′
b

2

. (19)

For μ > μb, the fixed point is a saddle again.
The behavior of this simplified iterated map (9) is very

similar to the radial component of walker trajectory in
experiments (i)–(iii), especially when the wave function �(x)
is considered equivalent to J0(kF r), where r is the radial
position on the orbit and kF the Faraday wavelength. The
fixed points of the map are then equivalent to circular orbits in
the experiments. In configurations (i) and (ii) at intermediate
memory M (i.e., small μ), stable circular orbits are indeed
observed in ra with J0(kF ra) = 0. The stable orbit reported
in configuration (iii) [12] also approximately corresponds to

a node of the axisymmetric Faraday wave pattern right above
threshold. At these locations, the walker does not generate any
radial velocity component so the trajectory remains circular.
At higher memory, these orbits destabilize and start wobbling
and drifting. In (i) it was shown that orbits of larger radius
ra , i.e., smaller J ′

0(kF ra), destabilize at higher M , which
is consistent with the fact that fixed points of smaller |� ′

a|
destabilize at higher μ. The analytical model of (i) [15] shows
that wobbling originates from a Hopf bifurcation and is then
associated with a pair of complex eigenvalues. The same
model [10] reveals the presence of unstable orbits in rb with
J ′

0(kF rb) = 0, again analogous here to the second family of
fixed points. These orbits have always real eigenvalues, some
positive and some negative, so they behave as saddles. The
simplified iterated map thus captures well the existence and
stability of circular orbits in all three configurations of confined
walker trajectories.

IV. TEST FUNCTIONS AND NUMERICAL RESULTS

In the following, the map dynamics is further investigated
numerically for a specific set of functions � and a given
constant C. The eigenfunctions of a cavity depend on its
geometry as well as on possible inhomogeneities (e.g., depth).
With other confinements, eigenfunctions may even be more
complicated. Nevertheless, they are usually qualitatively simi-
lar to trigonometric functions: they oscillate about zero with a
characteristic frequency. So we here aim at exploring a variety
of functions � that qualitatively represent an eigenfunction.
We choose a family of test functions

ψ(x,β) = cos β√
π

sin 3x + sin β√
π

sin 5x. (20)

These functions are defined as orthogonal (and periodic) over
x ∈ [−π/2,3π/2], but they can be represented on x ∈ [0,π/2]
owing to their symmetry. Varying the shape parameter β ∈
[0,π [ allows for the exploration of many different configura-
tions of fixed points, as confirmed in Fig. 2. Seven specific
values of β have been chosen that give a comprehensive
overview of the different behaviors of ψ(x,β).

In the present numerical simulations, the coupling constant
C is chosen equal to 0.05, resulting from the following
compromise. The average step size (xn+1 − xn) increases with
C. Consequently, the particle interacts less often with the wave
when C is large. It behaves as if it had more inertia. Inertia is a
key ingredient for the occurrence of chaos in this model. This
can be proven by considering the continuous version where
flight times between successive impacts are infinitely short.
Position and wave amplitude [x(t),w(t)] are then given by

αẍ + ẋ = −Cw� ′(x) and ẇ = −μcw + �(x), (21)

where α is an inertia coefficient and μc ∈ [0,∞[ the continuous
analog of the damping factor μ. When α = 0 (no inertia), the
system of nonlinear ordinary differential equations becomes
two dimensional, and therefore cannot exhibit any chaotic
behavior. Discretization and inertia somehow play the same
role. Inertia should however be limited, as the particle is not
expected to travel more than the cavity size in a single step. The
choice C = 0.05 is shown to represent a good compromise in
terms of inertia, which gives the particle a behavior comparable
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FIG. 2. (Color online) Family of test functions �(x,β). (a),(b) Nullclines and fixed points for (a) β = π/3 and (b) β = π/6. (c) Position
of the fixed points xa (blue tones, 1st, 3rd and 5th curves from bottom) and xb (red tones, 2nd, 4th and 6th curves from bottom) as functions
of the shape parameter β. (d) Parameters �

′2
a (blue tones, three upper curves) and �b�

′′
b (red tones, three lower curves) as functions of β. In

(c),(d), the dashed lines indicate the seven values of β selected for the numerical analysis. Each of them corresponds to a different symbol: (•)
β = 0, (�) β = π/12, (�) β = π/6, (�) β = π/3, (�) β = π/2, (�) β = 3π/4, and (	) β = 11π/12. Colors correspond to different fixed
points (Blue tones are always used for xa while red tones refer to xb).

to the walkers. In the vicinity of the saddles, the position
increment xn+1 − xn may be close to the machine ε. In order
to limit the resulting numerical noise, the map is rewritten as
a function of x̃n = xn − xb as soon as |� ′(xn)| < 10−6.

V. TRANSITION TO CHAOS

Figure 3 shows the evolution of the trajectory with
increasing μ in the (x,w) plane for β = π/3 [16]. At
μ = 0.8682 [Fig. 3(a)], only the rightmost fixed point xa is
still a stable focus about which every trajectory ultimately
spirals. This focus experiences a Neimark-Sacker bifurcation
at μa = 0.8795, so when μ = 0.9088 [Fig. 3(b)], the focus is
unstable and surrounded by a stable limit cycle. In general,
the extension of the limit cycles increases with μ, until they

collide with the stable manifolds of the saddles in x = xb.
For β = π/3, this happens at μ � 0.917. Similarly in (i), the
wobbling amplitude is shown to increase with memory until
the wobbling orbit collides with the most adjacent unstable
orbit [9]. At this stage, a chaotic attractor is revealed as no other
stable regular attractor is left [Fig. 3(c), with μ = 0.9369].
The strange attractor has a characteristic multilayered fractal
topology. It inflates along w with increasing μ, as shown in
Fig. 3(d) for μ = 0.9924. The Lyapunov exponent is positive
in the chaotic regime (Fig. 4): trajectories initially separated
by x = 10−10 (and w = 0) are fully decorrelated after
about 170 iterations. This corresponds to the approximate
time required to travel once along the chaotic attractor. So
a strong dependence to initial conditions is indeed observed
in this chaotic regime. A typical chaotic trajectory is shown

052917-4



DYNAMICS AND STATISTICS OF WAVE-PARTICLE . . . PHYSICAL REVIEW E 90, 052917 (2014)

FIG. 3. (Color online) Phase diagrams (x,w) for β = π/3. (a) Stable fixed point (right) at μ = 0.8682. (b) Limit cycle at μ = 0.9088.
(c) Strange attractor (early chaos) at μ = 0.9369. (d) Strange attractor (fully developed chaos) at μ = 0.9924. Blue tone (red tone) symbols
represent fixed points xa (resp. xb). The solid line is the nullcline w = μ�(x)/(1 − μ).

in Fig. 5 [16]. The particle is attracted to the stable manifold
of a saddle xb. Then, the wave amplitude w builds up as the
particle moves along this manifold. Ultimately, the particle is
ejected along the unstable manifold. The direction of ejection
is very sensitive to initial conditions. Once ejected, the particle
quickly reaches another adjacent saddle.

Transition to chaos is summarized in the bifurcation
diagram (x,μ) of Figs. 6(a) and 6(b) for β = 0 and β = π/3.
The likelihood (probability distribution function) of finding the
particle at a given position x is also represented. In the chaotic
regime, peaks (troughs) of the PDF are observed at positions
xb (xa), which simply reflects that the faster a particle moves,
the less time it spends about a given location. Figures 6(c)
and 6(d) represent the PDF for a given value of μ > μc. It
shows that in the chaotic regime, the PDF (here calculated
over 2 × 106 successive positions from the initial condition

x0 = 0.1 and w0 = 0.1) approximately satisfies

PDF(x) � 1

c0|� ′(x)| , (22)

where c0 is a fitting parameter. So in this iterated map (9) aimed
at capturing wave-particle coupling, the wave function �(x)
directly shapes the PDF of the particle position. A similar
behavior has been observed in (iii), where both the radial
velocity of the walker and its subsequent PDF are also shaped
by the eigenmode of the cavity. There, in the chaotic regime,
peaks (troughs) of likelihood are systematically observed in
rb [(ra). It has to be noted that Eq. (22) is approximative and
empirical. The apparent noise in the PDF corresponds to higher
frequency oscillations that are not removed with either a larger
sample of impacts or more bins.
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FIG. 4. Diverging distance between two trajectories initially
separated by x = 10−10 and w = 0. Parameters are β = π/3 and
μ = 0.9369.

VI. INTERMITTENT DYNAMICS

A closer look at a chaotic sequence (Fig. 5) confirms that
the particle spends most of its time in the immediate vicinity of
the stable manifolds xb. It switches from one manifold to the
next after a certain time τb, different for each xb. The statistical
distribution of τb for a large number of successive passages of
the same particle is represented in Fig. 7(a). Saddles with
�b�

′′
b < 0 have a sharp and asymmetric distribution from

which an average time 〈τb〉 can unambiguously be defined. By
contrast, as soon as a saddle with �b�

′′
b > 0 is present [here

at β = π/6; cf. Fig. 2(b)], the time distribution is significantly
broader and the average is less representative.

Figure 7(b) shows that the ensemble average 〈τb〉 over many
passages about the saddle point xb is directly related to its
largest eigenvalue:

〈τb〉 � 3.5

C|�b�
′′
b | . (23)

This relationship has been tested for seven different values
of β and the corresponding 15 different saddles represented
in Fig. 2. The agreement is excellent, and the proportionality
constant only slightly depends on μ. The only points that
fail to satisfy this equation are the ones for which the
distribution of τb is not a sharp peak (i.e., when there is a
saddle for which �b�

′′
b < 0). So here again, the wave function

�(x) determines the probability of finding the particle in the
vicinity of saddles xb. One could see these saddles as discrete
eigenstates of the system, whose probability is weighted by
1/(�b�

′′
b ). Any linear superposition of these eigenstates can

be achieved with an appropriate �(x). In the chaotic regime
of all configurations (i)–(iii), the walker trajectory can also
be decomposed into segments of regular orbits considered
as the eigenstates of the system. The walker stays in each
eigenstate for a certain time before it quickly switches to
another. In case (iii), these eigenstate orbits are precisely
located about rb. In case (i) though, the eigenstates are located
in ra at high memory [15]. This is one of the few qualitative
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FIG. 5. (Color online) Trajectory in the chaotic regime (β =
π/3, μ = 0.9369). The particle switches intermittently between the
different manifolds xb (red tone dash-dotted lines) and constantly
avoids the unstable fixed points (blue tone dashed lines). The
trajectory has been folded on the interval x ∈ [0,π/2], owing to the
symmetry and periodicity of �(x).

differences between predictions of the simplified map and the
radial dynamics in experiments.

The “unfolded” trajectory xn [considering that ψ(x,β) is a
periodic function] indicates that the particle switches randomly
from one stable manifold to the next, either left or right
[Fig. 8(a)]. Therefore, the long-term behavior of the particle is
equivalent to a 1D random walk. The particle diffuses, and the
variance of the traveled distance (xn+N − xn) grows linearly
with time N , as shown in Fig. 8(b). The diffusion coefficient
D � 0.019 can be estimated from the average intermittency
time 〈τb〉 � 22 and the average spacing between saddles
xb � 0.63:

D � (xb)2

〈τb〉 . (24)
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FIG. 6. (Color online) (a),(b) Bifurcation diagram (x,μ) for � = ψ(x,β) for β = 0 (a) and β = π/3 (b). Yellow to green color (light to
dark gray) represents the likelihood of finding the particle at a given position x, normalized by the probability of a uniform distribution. A
position coded 16:1 (1:16) is 16 times more (less) likely than if the distribution were uniform. Fractions below 1:16 are set to white. The
horizontal line indicates the value of μ selected in (c),(d). (c),(d) Correlation between the inverse of the probability distribution function
(symbols) and |� ′(x)|. The black solid line corresponds to c0|� ′(x)|. Parameters are (c) μ = 0.9241, c0 = 10; and (d) μ = 0.99, c0 = 3.3. In
(a)–(d), vertical lines correspond to the fixed points. The line style refers to fixed point stability: (solid) stable, (dashed) unstable, (dash-dotted)
saddle.

This diffusion coefficient increases linearly with C for C <

0.08, which reflects that 〈τb〉 ∼ C−1. The order of magnitude
chosen for C ∼ 0.05 can now be justified. A close examination
at the chaotic trajectory in configuration (iii) [12] reveals that
the walker changes direction about every Faraday wavelength.
This distance can then be considered as the elementary step
of an analogous random walk, or the equivalent of xb in this
model. It is traveled in approximately 17 rebounds in Ref. [12],
which is of the same order of magnitude as the intermittency
time 〈τb〉 for C = 0.05.

VII. DISCUSSION

In 1927, de Broglie presented his pilot-wave interpretation
of quantum mechanics [17] at the fifth Solvay conference. In

this deterministic theory, quantum particles are guided by a
pilot wave that satisfies Schrodinger equation. The particles
do not exert any instantaneous and individual feedback on
the wave. The theory was later extended by Bohm and
Vigier [18]. If the wave is regular, the particle trajectory
predicted by pilot-wave theories is usually regular, although
it may become chaotic in some confined geometry [19].
One shortcoming of Bohmian mechanics is that the particle
does move only when multiple eigenmodes are considered.
Indeed, the particle velocity is proportional to ψ∗∇ψ −
ψ∇ψ∗ which amounts to zero for a single cavity mode
ψ(x,t) = �(x)e−iEt/�. The statistical behavior of quantum
mechanics is more often explained by the inherently chaotic
wave field generated by the presence of a large number
of particles [20]. By contrast, the walkers discovered by
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FIG. 7. (Color online) (a) Probability distribution of τb for β = 11π/12 (	) and β = π/6 (�). (b) Average intermittency time 〈τb〉 for
� = ψ(x,β) with μ = 0.997. Seven different values of β are considered; the corresponding symbols and colors are defined in Fig. 2. Error
bars correspond to the standard deviation of τb. The solid line corresponds to Eq. (23).

Couder and co-workers represent a macroscopic wave-particle
coupling where the guiding wave originates from the particle
itself. When confined, individual walkers experience chaotic
trajectories during which they permanently switch between
unstable orbits analogous to discrete eigenstates. The resulting
statistics of walker position reflects the geometry of the wave
field.

In this paper, a two-dimensional iterated map [Eq. (9)] is
proposed that models the wave-particle coupling of confined
walkers in a mathematically simple way, originating from
spectral decomposition. It does not have the shortcoming of
Bohmian mechanics, as chaotic motion is produced in any
cavity from a single eigenmode. Another model was previously

proposed by Shirokoff [13] to describe walkers in a square
cavity (for which there appears to be a lack of experimental
data). There the mathematical description is significantly more
complex. The consideration of boundaries was not addressed
with spectral decomposition, but rather with the method of
mirror images. Unfortunately this method becomes impracti-
cable at high memory, where a prohibitively large number of
images resulting from previous impacts has to be considered.
Consequently, Shirokoff’s model could be investigated only
in the low-memory regime. Chaos is nevertheless observed
when the coupling parameter F (equivalent to C in the present
model) is sufficiently large. The PDF of the trajectory at high
F also seems to reflect the symmetry of the cavity and the
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FIG. 8. (Color online) Unfolded chaotic trajectory (β = π/3, μ = 0.9369). (a) The trajectory jumps between saddles in a random way.
(b) Evidence of a diffusive behavior in x. The solid line corresponds to 〈(xn+N − xn)2〉 = 0.019N .
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shape of stable orbits at small F , although this similarity has
not been quantified.

The present map overcomes these shortcomings. When
thought of as the radial component of the walker trajectory, it
captures many features of walker behavior in confined environ-
ments. Similarities include (1) the families of regular orbits in
the low-memory regime; (2) the sequence of destabilization of
these trajectories and route to chaos as the memory parameter
is increased; (3) the chaotic trajectory being a composition
of eigenstates reminiscent of the unstable regular orbits; and
(4) the relationship between the wave field and the PDF of
the walker position. It is shown here that these four properties
are almost not dependent on the wave shape �(x). They are
also shared by several configurations of confinement in which
walkers have been observed. Consequently, they are unaffected
by the extreme simplification of the mathematical description
proposed herein. Nevertheless, the exact relationship between

�(x) and the probability distribution depends on the nature
of the coupling between the wave and the particle. Future
work could include the search for a wave-particle coupling
dynamics that yields PDF(x) ∼ |�(x)|2 as observed in quan-
tum mechanics.
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