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During pattern formation in spatially extended systems, different mechanisms with different characteristic
length scales, e.g., reaction-diffusion processes or molecular interactions, can be active. Such multiscale effects
may generate new phenomena, which are not observed in systems where pattern formation occurs on a single
scale. Here, we derive and analyze a reaction-diffusion model of the FitzHugh-Nagumo type with short-range
attractive molecular interactions of the activator species. The model exhibits a wave instability. Simulations in one
and two dimensions show traveling waves with a wavelength set by the parameters of the molecular interaction
in the model. In two dimensions, simulations reveal a labyrinthine arrangement of the waves in systems with
isotropic diffusion, whereas parallel bands of counterpropagating waves are formed in simulations of a model
with anisotropic diffusion. The latter findings are in good qualitative agreement with experimental observation
in the catalytic NO+H2 reaction on an anisotropic Rh(110) surface. In addition we have identified a transition
regime in the simulations, where a short scale instability triggers global oscillations in an excitable regime.
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I. INTRODUCTION

Formation of spatiotemporal patterns in reaction-diffusion
systems is a common feature of self-organized chemical
[1] and biological media [2]. Static (e.g., Turing patterns
in activator-inhibitor systems) and dynamics structures (e.g.,
traveling waves in excitable media) are obtained in such
nonlinear systems outside of equilibrium. Typical time scales
together with the particular values of the diffusion coefficients
fix the characteristic spatial scales of both static and dynamic
patterns. On the other hand, attractive or repulsive molecular
interactions produce additional fluxes, which may induce an
accumulation of molecules and can eventually lead to phase
separation [3,4]. The thereby formed spatial structures result
from a relaxation process toward equilibrium.

The cooperative action of chemical reactions, diffusion
processes, and molecular interactions has been shown to lead
to the formation of complex static and dynamic structures.
For example, a theoretical model for phase separating binary
mixtures which undergo a simple conversion reaction with
linear kinetics [5] revealed stationary stable structures at a
finite wavelength resembling a Turing pattern. The same
phenomenon has been observed in a model for a phase
separating layer of adsorbing and desorbing molecules on
a surface [6]. Similarly, experiments and theoretical models
on the catalytic water formation on a Rh(110) surface in the
presence of alkali metals as promotors (i.e., chemical species
that are not consumed during the reaction but influence the
reaction rate locally and might attract or repel certain reactants
[7,8]) showed a slowing down of the reaction fronts [9] and
the formation of stationary periodic patterns [10–12].
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Further theoretical studies of reaction-diffusion patterns
affected by molecular interactions have predicted traveling
structures in a system of mutually attractive reactive adsorbates
[13] and in reactive ternary mixtures [14], stationary structures
and standing waves in surface reactions coupled to structural
phase transitions in the substrate [15,16], as well as stationary
patterns and traveling waves in reactive Langmuir layers [17]
produced by photoexcitation [18,19] or by transmembrane
flows [20,21]. Especially the lipid membranes of living
cells are an important system, where molecules are in close
proximity and thus phase separation is plausible [22]. At the
same time, reaction-diffusion processes take place, couple to
the phase separation, and produce complex stationary and
dynamical spatial structures [5,23–30].

Another interesting phenomenon has been observed re-
cently experimentally in the NO+H2 reaction on a Rh(110)
surface. Like many catalytic surface reactions it displays a
rich spatiotemporal behavior [32–34], including monostable,
bistable, and excitable dynamics, depending on the experimen-
tal conditions [35,36]. However, the addition of potassium as
a promotor induces the formation of new types of chemical
patterns [31,37,38]. For example, in the excitable regime one
can observe target patterns [see Fig. 1(a)]. Upon addition of
potassium to the reaction, the aspect of the pacemaker rapidly
changes [see Fig. 1(b)] and eventually short scale traveling
waves take over the pacemaker [see Figs. 1(c) and 1(d)].
The velocity of the waves decreases from 1–2 μm/s without
potassium to 0.17 μm/s in the presence of potassium [31].

Motivated by the last example, we study here the effect
of attractive molecular interactions on the dynamics of an
excitable system of the FitzHugh-Nagumo type. In our analysis
we are not predominantly interested in the microscopic details
of a specific surface reaction; instead we are interested
in investigating the general effect of a Cahn-Hilliard type
diffusion term on the dynamical behavior of the excitable
system. However, we also compare the results of the model
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FIG. 1. Experimental observation of chemical patterns in the
NO+H2 reaction on a Rh(110) surface in the absence (a) and presence
(b–d) of potassium as a promoter using photoelectron emission
microscopy. (a) Typical target pattern in the absence of potassium.
(b) Formation of large scale target patterns which are destabilized by
short scale traveling waves upon a slight change in the experimental
conditions (c,d). Adapted with permission from [31].

with experimentally observed patterns in the NO+H2 reaction
in the presence of potassium as a promoter [31].

We observe that two different mechanisms of pattern
formation appear with different characteristic spatial scales.
For weak molecular interactions the excitable dynamics of the
system dominates and a local perturbation of the system leads
to the rapid propagation of an excitation pulse. For strong
molecular interactions short scale traveling waves dominate,
which propagate more slowly than the pulses in the excitable
regime. Similarly to the experiments, where the promotor
changes the intensity of the molecular interactions, we can
switch between both mechanisms changing the correspond-
ing parameter of the model. Additionally we observe an
interesting transition regime, where a short scale instability
triggers periodically global excitation pulses, which resemble
homogeneous oscillations.

The paper is organized as follows. We will first introduce a
modified FitzHugh-Nagumo model with a transport term of the
Cahn-Hilliard type for the activator species. Second we will
perform a linear stability analysis of the uniform steady state
complemented by full numerical simulations of the model in
one dimension. Next, we perform anisotropic two-dimensional
simulations to compare the patterns generated by this generic
model with experimental patterns in the NO+H2 reaction in
catalytic surfaces [31]. Finally we discuss our results and
conclude.

II. MODEL

We consider an abstract two-variable model of the
FitzHugh-Nagumo type in two spatial dimensions in the
excitable regime [1]. The model consists of a highly mobile
activator species u and an immobile inhibitor species v with a
slow kinetics:

∂tu = −u(u − a)(u − 1) − v − �∇ · �j, (1)

∂tv = ε(u − bv). (2)

In our model the parameters a,b, and ε � 1 are positive
constants. The activator species u may diffuse on the surface
according to a Cahn-Hilliard dynamics [3], which mod-
els attractive molecular interactions between the activator
molecules. Consequently, the flux �j in Eq. (1) can be derived
from a symmetric Ginzburg-Landau energy functional:

F [u] =
∫

�

dA

[
1

4
u4 − τ

2
u2 + χ

2
(∇u)2

]
, (3)

where τ and χ are positive constants. τ captures the local
part of the molecular interactions and χ has the effect of a
line tension and scales as χ ∼ τr2

0 , with r0 being the typical
length scale of an effective interaction potential, whereby r0 is
assumed to be large compared to the typical molecular scale
[4]. This approach is in line with the experimental observations
shown in Fig. 1, where the small scale wavelength caused by
molecular interactions is of the order of 10 μm and hence
much larger than the lattice constants of the underlying surface,
which are <1 nm. The first two terms in Eq. (3) represent a
double well potential with a reflection symmetry about the
concentration u = 0 and with two minima located at ±√

τ .
The flux �j of the species u is then given by the gradient of the
functional variation of F with respect to u [4] multiplied by a
mobility D:

�j = −D ∇ δF

δu
(4)

= −D ∇[u3 − τu − χ∇2u], (5)

where D is a tensor of second order of the form

D =
(

D‖ 0

0 D⊥

)
, (6)

with D‖ > 0 and D⊥ > 0. Such an anisotropy in the diffusion
coefficients has been shown experimentally in chemical
reactions on catalytic surfaces such as Rh(110) [39] and in
this case it results from the rectangular symmetry of the
surface lattice. For simplicity we assume a constant (i.e.,
density independent) mobility D. Note that the difference of
Eqs. (1) and (2) from a standard FitzHugh-Nagumo model is
only in the transport term of the activator species u, which is
typically of the form �j = −D∇u. Instead we introduce here a
transport term of the Cahn- Hilliard type (5), which accounts
for attractive molecular interactions between molecules of the
activator species.
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III. RESULTS

Depending on the local parameters a, b, and ε the homoge-
neous system [Eqs. (1) and (2)] has up to three rest states and
shows a variety of dynamical phenomena, e.g., oscillations and
excitability. Here we restrict ourselves to the parameter region
with just one uniform steady state (ũ = 0, ṽ = 0), and where
the homogeneous system is excitable, i.e., the trivial rest state
is linearly stable but if the system experiences a perturbation
which exceeds the excitation threshold it will undertake a large
excursion into the phase space before returning to its rest state.
In a spatially extended system without molecular interactions
a local excitation can lead to the propagation of an excitation
pulse [see Fig. 4(a)].

In the absence of chemical reactions the transport term with
attractive molecular interactions [τ > 0 in Eq. (5)] destabilizes
the uniform state (ũ = 0) and induces the aggregation of the
u species into short scale stationary periodic domains with
the initial spinodal wave number ks = √

τ/(2χ ) ∼ 1/r0 that
coarse in time due to line tension [4]. The saturation values of
the u species in the low and high density phase are given by
±√

τ .
In the following we analyze the combined effect of local

excitability and short scale spinodal decomposition. We fix
the parameters of the local reaction kinetics to b = 3.0 and
ε = 0.01 and the parameter of the Cahn-Hilliard term to χ =
0.1 and we vary the chemical reaction parameter a and the
molecular interaction strength τ .

A. Linear stability analysis

Applying Fourier mode perturbations with wave number k

and growth rate ω to the homogeneous trivial steady state we
find for the Jacobian matrix J of Eqs. (1) and (2) for the case
of an isotropic diffusion, i.e., D‖ = D⊥ = D,

J =
(

−a + Dk2(τ − χk2) −1

ε −εb

)
. (7)

It is easy to see that the isotropic system displays a wave
instability for

τ = τw = 2

√
χ

D
(a + εb), (8)

with the critical wave number kw = √
τ/2χ and the associ-

ated frequency ωw =
√

ε(1 − εb2). For τ > τw (τ < τw) the
trivial rest state is linearly unstable (stable). Interestingly, kw

corresponds to the fastest growing mode ks of the spinodal
decomposition of the Cahn-Hilliard term (5) in the absence
of chemical reactions. For τ > τr = 2

√
χ

D
(a − εb + 2

√
ε)

unstable real eigenvalues are appearing, whereby they appear
first at the critical wave number kw.

To illustrate the type of linear instabilities encountered
Fig. 2 shows examples of dispersion relations for various
sets of parameters. Figures 2(a) and 2(b) show the dispersion
relation at the wave instability and for parameters, where all
unstable eigenvalues are complex, whereas Figs. 2(c) and 2(d)
show the dispersion relation at the point where real unstable
eigenvalues first appear and for parameters where the fastest
growing eigenvalues are real. Additionally, the dashed and
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FIG. 2. (Color online) Dispersion relations of Eqs. (1) and (2) for
various values of τ as indicated in the top left corner of each graph.
The solid (dashed) lines denote the real (imaginary) parts of the two
eigenvalues. Remaining parameters are a = 0.1, b = 3.0, ε = 0.01,
D = D‖ = D⊥ = 1, and χ = 0.1.

dotted lines in Fig. 3 show, respectively, the wave instability
[Fig. 2(a)] and the first appearance of real unstable eigenvalues
[Fig. 2(c)] in the a-τ plane.

B. One-dimensional numerical simulations

To study the nonlinear evolution of the system we per-
formed numerical simulations of Eqs. (1) and (2) in one
spatial dimension with a periodic boundary condition using
a finite differences method. Simulations were started from
two different initial conditions. For one type of simulation
we started out from the homogeneous steady state with small
amplitude white noise perturbations. For the second type of
simulation we started from the homogeneous rest state with a
local perturbation, which was sufficient to locally excite the
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FIG. 3. (Color online) Phase diagram of full numerical simula-
tions in one dimension of (1-2) in the a-τ plane. The regions are
(i) excitable, (ii) nonexcitable, (iii) global oscillations, (iv) standing
waves, (v) a mix of standing and traveling waves, and (vi) traveling
waves. The dashed and dotted lines indicate the wave instability and
the appearance of unstable real eigenvalues from the linear stability
analysis. Remaining parameters are as in Fig. 2.
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FIG. 4. (Color online) Spatiotemporal plots of the variable u for
one-dimensional simulations for different values of a and τ : a = 0.1,
τ=0.1 (a); a = 0.1, τ=0.4 (b); a = 0.5, τ=0.5 (c); and a = 0.1,
τ=0.6 (d). Simulations were started from the trivial rest state with
either small amplitude random perturbations (b,c) or a finite localized
perturbation (a,d). The domain size is 200 with periodic boundary
conditions and the simulation time is 1000. Remaining parameters
are as in Fig. 2.

system and trigger the propagation of an excitation pulse in the
absence of molecular interactions (i.e., τ = 0). The localized
perturbation permits us to differentiate between the excitable
and nonexcitable regimes of the model.

Figure 3 (solid lines) shows the resulting phase diagram
in the a-τ plane along with the results of the linear stability
analysis [Fig. 3 (dashed and dotted lines)]. As an illustration
Fig. 4 shows examples of simulations for qualitatively different
cases. In regions (i) and (ii) of Fig. 3 the system is linearly
stable but in region (i) it permits the propagation of excitation
pulses, i.e., the local perturbation in the initial condition
triggers a pulse, which is annihilated due to the periodic
boundary conditions [Fig. 4(a)]. In region (iii) in Fig. 3,
i.e., for parameter values close to the wave instability and
the excitable region (i), a short scale stationary instability
driven by the Cahn-Hilliard term (5) is triggering an excitation
pulse. Since the stationary domains are each triggering a
pulse almost simultaneously, the excitation is nearly global.
After the excitation pulse has decayed the system enters
into a recovery phase and appears to be homogeneous until
new short scale stationary domains form, which trigger in
turn excitation pulses. The resulting dynamics resembles an
oscillatory behavior [Fig. 4(b)]. In region (iv) of Fig. 3, i.e.,
close to the wave instability and outside the excitable region,
one can observe short scale standing waves [Fig. 4(c)], whereas
in region (v) further away from the wave instability the system
shows a mix of short scale traveling waves and standing waves.
Finally, in region (vi) of Fig. 3 the system shows short scale
traveling waves [Fig. 4(d)]. Thereby the traveling waves move
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FIG. 5. (Color online) Wave velocity depending on the molecular
interaction strength τ at a constant value a = 0.1. Shown is the
velocity for small and large τ . In the region denoted “Mixed modes”
several patterns coexist and the wave velocity is not clearly defined.
Remaining parameters are as in Fig. 2.

at a much slower speed than the excitation pulses in the
excitable regime.

To quantify the slowdown of the wave speed Fig. 5 shows
the dependence of the wave speed on the strength of the
molecular interactions τ for a constant parameter a = 0.1.
For small τ large scale excitation pulses are stable and
propagate at a high velocity, which decreases linearly with
τ . At intermediate values of τ in the region denoted “Mixed
modes” in Fig. 5 the system exhibits an oscillatory behavior of
short scale destabilization and global pulses described above.
For high values of τ , short scale traveling waves are stable
and travel slowly, whereby the speed decreases linearly with τ

and is about four times slower than the speed of the excitation
pulses.

C. Two-dimensional numerical simulations

For a better comparison with the experiments on the
catalytic NO+H2 reaction on a Rh(110) surface [31] we
performed two-dimensional full numerical simulations of
Eqs. (1) and (2) with periodic boundary conditions using a
pseudospectral method. In one set of simulations we used
isotropic mobility coefficients D = D‖ = D⊥ = 1.0 and in a
second set we assumed anisotropic mobility coefficients with
D‖ = 1.0 and D⊥ = 4.0.

Figure 6 shows snapshots of two numerical simulations
which were started from the uniform rest state with small am-
plitude white noise. The left and right columns correspond to
the isotropic and anisotropic case, respectively. The parameters
were chosen from the region (vi) of Fig. 3 where short scale
traveling waves can be found in one-dimensional systems. In
the isotropic case small scale traveling waves with an initially
irregular structure develop, which move in small wave packets
into different directions. Upon collision, waves are annihilated.
As time proceeds the size of wave packets increases and the
waves become more regular. However, on the time scale of
simulation we did not observe the motion of coherent waves
into one direction. More extensive simulations are necessary
to identify such a spontaneous symmetry breaking. In the
anisotropic case the initially irregular waves rapidly evolve
into almost plane waves which move in the direction of the fast
mobility constant, whereby regions of opposite propagation
direction coexist.
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u
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1

FIG. 6. (Color online) Snapshots of two-dimensional numerical
simulations with isotropic (left) and anisotropic mobility (right)
starting from the trivial rest state with small amplitude perturbations.
Shown is the spatial distribution of the activator concentration u.
The black arrow heads indicate the direction of propagation of the
traveling wave packets. Parameters are a = 0.1, τ = 0.6, D‖ = 1.0,
D⊥ = 1.0 (left), D⊥ = 4.0 (right), and as indicated in Fig. 2. The
simulation time is indicated in the top left corner of each snapshot.
The domain size is 128×128 with periodic boundary conditions.

Figure 7 shows the results of a simulation with anisotropic
mobility constants in the presence of a pacemaker. The
pacemaker consisted of a small region in the center of the
simulation domain where the concentrations of the u and v

field were kept constant at u = 1.0 and v = 0.0 during the
integration. We started the simulation for a parameter set
where the system is locally excitable, i.e., a=0.1 and τ=0, and
the pacemaker triggered a target pattern which was elongated
in the direction of the large mobility constant (see snapshot
labeled 500 in Fig. 7). After the pacemaker had triggered
several pulses we increased the parameter τ to τ = 0.6 at
the time t = 500 and observed a rapid decay of the large
scale waves into short scale traveling waves (see snapshots
labeled 510 to 2000 in Fig. 7), which traveled into the direction
of the large mobility constant. Thereby regions of opposite
propagation direction coexisted over a long time. Immediately
after an increase in the parameter τ (500 < t < 550) a short
scale instability developed, which competed with the target
pattern. At later stages the pacemaker completely lost control
over the pattern and the short scale traveling waves took over.
The transition from target pattern to small scale traveling waves
is nicely illustrated in the space-time plot (Fig. 7 bottom) along
a vertical line through the center of the simulation domain.

The breakup of the target pattern into small scale parallel
wave trains resembles the experimentally observed breakup
of a target pattern in the NO+H2 reaction on a Rh(110)
surface upon addition of potassium (see Fig. 1). There, the
anisotropy of the surfaces privileges the formation of wave
trains of varying size which travel along the direction of fast
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e
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FIG. 7. (Color online) Two-dimensional simulation with
anisotropic mobility coefficients in the presence of a pacemaker in
the center of the computational domain. Shown is the concentration
of the u field. Two top rows: Snapshots with the simulation time
indicated in the top left corner. Bottom: Space-time plot for a vertical
line through the center of the simulation domain as indicated by
the black line for the snapshot at t = 500. For a simulation time
t < 500 the parameter τ = 0 and for t > 500 the parameter τ = 0.6.
Simulations were started from the trivial rest state with small
amplitude white noise. The domain size is 256×256 with periodic
boundary conditions. The remaining parameters are D‖ = 1.0,
D⊥ = 4.0, and as indicated in Fig. 2.

diffusion, identified by the long axis of the elliptic target
pattern. Furthermore, the simulations satisfactorily reproduce
the difference in the wave velocity between both regimes.

IV. DISCUSSION

We have employed a FitzHugh-Nagumo model with a
transport term of the Cahn-Hilliard type to analyze the
dynamics of an excitable system with molecular interactions.
The linear stability analysis of the homogeneous rest state
revealed an oscillatory short wavelength instability, whose
properties depend on the strength of the molecular interactions.
Numerical simulations of the system reveal a rich spatiotem-
poral behavior. In the parameter region where the system is
locally excitable and close to the wave instability we find an
interesting transition regime where a short scale instability is
triggering a globally oscillatory behavior. Further away from
the wave instability and for parameters where excitation pulses
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do not propagate, the system displays standing or traveling
waves on a small spatial scale, with typical wave speeds
much slower than the speed of excitation pulses. Numerical
simulations in two dimensions with an anisotropy in the
mobility of the activator species and in the presence of a
pacemaker displayed the same transition from large scale target
patterns to small scale traveling waves upon an increase in the
molecular interactions, as seen experimentally in the NO+H2

reaction on a Rh(110) surface upon the addition of potassium
(see Figs. 1 and 7 right column). Furthermore our results agree
qualitatively with the experimentally observed slowing down
of the wave speed upon the addition of the promotor.

The occurrence of a wave instability in reaction-diffusion
systems with molecular interactions has been shown before
for a variety of models, e.g., [13,14], and seems to be a rather
general feature in these systems. The difference arises from the
detailed dynamics of the considered system and the degree of
nonlinearities retained in the final equations. In [13] a chemical
surface reaction with adsorption and desorption is studied.
In this system molecular interactions modify the transport as
well as the desorption kinetics of one species and lead to a
wave bifurcation in the vicinity of a two-phase coexistence
region. Reference [14] considers a hypothetic cyclic linear
chemical reaction coupled to a Cahn-Hilliard term, where
the molecular interactions trigger a wave bifurcation from
a stable homogeneous state. In contrast we have studied
here a situation where molecular interactions interact with
an excitable dynamics and cause a wave instability.

The transition regime close to the wave instability, where
molecular interactions trigger excitation pulses, offers inter-

esting perspectives for understanding signaling mechanisms
in cell biological systems. In the plasma membrane of living
cells proteins and lipids are in close proximity and molecu-
lar interactions compete with reaction-diffusion mechanisms
[17,40]. It is possible that a local event leads to the clustering
of molecules due to molecular interactions, which then could
trigger an excitation pulse that travels over the whole cell
membrane.

In summary, the analysis of a generic activator-inhibitor
model with short-range molecular interactions (short com-
pared to the typical reaction-diffusion length scale) shows
the formation of two types of patterns. While large scale
structures are reproduced by a typical reaction-diffusion
mechanism, small scale patterns are the consequence of the
molecular interactions. Depending on the control parameters,
both mechanisms compete and produce new dynamics. The
results of the model show good qualitative agreement with
the patterns obtained in the NO+H2 reaction on a Rh(110)
surface.
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