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Dielectric square resonator investigated with microwave experiments
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We present a detailed experimental study of the symmetry properties and the momentum space representation
of the field distributions of a dielectric square resonator as well as the comparison with a semiclassical model. The
experiments have been performed with a flat ceramic microwave resonator. Both the resonance spectra and the
field distributions were measured. The momentum space representations of the latter evidenced that the resonant
states are each related to a specific classical torus, leading to the regular structure of the spectrum. Furthermore,
they allow for a precise determination of the refractive index. Measurements with different arrangements of
the emitting and the receiving antennas were performed and their influence on the symmetry properties of the
field distributions was investigated in detail, showing that resonances with specific symmetries can be selected
purposefully. In addition, the length spectrum deduced from the measured resonance spectra and the trace formula
for the dielectric square resonator are discussed in the framework of the semiclassical model.
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I. INTRODUCTION

The interest in the resonance properties of dielectric
resonators stems from their scattering properties [1,2], their
use as compact resonators or filters in electronic rf circuits [3]
and applications like lasers or sensors of microscopic di-
mensions in the infrared to optical frequency regime [4,5].
Flat microlasers with a large diversity of shapes have been
investigated in order to understand the connections between
their properties (e.g., emission directionality and threshold)
and their shape [6]. Even in two dimensions, the Helmholtz
equation describing the passive resonators can be solved
analytically only for a few cases of rotationally symmetric
structures [1,7]. Hence, generally, numerical methods like
the boundary element method [8,9], the finite difference
time domain method [10], or perturbation theory [11–13]
are indispensable for their theoretical analysis. Cavities with
sizes much larger than the wavelength provide an exception
since they can be considered as photon billiards, that is, their
properties can be related to the classical ray dynamics in
the framework of semiclassical approximations [14]. Such
models, though approximate, generally allow for a better
understanding of the resonance spectra and field distributions
than solely numerical methods and can be extended to size-
to-wavelength regimes where numerical computations are no
longer feasible.

A phenomenon of particular interest are resonant states
exhibiting exceptionally clear structures associated with clas-
sical trajectories like periodic orbits (POs). Examples are
wave functions that are enhanced around unstable POs, called
scars [15–17], or Gaussian modes related to stable POs [18,19].
Furthermore, resonant states concentrated on trajectories with
a specific (angular) momentum have been observed for oval
and square dielectric resonators and circular resonators with
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rough boundaries [20–22]. It was shown in Refs. [23,24]
that closed polygonal resonators with angles πmj/nj , where
mj, nj are coprime integers and mj �= 1 exhibit a pronounced
scarring behavior of the wave functions which can be related to
families of POs with parallel trajectories and attributed to the
strong diffraction at the corners. Similar modes exist in polyg-
onal dielectric resonators [25,26]. Resonators with polygonal
shape are of importance, e.g., for filter applications [27–29] or
because crystalline materials favor the fabrication of polygonal
cavities [30–33]. Cavities with regular polygonal shape have
been intensively investigated, and a large number of in many
cases similar ray-based models for the resonant modes of
equilateral triangles [31,34–36], squares [25,27,35,37–46],
and hexagons [32,33,47,48] have been proposed.

In this article we investigate experimentally the structure of
the modes of a dielectric square resonator with a microwave
experiment. The cavity is made from a low-loss ceramic
material and is large compared to the wavelengths of the
microwaves coupled into it. One advantage of microwave
resonators is that the field distributions inside the resonator
can be measured directly and the results of these studies
can be applied to microcavities since these have a similar
ratio between cavity size and wavelength. Furthermore, the
dimensions of a macroscopic resonator can be measured with
high precision and geometric imperfections that would break
the symmetry properties can be excluded.

In the experiments with a square resonator presented here,
all observed modes were related to specific classical tori, i.e.,
families of orbits that are defined by their common angle of
incidence [21]. This is surprising because generally only a
few modes of a cavity show a structure which can be related
to classical trajectories [49], like, e.g., the scars observed in
the stadium billiard [15,50]. We demonstrate that they can be
described by a semiclassical model proposed in Ref. [21] in
a unified way and present a detailed comparison of different
aspects of the model with the experimental data.

The article is organized as follows. In Sec. II the experimen-
tal setup and in Sec. III the general theoretical framework for

1539-3755/2014/90(5)/052909(18) 052909-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.052909


BITTNER, BOGOMOLNY, DIETZ, MISKI-OGLU, AND RICHTER PHYSICAL REVIEW E 90, 052909 (2014)

foamfoam

antenna 2

antenna 1

rf cable

rf cable

alumina plate

table

x, y
z

5 mm

(a)

(b)

(c)

FIG. 1. (Color online) Experimental setup. (a) Photograph of the
experimental setup. (b) Sketch (not to scale) of the setup (reprinted
from Ref. [21]). (c) Drawings of the two antenna configurations used,
i.e., the antenna was either placed at the side wall of (left) or below
(right) the ceramic plate.

flat dielectric resonators as well as the ray-based model from
Ref. [21] are introduced. The measured frequency spectra are
discussed in Sec. IV. In Sec. V, the measurement of the field
distributions and their analysis is detailed. Section VI presents
an overview over the experimental data and an in-depth
comparison with the ray-based model. The length spectrum
and the trace formula for the dielectric square resonator are
discussed in Sec. VII, and Sec. VIII ends with some concluding
remarks.

II. EXPERIMENTAL SETUP

Figure 1 shows a photograph and a sketch of the experimen-
tal setup. A ceramic plate made of alumina (Deranox 995 by
Morgan Advanced Ceramics with 99.5% Al2O3 content) was
used as microwave resonator. The plate was manufactured
precisely to be square and to have sharp corners and edges
(the deviation of the angles from 90◦ is less than 0.1◦). It had
a side length of a = (297.30 ± 0.05) mm and a thickness of

b = (8.27 ± 0.01) mm. In the frequency range of interest its
refractive index was determined as n1 = 3.10 (see Sec. V).
The plate sat atop a d = 120.0 mm thick layer of foam
(Rohacell 31IG by Evonik Industries [51]) with refractive
index n2 = 1.02 and low absorption such that a free-floating
resonator was effectively simulated.

Two wire antennas protruding from coaxial cables were
coupled to the resonator and aligned perpendicularly to its
plane. A vectorial network analyzer (VNA, model PNA
N5230A by Agilent Technologies) was used to measure the
complex transmission amplitude S21 from antenna 1 to antenna
2. The excitation antenna 1 was put at different positions either
next to a side wall of the resonator or below it [see left and right
part of Fig. 1(c), respectively] in order to excite resonances
of specific symmetry classes (see Sec. IV). The receiving
antenna 2 could be moved around by a computer controlled
positioning unit, allowing to map out the field distributions
(see Sec. V). It had a configuration as shown in the right panel
of Fig. 1(c), though coming from above instead of from below,
with an additional Teflon hat in order to reduce the friction
with the ceramic plate. Before the measured frequency spectra
are discussed in Sec. IV, we will briefly review the general
modeling of flat dielectric resonators in the next section.

III. MODELING OF THE RESONATOR

A. Effective refractive index approximation

Electromagnetic resonators are described by the well-
known vectorial Helmholtz equation with appropriate bound-
ary conditions which is difficult to solve for general three-
dimensional (3D) resonators. The dielectric resonator con-
sidered in the present article has a cylindrical geometry and
is flat, that is, it has a thickness b of the order of the
wavelength λ or smaller and a transverse extension much larger
than the wavelength. Such resonators can be approximated
as two-dimensional (2D) systems [25,52,53] by introducing
an effective refractive index neff . In the framework of this
approximation, the resonator is considered as an infinite slab
waveguide where the phase velocity with respect to the xy

plane [cf. Fig. 1(b)] is c/neff with c the speed of light in vacuum
and the modes in the resonator can be separated into modes
with transverse magnetic (TM) and with transverse electric
(TE) polarization having a magnetic field �B and, respectively,
an electric field �E parallel to the plane of the resonator. The
ansatz for the field component Ez (Bz) inside the resonator for
modes with TM (TE) polarization is

Ez

Bz

}
= �(x,y)(A1e

ikzz + A2e
−ikzz), (1)

where A1,2 are constants and � is called the wave function
(WF) in the following. The z component kz of the wave vector
is related to neff via kz = k(n2

1 − n2
eff)

1/2, where n1 is the
refractive index of the resonator material and k is the wave
number that is related to the frequency via 2πf = ck. We only
consider modes guided by total internal reflection (TIR) here.
Their fields decay exponentially with exp{−|z|/(2 l2,3)} above
and below the resonator where the decay lengths are

l2,3 = (
2k

√
n2

eff − n2
2,3

)−1
. (2)
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Here n2,3 are the refractive indices of the material below and
above the resonator, respectively. Matching of the ansatz for
the fields inside and outside the resonator yields the quantiza-
tion condition for the effective refractive index [25,53,54]. The
vectorial Helmholtz equation for the resonator thus reduces to
the 2D scalar Helmholtz equation,(

� + n2
effk

2
)
�(x,y) = 0, (3)

for the WF �(x,y) associated with Ez (Bz) for TM (TE)
modes, where k‖ = neffk is the component of the wave vector
parallel to the plane of the resonator. The boundary conditions
are that � is continuous at the boundary of the resonator in
the case of both polarizations and that ∂�/∂n is continuous
for TM modes while μ(∂�/∂n) is continuous for TE modes,
with �n the normal vector of the boundary, μ = n−2

eff inside the
resonator, and μ = 1 outside. It should be noted, however, that
the neff approach, even though it turned out to be most suitable
for the present considerations, is an approximation which,
e.g., results in small deviations between the predicted and the
actual resonance frequencies (see Sec. VI C). Furthermore,
the behavior of the fields close to the boundary is not well
understood since there the approximation resulting from the
assumption that the resonator can be regarded as an infinite
slab waveguide no longer applies. The boundary conditions
for the field components Ez and Bz are actually coupled at the
side walls of the resonator [55] so there the separation into TM
and TE modes is only approximate.

For the resonator configuration depicted in Fig. 1, the
ansatz for the fields below the resonator needs to be slightly
modified due to the presence of the metal table. This yields the
quantization condition [54]

kb = {δ12 + δ13 + ζπ}/
√

n2
1 − n2

eff . (4)

where ζ = 0, 1, 2, . . . is the z quantum number counting the
number of field nodes in the z direction. The two phases are

δ13 = arctan

{
ν13

√
n2

eff − n2
3

n2
1 − n2

eff

}
(5)

and

δ12 = arctan

{
ν12

√
n2

eff − n2
2

n2
1 − n2

eff

h

(
d

2l2

)}
(6)

with ν1j = n2
1/n2

j for TM and ν1j = 1 for TE modes, respec-
tively. Here n2 = 1.02 is the refractive index of the foam and
n3 = 1 that of air. The function h(x) in δ12 is h(x) = tanh(x)
for TM and h(x) = coth(x) for TE modes, respectively, and
accounts for the boundary conditions at the metal table. For a
sufficiently short decay length l2, d � 2l2, the influence of the
optical table becomes negligible since h[d/(2l2)] ≈ 1.

In the experiments described in the present article, both TM
and TE modes with different z excitations, denoted as TMζ and
TEζ in the following, were observed, but the investigations
concentrate on the TM0 modes for which the best data is
available. Furthermore, the effective refractive index depends
strongly on the frequency. For the TM0 modes, neff takes values
between 1.5 and 2.5 in the frequency range of interest. In
fact, it was determined experimentally from the measured field
distributions, and the theoretical curve for neff(f ) was fitted

to the experimental data to obtain the refractive index n1 of
the alumina more precisely than provided by the manufacturer
(see Sec. V).

B. Ray-based model for the dielectric square resonator

In order to form a resonant state, a wave traveling along a
trajectory must be phase matched after one round trip through
the resonator. This leads to the approximate quantization
condition [21]

exp{2ikxa}r2(αx) = 1,
(7)

exp{2ikya}r2(αy) = 1.

The momentum vector components kx,y of the wave are
related to the wave number via k = (k2

k + k2
y)1/2/neff , and

fcalc = ck/(2π ) is the corresponding resonance frequency. In
the case of TM modes (s polarization), the corresponding
Fresnel coefficients,

r(α) =
neff cos(α) −

√
1 − n2

eff sin2(α)

neff cos(α) +
√

1 − n2
eff sin2(α)

, (8)

account for the (partial or total) reflections at the cavity
boundaries.

We use the Fresnel reflection coefficients for an infinite
interface because those for a finite interface are nontrivial.
Nevertheless, the agreement between the model and the
experiment turned out to be good. The angles of incidence with
respect to normal vectors on the boundaries perpendicular to
the x axis (respectively, the y axis) are

αx,y = arctan[Re(ky,x)/Re(kx,y)]. (9)

It should be noted that the dependence of the effective refrac-
tive index on the frequency (respectively, the wave number)
must be taken into account when solving the quantization
condition, Eq. (7). Its solutions can be written as

kx = {πmx + i ln[r(αx)]}/a,
(10)

ky = {πmy + i ln[r(αy)]}/a .

Accordingly, each mode can be labeled by its symmetry
class and the x and y quantum numbers mx,y = 0,1,2, . . . ,
where the case (mx,my) = (0,0) must be excluded. This was
confirmed experimentally in Ref. [21], i.e., the resonant modes
of the dielectric square resonator are associated with specific
classical tori that consist of nonclosed trajectories having the
same angles of incidence. Note that even though only the TM
modes are discussed in this paper, the model should also apply
for TE modes.

The model WFs �mod(x,y) are composed of a superposition
of eight plane waves with wave vectors (±kx,±ky) and
(±ky,±kx) determined by the set of classical trajectories that
they are related to. The relative phases of the different plane
wave components are fixed by the symmetry of the WF.
Since the square resonator belongs to the point group C4v , its
modes belong to six different symmetry classes [40,56,57]. An
overview over the different symmetry classes (i.e., irreducible
representations of the point group C4v) and the corresponding
model WFs is given in Table I. The first column gives the
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TABLE I. Symmetry classes, quantum numbers, and model WFs. The first column denotes the symmetry with respect to the diagonals,
the second column is the symmetry with respect to both the horizontal and vertical axis, the third column is the parity of mx + my , the fourth
column the parity of mx and my [which is the same for (++) and (−−) modes but differs for (+−) and (−+) modes], the fifth column is the
Mulliken symbol, and the sixth column gives the corresponding model WF (adapted from Ref. [21]).

Diagonal Horizontal/vertical Parity of Parity of Mulliken Model wave function
symmetry symmetry mx + my mx , my symbol

(++) + Even Even A1 �mod(x,y) = cos(kxx) cos(kyy) + cos(kyx) cos(kxy)
(++) − Even Odd B1 �mod(x,y) = sin(kxx) sin(kyy) + sin(kyx) sin(kxy)
(−−) + Even Even B2 �mod(x,y) = cos(kxx) cos(kyy) − cos(kyx) cos(kxy)
(−−) − Even Odd A2 �mod(x,y) = sin(kxx) sin(kyy) − sin(kyx) sin(kxy)
(+−) None Odd E �mod(x,y) = sin(kxx) cos(kyy) + cos(kyx) sin(kxy)
(−+) None Odd E �mod(x,y) = sin(kxx) cos(kyy) − cos(kyx) sin(kxy)

reflection symmetry with respect to the diagonals of the square,
(s1s2) with s1,2 ∈ {+,−}, where s1 = +1 (s2 = +1) when the
WF of the mode is symmetric, and s1 = −1 (s2 = −1) when it
is antisymmetric with respect to the diagonal x = y (x = −y).
The second column denotes the mirror symmetry sx (sy)
with respect to the x = 0 (y = 0) axis, where sx = sy = +1
(sx = sy = −1) for symmetric (antisymmetric) WFs. The third
and fourth columns contain the conditions for the parity of the
quantum numbers for the different symmetry classes. Each
mode can thus be labeled unambiguously by (mx,my,s1s2).
In the fifth column the Mulliken symbols for the different
representations of the group C4v are given [57]. The sixth
column contains the model WFs �mod(x,y). The notations
(mx,my,s1s2) and (my,mx,s1s2) refer to the same mode, where
we choose mx � my .

The modes of the E representation [i.e., with (+−) and
(−+) symmetry] are degenerate due to their symmetry [56].
Therefore, for the E representations the assignment of the
model WFs is not unambiguous, and other WFs belonging to
these representations can be constructed as superpositions of
the model WFs given in Table I. This includes, in particular,
WFs that are symmetric with respect to the horizontal axis
and antisymmetric with respect to the vertical one (or vice
versa) but have no well-defined symmetry with respect to
the diagonals. Actually the shape of the WFs of the E

representation depends, e.g., on the manner of excitation
or on small perturbations (see Sec. VI B). The model also
predicts that the modes (mx,my, − −) and (mx,my, + +) are
degenerate. In practice, however, there is a small difference
between their resonance frequencies that stems from the fact
that the (−−) modes have a vanishing WF at the corners,
whereas that of the (++) modes is nonvanishing. Furthermore,
modes with mx = my always have (++) symmetry.

We define the overlap between two (normalized) WFs �1,2

as the modulus squared of the overlap coefficient,

C12 = 〈�1|�2〉 =
∫ a/2

−a/2
dx

∫ a/2

−a/2
dy �∗

1 (x,y)�2(x,y). (11)

It should be noted that the different model modes are not
exactly orthogonal; however, their mutual overlaps were
always smaller than 1% in the cases considered here. The
family of trajectories to which a mode is related, and hence the

mode itself, can be characterized by the angle of incidence,

αinc = min{αx,αy} ≈ arctan(mx/my), (12)

where 0◦ � αinc � 45◦. Modes with mx ≈ my are therefore
associated to trajectories close to the family of the diamond
periodic orbit, i.e., POs that are reflected once at each side
of the resonator with an angle of incidence of 45◦. This type
of modes is the most commonly observed one [35,41,46,58],
in particular for systems with a relatively low refractive
index [25,42,45,59]. Models based on the diamond orbit can
be derived on the basis of that introduced in the present article.
This will be further discussed in Sec. VI A (see also Ref. [40]).

The solutions kx,y of Eq. (7) are in general complex, i.e.,
the modes have a finite lifetime due to refractive losses. The
associated quality factors are

Q = −Re(fcalc)/[2 Im(fcalc)] . (13)

If αinc > αcrit = arcsin(1/neff), the trajectories are confined
in the resonator by total internal reflection (TIR). Then
the Fresnel coefficients r(αx,y) have unit modulus, and the
terms i ln[r(αx,y)] in Eq. (10) are purely real and signify
the phase shift at the reflection. Hence the model predicts
for the associated modes purely real momentum vectors and
wave functions, that is, infinite lifetimes. In reality, however,
this is not the case due to diffractive losses that are not
taken into account by the model. An extension that includes
these will be published elsewhere [60]. Nonetheless, because
refractive losses are absent for modes confined by TIR they
have longer lifetimes and smaller imaginary parts of kx,y

than those with αinc < αcrit. Actually, all modes that were
observed experimentally belong to the set of confined modes
(see Sec. VI C) and even though the model cannot correctly
predict the imaginary parts of kx,y , the model WFs agree well
with the measured ones as will be shown in Sec. VI A.

IV. MEASURED FREQUENCY SPECTRA

Four examples of frequency spectra measured with different
positions of the antennas are shown in Fig. 2. The positions
of the antennas that were used are indicated in the insets
as crosses. When the excitation antenna was placed at an
edge or corner of the cavity, the antenna was coupled to the
resonator as shown in the left panel of Fig. 1(c), otherwise
as depicted in the right panel. The spectra display a large
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FIG. 2. Measured frequency spectra for different antenna combinations. The resonances identified as TM0 modes are indicated by the
arrows. The insets indicate the positions of the antennas at the side walls, respectively, below the cavity. (a) The excitation antenna was placed
a/4 above the lower left corner while the receiving antenna was placed a/4 below the upper right corner. (b) The excitation antenna was
positioned at the upper left and the receiving antenna at the lower right corner. (c) The excitation antenna was put beneath the center of the
cavity and the receiving antenna at the upper left corner. (d) The excitation antenna was placed at the midpoint of the left and the receiving
antenna at the midpoint of the right cavity edge.

number of resonances with quality factors in the range of
Q = 500–2000. The latter are bounded due to absorption in the
ceramic material and coupling losses induced by the antennas.
The resonance density grows with increasing frequency, and
therefore more and more resonances are partially overlapping.
The spectra also feature a background that varies slowly on
the scale of 1–2 GHz and results from direct transmission
processes between the antennas. The polarization (TM or TE)
of the resonant modes was determined with the perturbation
technique detailed in Ref. [54]. Those that were identified
as TM0 modes are indicated by arrows. In the considered
frequency range from fmin = 5.5 GHz to fmax = 10.0 GHz
(where fmax corresponds to ka = 62.3) most modes were of
the TM0 type. Modes with higher z excitation, i.e., TM1, 2,
were observed only above ≈8 GHz. In addition, several TE
modes were found, even though the vertical wire antennas
couple preferentially to TM modes. That these antennas can
also excite TE modes was already observed in Ref. [53].

A resonant state with TM polarization only can be excited if
its electric field component Ez is nonvanishing at the position
of one of the antennas [61]. Thus the positions of the antennas
determine the symmetry class of the resonant modes that can be
excited and observed. Accordingly, the antenna configurations

(a)–(d) [corresponding to the insets in Fig. 2(a)–Fig. 2(d)]
can couple only to modes of certain symmetry classes.
This becomes noticeable in the total number of TM0 modes
that were observed in the corresponding spectra. Antenna
configuration (b), for example, can only couple to modes with
nonvanishing wave function along the diagonal x = −y, i.e.,
with s2 = +1. These are the modes belonging to the (++)
and (−+) symmetry classes (A1, B1, and E representations).
Configuration (c) only allows modes belonging to the A1

representation. It corresponds to the most restricted case and
thus leads to the sparsest spectrum of the four. Configuration
(d) only couples to modes that are not antisymmetric with
respect to the horizontal axis, that is, the A1, B2, and E

representations. The antennas of configuration (a) finally can
couple to modes of all symmetry classes since they are
not situated on any symmetry axis of the square resonator.
Correspondingly, the spectrum shown in Fig. 2(a) exhibits the
largest resonance density of TM0 modes of the four spectra.

As already mentioned in Sec. III B, the doubly degenerate
modes of the E representation can in general exhibit wave
functions with various mirror symmetries depending on the
excitation scheme. Antenna configuration (b) can only couple
to modes with s2 = +1, and the modes of the E representation
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excited by it thus must be represented by the model WFs
given in the last line of Table I. Configuration (d), on the
other hand, selects WFs that are symmetric with respect
to the horizontal axis and are therefore antisymmetric with
respect to the vertical axis while having no defined symmetry
with respect to the diagonal axes. These WFs correspond
to specific superpositions of the model WFs given for the
modes of the E representation. The modes of that type
excited by antenna configuration (a) have no defined symmetry
with respect to any of the symmetry axes and therefore also
correspond to superpositions of the model WFs. This will be
further discussed in Sec. VI B. The next section describes the
technique used for the measurement of the WFs.

V. MEASUREMENT AND ANALYSIS
OF FIELD DISTRIBUTIONS

The field distributions of the resonant states inside the
resonator are measured by the scanning antenna method. The
position of one antenna, 1, is kept fixed while the other one, 2,
is moved along the resonator surface. This technique exploits
that at the resonance frequency fj of the resonant state j the
transmission amplitude S21 between the vertical wire antennas
1 and 2 is related to the electric field distribution Ez at the
antenna positions �r1,2 by [61]

S21(fj ) ∝ Ez(�r2) Ez(�r1) . (14)

Hence S21(�r2,fj ) is directly proportional to the electric field
distribution Ez(�r2) and we may identify it with the wave func-
tion of the resonance j , �

(j )
expt[�r2 = (x,y)], for TM-polarized

modes. Both the amplitude and phase of the signal transmitted
from antenna 1 to antenna 2, and thus those of the complex
WFs �expt, are measured.

It should be noted that the moving antenna induces a
frequency shift and a broadening of the resonances depending
on its position [61,62]. In practice, however, these effects are
sufficiently small because the antennas only couple to the
evanescent fields above and below the resonator so we can
nonetheless consider S21(�r2,fj ) as the measured WF in good
approximation. The relation Eq. (14) between the transmission
amplitude and the WF of a resonance breaks down, however,
in the case of strongly overlapping or degenerate resonances
[62–64]. This applies especially to the case of the doubly
degenerate modes of the E representation. In this case the
problem can be circumvented by placing the excitation antenna
on a symmetry axis of the resonator, e.g., use antenna
configurations (b) or (d), so only the mode of the degenerate
pair that does not have a nodal line on this axis can be excited.

As noted above, the wire antennas also couple to the
TE-polarized resonant states. We suspect that the wire antennas
also slightly couple to other components of the electric or
magnetic field vectors. Since the details of the coupling
mechanism are not understood for the TE modes; however, we
cannot properly interpret the meaning of S21(�r2,fj ) in those
cases and thus discuss only the TM modes in the following.
Furthermore, direct transmission processes between the anten-
nas may contribute to the measured WFs.

The WFs were measured on a Cartesian grid covering
the whole surface of the resonator with a resolution of
�a = a/150 ≈ 2 mm [a/120 ≈ 2.5 mm in the case of antenna

kx (m−1)

k
y

(m
−

1
)

-500 -250 0 250 500
-500

-250

0

250

500

0

max

|Ψ̃
e
x
p
t
(k

x
,k

y
)|

αinc

k

x (mm)

y
(m

m
)

-100 0 100

-100

0

100

0

max

|Ψ
e
x
p
t
(x

,y
)|

(a)

(b)

FIG. 3. (Color online) Measured wave function (a) and momen-
tum distribution (b) of a TM0 resonance at 6.835 GHz. The modulus of
�expt(x,y) and �̃expt(kx,ky) is shown in false colors, respectively. The
straight white lines in panel (b) indicate the eight major momentum
components, the white circle indicates their modulus k‖, and αinc

is the angle of incidence of the corresponding family of classical
trajectories. Adapted from Ref. [21].

configuration (a)]. An example of a measured WF for a
TM0 resonance at 6.835 GHz is presented in Fig. 3(a). The
very regular pattern of the WF is due to the relation of the
resonant state to a specific set of classical orbits, which can be
best understood by considering the corresponding momentum
distribution (MD) [21,65–67]. It is obtained from the spatial
Fourier transform (FT) of the WF inside the resonator,

�̃(kx,ky) =
∫ a/2

−a/2
dx

∫ a/2

−a/2
dy �(x,y)e−i(kxx+kyy). (15)

The MDs of the measured WFs are calculated using the
FFT algorithm and hence have a resolution of �kx,y = 2π/a.
Note that the MDs can also be directly observed in the far-
field of vertical-cavity surface-emitting lasers [66] or optical
fibers [67,68]. The MD corresponding to the resonance at
6.835 GHz is shown in Fig. 3(b). It shows a highly symmetric
pattern of eight momentum vectors (indicated by the straight
white lines) on which it is concentrated. These correspond
exactly to one family of orbits defined by a common angle
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of incidence (indicated as αinc in the figure) to which the WF
is related. This demonstrates the validity of our ansatz for
the model WFs as a superposition of eight plane waves. As
can be seen in Fig. 3(b) the MD also features a structure of
faint horizontal and vertical lines connecting the eight major
momentum components. They can be considered as artifacts
related to the finite size and resolution of the measured WFs for
the following two reasons. First, for a finite sampling rate of
x the FFT of a complex exponential function exp(ikxx) shows
a peak of finite width around the momentum kx . Second, the
width of the peak depends on how close the momentum kx is
to an integer multiple of the momentum resolution �kx .

The modulus of the dominant momentum components is
k‖ = [k2

x + k2
y]1/2 = neffk. Therefore the effective refractive

index neff at the resonance frequency can be determined from
the distances of the maxima of the MD from the center. The
thus-determined effective refractive index is related to the TM0

slab waveguide modes and corresponds to the first branch
of data points displayed in Fig. 4(a). The data points scatter
only slightly around the white line, which is the theoretical
curve of neff given by Eq. (4) for n1 = 3.1. This value for the
refractive index of the alumina was obtained as follows: The
measured values of neff were inserted into Eq. (4), which was
subsequently solved for n1. These values of n1 are shown in
Fig. 4(b). In the range of 5–20 GHz, the data points for n1

scatter only little around the mean value of

〈n1〉 = 3.100 ± 0.025. (16)

The data show no significant frequency dependence, and
therefore we can neglect any dispersion of the refractive index.
The outliers below 5 GHz are due to the finite resolution of the
MDs that has a particularly strong influence for small values
of k‖, respectively, neff . The value for n1 given in Eq. (16)
was then used to calculate the white line shown in Fig. 4(a) via
Eq. (4). These values for n1 and neff , respectively, are used in all
further calculations throughout this article. The error band of
the calculated neff corresponding to the standard deviation of n1

is indicated by the gray lines. The sole unknown parameter here
is n1 since the thicknesses of the alumina plate and the foam, b
and d, are known with high precision. The refractive index of
the foam, n2, is also not known precisely, but the dependence of
n1 on n2 is negligible, so it could be considered as a constant. It
should be noted that neff can be determined from the measured
WFs even in a regime of strongly overlapping resonances (i.e.,
also above 10 GHz) since the phase velocity in the resonator
slab is identical for all resonances of the same polarization and
z excitation.

The determination of the MDs turned out to be also useful
for the assignment to a symmetry class and finally a model
WF of measured WFs that do not exhibit a clear structure.
An example for such a WF, that of a TM0 resonance at
9.146 GHz, is presented in Fig. 5(a). Its pattern is overlain by
a structure of concentric circles centered around the position
of the excitation antenna at the midpoint of the left edge of the
resonator. The cause of this pattern becomes apparent in the
corresponding MD shown in Fig. 5(c). It features eight points
of high intensity lying on a circle with radius kneff(TM0),
indicated by the outer white circle, like the MD shown in
Fig. 3(b). In contrast to the latter, however, the MD in Fig. 5(c)
also features other significant contributions to the MD. These

2 4 6 8 10 12 14 16 18 20
2.8

2.9

3.0

3.1

3.2

3.3

3.4

Frequency (GHz)

R
ef

ra
ct

iv
e

in
d
ex

n
1

2 4 6 8 10 12 14 16 18 20
1.0

1.4

1.8

2.2

2.6

3.0

Frequency (

(a)

(b)

GHz)

E
ff
ec

ti
v
e

re
fr

a
ct

iv
e

in
d
ex

n
e
ff

TM0

TM1

TM2

FIG. 4. (a) Measured effective refractive index. The black data
points were obtained from the experimental momentum distributions
(see text) and correspond to the three waveguide modes TM0, TM1,
and TM2. The white lines were calculated from the theoretical
expression for neff , Eq. (4), with values for n1 deduced from the
experimental data. The gray lines indicate the one sigma error interval
of neff . (b) Refractive index n1 of the alumina deduced from the
measured effective refractive index for the TM0 modes (black points).
The white line indicates the mean value of n1 in the range of 5–20 GHz
and the gray bar the standard deviation. Note that some data points
below 5 GHz are outside of the displayed range.

are concentrated on the inner white circle in Fig. 5(c). They
stem from propagating, nonresonant TM1 slab waveguide
modes, and the radius of this circle is k‖ = kneff(TM1). Further
contributions inside the inner circle are attributed to direct
transmission between the antennas. The measured WF in
Fig. 5(a) is hence a superposition of the resonant TM0 mode
and propagating TM1 waves. Such an interference effect was
not observed in Fig. 3(a) since the corresponding mode is
below the cut-off frequency of the TM1 mode, fco(TM1) ≈
7.34 GHz. In general, however, the wire antennas excite
waves in all available TM waveguide modes, where the cut-off
frequency of the TM2 modes is fco(TM2) ≈ 13.53 GHz.
Accordingly, also the effective refractive indices of the TM1,2

modes can be measured and correspond to the second and
third branch of data points, respectively, in Fig. 4(a). The
resulting values of n1 for the TM1 mode in the range of
11–20 GHz and for the TM2 mode in the range of 17–
20 GHz are 〈n1〉 = 3.098 ± 0.011 and 〈n1〉 = 3.093 ± 0.007,
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FIG. 5. (Color online) (a) Measured WF of a TM0 resonance at
9.146 GHz. The excitation antenna was placed at the midpoint of
the left side. See Fig. 3(a) for the color scale. (b) Corresponding
filtered WF. (c) Corresponding momentum distribution. The outer
white circle indicates kneff (TM0) and the inner one kneff (TM1). See
Fig. 3(b) for the color scale. (d) Filtered momentum distribution. The
dashed white circle indicates the filter radius kfilt.

respectively. These values are in very good agreement with the
value deduced from the TM0 modes given in Eq. (16).

The excitation of and hence the interference between
different waveguide modes in the resonator is unfortunately
unavoidable with a simple antenna design as was used for
the experiment presented in this article. Furthermore, the
coupling of a wire antenna situated above or below the
resonator to the higher TM modes is generally stronger than
to the TM0 mode. The reason is that the decay lengths
of the higher-excited modes are larger since their effective
refractive indices are smaller than that of the TM0 mode [see
Eq. (2) and Fig. 4(a)]. Therefore, the field distributions of
the TM0 modes that we are interested in are increasingly
obscured at higher frequencies. Since, however, the different
waveguide modes are well separated in momentum space the
higher TM modes can be filtered out of the measured WFs
with relative ease. The part of the MD inside a circle with
radius kfilt = k[0.75 neff(TM0) + 0.25 neff(TM1)] is simply set
to zero. In Fig. 5(d), the boundary of this circle is indicated by
the dashed white circle. The filter radius is chosen relatively
close to k‖ to ensure that all contributions of other modes are
cut out without affecting the field distribution originating from
the resonant mode itself. The filtered WF shown in Fig. 5(b)
was obtained by computing the inverse FT. The concentric
circles around the excitation antenna have disappeared and
predominantly the field distribution of the resonant mode itself
remains.

This filtering technique enables us to procure high-quality
data in frequency regimes where this would normally be
impossible. It should be noted that only filtered WFs are shown
and used in the following analyses. Also the results presented
in Ref. [21] were based exclusively on filtered WFs. Evidently,

the same filter technique can be used to isolate the TMζ>0

contributions as well. Indeed, also some TM1 resonant states
were found and could be assigned to model modes (not shown
here).

In conclusion, the analysis of the MDs of the resonant states
leads to a profound understanding of the measured WFs. It
also demonstrates directly the existence of different waveguide
modes in a thin resonator and the validity of the calculation
of the corresponding effective refractive indices. It should be
emphasized that the techniques described in this section can
be applied to any flat microwave resonator. In particular, the
determination of neff and successively of n1 directly from
the measured WFs was used, e.g., to validate the values of
the refractive indices used in Refs. [21,53,54].

VI. COMPARISON OF EXPERIMENTAL DATA
AND MODEL CALCULATIONS

A. Identification with model modes

Figure 6 shows several examples of measured WFs (left
subpanels) and the corresponding model WFs (right sub-
panels). The latter could be unambiguously identified by
calculating the overlaps |〈�expt(f )|�mod(mx,my,s1s2)〉|2 with
several trial WFs. Generally, this was possible if the overlap
with just one model WF was greater than 40% while the
overlaps with all other eligible model functions were negligible
(cf. Ref. [21]). The overlaps in the cases presented in Fig. 6
are in the range of 60% to 85%. On average, the overlaps
are somewhat larger for the (−−) modes than for the (−+)
and (++) modes, which explains why the measured and
model modes shown in the first row of Fig. 6 exhibit a
better visual agreement than those shown in the other two
rows. Some of the TM0 modes indicated by the arrows in
Fig. 2 could not be clearly assigned to one model WF because
of accidental degeneracies (or near degeneracies) with other
modes. This effectively limited the frequency range in which
the measured modes could be unambiguously related to model
WFs to fmax = 10 GHz. In the following we restrict our
discussion to those that were clearly identified as explained
above, consisting of 166 resonant states in total.

It is instructive to define a different set of quantum numbers
(m,p) via m = mx + my and p = |my − mx |/2. We call m the
longitudinal and p the transverse quantum number because
they correspond to the momentum components parallel and
perpendicular to the periodic orbit channel of the diamond
PO [46]. The possible values of the quantum numbers m

and p depend on the symmetry class of a mode (see also
Table I). For (−−) modes, m is even and p = 1,2,3, . . . . The
WFs presented in Figs. 6(a)–6(c) have transverse quantum
numbers p = 1, 2, and 3, respectively. For (−+) and (+−)
modes, m is odd and p = 0.5,1.5,2.5, . . . . The WFs in
Figs. 6(d)–6(f) have transverse quantum numbers p = 0.5,
1.5, and 2.5, respectively. For (++) modes, finally, m is even
and the transverse quantum number can take the values of
p = 0,1,2, . . . . The WFs in Figs. 6(g)–6(i) have p = 1, 2, and
3, respectively. The modes with p = 0, i.e., mx = my , are a
special case (not shown here). They can be described only by
a superposition of two model WFs with (++) symmetry. The
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

6.824 GHz (17, 19,−−) 6.835 GHz (16, 20,−−) 7.536 GHz (19, 25,−−)

7.949 GHz (24, 25,−+) 7.603 GHz (21, 24,−+) 7.615 GHz (20, 25,−+)

7.332 GHz (20, 22,−+) 7.871 GHz (22, 26,−+) 7.361 GHz (18, 24,−+)

FIG. 6. (Color online) Measured WFs (left subpanels) and corresponding model WFs (right subpanels). See Fig. 3(a) for the color scale.
The corresponding measured resonance frequencies (left subpanels) and quantum numbers (right subpanels) are indicated. The WFs presented
in (a)–(c) have (−−) symmetry and were excited by the fixed antenna placed a/4 above the lower left corner, the WFs in (d)–(f) have (−+)
symmetry and were excited by the fixed antenna placed at the upper left corner, and the WFs in (g)–(i) have (++) symmetry and were excited
by the fixed antenna placed in the middle of the resonator.

reason is a non-negligible coupling between the (mx,my,++)
and the (mx − 2,my + 2,++) modes [21,69].

Some simplified models [25,40,46] concentrate on modes
related to families of orbits close to the diamond PO since those
modes are usually the most prominent ones in microlaser and
-cavity experiments. In these models a wave is embedded in the
periodic orbit channel parallel to the family of the diamond PO
that is then folded back to obtain the actual model WF [24,46].
The embedded wave is characterized by one momentum vector
component parallel and one perpendicular to the PO, kχ and
kη, respectively. These are quantized via [25,46]

pokχ = 2πm + 8δ (17)

and

po

4
kη = pπ, (18)

where po = 2
√

2a is the length of the diamond PO. The term
8δ corresponds to the phase shifts at the four reflections with
αinc = 45◦, where

δ = − 1
2 arg[r(45◦)] = arctan

(√
n2

eff − 2/neff
)
. (19)

This model gives the resonance frequency as fcalc = c[k2
χ +

k2
η]1/2/(2πneff). Actually, for αinc = 45◦ it yields the same

resonance frequencies and WFs as the model presented in
Sec. III B. For small p, the angle of incidence αinc does
not deviate strongly from 45◦ and hence in these cases both
models predict almost the same resonance frequencies and

the model WFs are practically indistinguishable. This is the
case, for example, for the modes presented in Figs. 6(a)–6(c)
that are associated to trajectories with angles of incidence
αinc = 42.0◦, 39.1◦, and 37.6◦, respectively. The deviations
between the two models increase with p, i.e., with that of
αinc from 45◦, until the diamond-PO-based model is no longer
applicable. In summary, the diamond-PO-based models are
contained as a limiting case in our ray-based model which, in
contrast to the former, is valid for all types of modes.

B. Symmetry properties of the measured wave functions

The symmetry of the resonant modes that are excited
strongly depend on the position of the excitation antenna as
discussed in Sec. IV. Table II gives an overview of the number
of modes with a given symmetry that were unambiguously

TABLE II. Overview of the set of unambiguously identified
modes. The columns give the number of modes found with respect
to their symmetry class and the rows the number with respect to the
position of the excitation antenna. See the insets of Fig. 2 for an
illustration of the antenna positions.

Antenna position Total (−−) (−+) (++)

a/4 from corner 27 25 – 2
Corner 62 – 56 6
Middle 53 – – 53
Midpoint of side 24 23 – 1
Total 166 48 56 62

052909-9



BITTNER, BOGOMOLNY, DIETZ, MISKI-OGLU, AND RICHTER PHYSICAL REVIEW E 90, 052909 (2014)

 

 

5 6 7 8 9 10
0

20

40

60

80

100

Frequency (GHz)

1
0
2
|C

∗∗
|2

5 6 7 8 9 10
0

20

40

60

80

100

Frequenc

(a)

(b)

y (GHz)

1
0
2
|C

s
1
s
2
|2

FIG. 7. (a) Symmetry ratios |Cs1s2 |2 of resonant states unambigu-
ously assigned to (mx,my,s1s2) modes versus the frequency. The data
set comprises modes belonging to the A1,2 and B1,2 representations as
well as to the E representation with (−+) symmetry, the latter being
excited by an antenna at the corner of the resonator. (b) Symmetry
ratios of the TM0 modes belonging to the E representation where the
excitation antenna was placed at the midpoint of the left edge [cf.
Fig. 2(d)]. The different symmetry ratios are marked by + for |Cy+|2,
◦ for |Cx−|2, × for |C−+|2, and � for |C+−|2.

identified for the different positions of the excitation antenna.
The set contains no modes with (+−) symmetry since these
are identical to the modes with (−+) symmetry except for a
rotation by 90◦ and hence measurements with a corresponding
antenna position were omitted. While the WFs are perfectly
(anti-)symmetric with respect to the various symmetry axes in
theory, the measured WFs do not exhibit a perfect symmetry
due to unavoidable experimental imperfections. These can, in
general, be perturbations of the resonator geometry or, in our
case, inaccuracies in the positioning of the excitation antenna
and small contributions from nearby resonances with different
symmetries.

The actual degree of symmetry of a measured WF can be
quantified by the symmetry ratios |Cs1s2 |2 defined via

Cs1s2 = 〈
�

(s1s2)
expt

∣∣�expt
〉
, (20)

where �
(s1s2)
expt is the part of �expt with (s1s2) symmetry, given

by

�(s1s2) = 1
4 (1 + s1P1)(1 + s2P2)�. (21)

The operator P1 (P2) mirrors a WF with respect to the x = y

(x = −y) axis and 1 is the identity operator. By definition,
|C−−|2 + |C−+|2 + |C+−|2 + |C++|2 = 1.

The values of |Cs1s2 |2 of the considered 166 modes are
shown in Fig. 7(a). The values are typically in the range of 75%
to 95%. The maximal values obtained decrease with increasing

frequency because the resonant states become more sensitive to
geometric deviations with decreasing wavelength. The overlap
of a measured WF with a model WF having (s1s2) symmetry
must of course be smaller or equal to the corresponding
symmetry ratio |Cs1s2 |2. This additionally impedes the clear
identification of modes with increasing frequency.

The symmetry ratios |Cxsx
|2 and |Cysy

|2 with respect to the
vertical and horizontal axes, respectively, can be calculated in
the same manner, where sx,sy ∈ {+,−} and the corresponding
(anti-)symmetric parts of the WFs are

�(xsx ) = 1
2 [�(x,y) + sx�(−x,y)] (22)

and

�(ysy ) = 1
2 [�(x,y) + sy�(x, − y)] . (23)

Similarly, |Cx+|2 + |Cx−|2 = 1 and |Cy+|2 + |Cy−|2 = 1. The
symmetry ratios |Cx+|2 and |Cy+|2 of the modes assigned
to the A1 and B2 representations as well as the symmetry
ratios |Cx−|2 and |Cy−|2 for those belonging to the A2 and B1

representations were in the range of 90–100% when placing
the excitation antenna on the horizontal or vertical symmetry
axis (i.e., in the middle of the square or at the midpoint of an
edge) and a bit smaller (75–90%) otherwise. So the measured
WFs of the modes with (−−) and (++) symmetry exhibit
the expected symmetries to a high degree, regardless of the
position of the excitation antenna.

The case of the modes belonging to the E representation is
more complicated. When the excitation antenna was placed at
a corner of the resonator [see inset of Fig. 2(b)], they exhibited
a high degree of (−+) symmetry as shown in Fig. 7(a). In
contrast, the values of |Cx±|2 and |Cy±|2 were around 50% (not
shown), i.e., they did not have a well-defined symmetry with
respect to the vertical and horizontal axes as indicated in the
last two rows of Table I and, consequently, could be identified
with these model WFs. When the excitation antenna was put
at the midpoint of the left edge [see inset in Fig. 2(d)], the
situation was reversed. This is exemplified in Fig. 7(b) where
the different symmetry ratios of the modes belonging to the
E representation1 are shown. They all have a high symmetry
ratio |Cy+|2 in the range of 90–100%. The symmetry ratios
|Cx−|2 have a similarly high level as is expected since modes
of the E representation that are symmetric (antisymmetric)
with respect to one symmetry axis must be antisymmetric
(symmetric) with respect to the perpendicular one. In contrast,
the symmetry ratios |C−+|2 (×) and |C+−|2 are around 50%.
Consequently, these modes can neither be identified with
the (+−) nor with the (−+) model WFs listed for the E

representation in Table I. In accordance with this observation,
the overlaps of the measured WFs with the model WF having
(−+), respectively, (+−) symmetry are approximately equal.
Similarly, when the excitation antenna was placed a/4 away
from a corner, i.e., not on any of the symmetry axes, the
measured WFs belonging to the E representation did not
exhibit any well-defined symmetry since none was induced
by the position of the antenna, that is, they also could not

1These modes are not part of the data set of the 166 unambiguously
identified modes.
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FIG. 8. Overview of the identified measured resonances. The
angle of incidence αinc of the corresponding set of classical trajectories
is plotted versus the measured resonance frequency. The different
symbols indicate the symmetry class, marked by � for (++), ×
for (−−), and ◦ for (−+). The quantum numbers (mx,my) of
some resonances are indicated. The horizontal dotted line indicates
the series of resonances with transverse quantum number p = 0.5,
and the vertical dotted line indicates the series with longitudinal
quantum number m = 35. The solid line indicates the critical angle for
TIR, αcrit.

be identified with one of the model WFs given in the last
two rows of Table I. Therefore in order to observe modes
exhibiting clear (−+) [or (+−)] symmetry, one antenna had
to be positioned at a corner of the resonator (cf. Table II). In
conclusion, the symmetry properties of the modes belonging
to the E representation are determined solely by the position
of the excitation antenna. The reason is that these modes come
in degenerate pairs and there is hence a degree of freedom
as concerns the symmetry of their WFs. In contrast, the
nondegenerate (−−) and (++) modes exhibit their symmetries
independently of the antenna position, i.e., they are only due
to the geometry of the resonator itself.

C. Review of the experimental data

The angle of incidence is a constant of motion that defines
the classical tori. An overview of the set of 166 resonances
listed in Table II is presented in Fig. 8. Each of the associated
modes corresponds to a certain set of classical trajectories.
The corresponding angles of incidence αinc are given as a
function of the resonance frequency. The different symbols
correspond to the different symmetry classes. It should be
noted that the (++) and the (−−) modes are not degenerate
although their resonance frequencies seem to be identical on
the scale of the figure. The modes form a regular, gridlike
pattern in this diagram. This can be regarded as an indication
that the dielectric square resonator behaves like an integrable
system [70]. The gridlike structure is exemplified by the
horizontal dotted line that indicates a series of modes with fixed
transverse quantum number p = 0.5 and by the vertical dotted
line that indicates a series of modes with fixed longitudinal
quantum number m = 35. The series with αinc = 45◦ forming
the top line of modes consists of those with mx = my ,
i.e., p = 0. They all showed coupling to the neighboring
(mx − 2,mx + 2, + +) modes as described in Ref. [21]. It
should be noted that a series of modes with constant transverse
quantum number p close to 0 has a free spectral range (FSR)

of �k = km+2,p − km,p ≈ √
2π/(aneff). In experiments with

optical microcavities or -lasers, often a series of resonances
with half this FSR is observed [25,38,42,71]. Such a series
must therefore consist alternately of modes with either (−−) or
(++) symmetry and of modes with (−+) or (+−) symmetry,
i.e., of modes belonging to two families with different p values.

There are many vacancies in the diagram since not all modes
could be found experimentally, especially above 9 GHz, due to
the deterioration of the data quality. Furthermore, all observed
modes (with two exceptions) have an angle of incidence that
is larger than the critical angle αcrit indicated by the solid
line in Fig. 8. The model of course also predicts modes that
are not confined by TIR; however, these cannot be observed
in an experiment with a passive resonator since refractive
losses render them too short lived. This is also the reason
why modes could only be clearly identified for frequencies
above fmin = 5.5 GHz, which is approximately the frequency
at which neff reaches the value of

√
2 and hence αcrit drops

below 45◦ [cf. Fig. 4(a)]. Furthermore, while for frequencies
above and close to fmin only one or two series of modes with
constant p lie above the critical angle and are observed, more
series with higher transverse quantum number appear with
increasing frequency since neff grows and, consequently, αcrit

decreases. This effect leads to the increase in the resonance
density observed in the measured spectra in Fig. 2.

It should be noted that the model predicts an infinite lifetime
for all modes with αinc � αcrit, i.e., in particular for those that
are observed experimentally. The reason for this is that the
underlying calculations are based on the Fresnel coefficients
for an infinite dielectric interface that yield total reflection
for αinc � αcrit. In reality, however, all modes have a finite
lifetime due to radiative losses. In order to account for this, the
reflection coefficients must be modified in a nontrivial manner
for an interface with finite length a as in the case of the square,
leading to finite losses also above αcrit. This will be the subject
of a future publication [60]. The experimentally measured
resonance widths, on the other hand, stem not only from
radiative losses but also from other mechanisms such as ab-
sorption in the alumina and coupling out by the antennas. These
latter loss mechanisms are, unfortunately, dominant, and hence
no reliable information on the radiative losses of the modes
confined by TIR can be extracted from the experimental data.

The difference between the measured resonance frequen-
cies fexpt and those calculated according to the model, fcalc,
is shown in Fig. 9. The relative deviations are in the range of
0.4–1.0% and decrease with increasing frequency. There are
two possible reasons for these relatively small but nonetheless
significant deviations. First, the ray-based model does not
provide an exact but only an approximate solution of the
Helmholtz equation. It can be expected, though, that it is more
precise in the short-wavelength limit due to its semiclassical
nature as evidenced by the data in Fig. 9. Second, the
system studied here is approximated as a two-dimensional
one by means of the effective refractive index model (see
Sec. III A). It is known that this approximation can predict
resonance frequencies only with limited precision [53], even
though it was shown in Sec. V that the propagation of
waves inside the resonator is described with high precision
by the neff model. Indeed, the observed deviations are of
the same order of magnitude as those found in Ref. [53]
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FIG. 9. Difference between measured and calculated resonance
frequencies versus the measured frequency. The gray scale indicates
the overlap between the experimental and model WFs. The solid line
is a linear fit to �f .

and show the same qualitative behavior. It is surmised that
the precision of the effective refractive index approximation
could be improved by taking into account the finite height
of the cavity side walls. Note that this must be distinguished
from the modification of the reflection coefficients due to the
finite extension of the dielectric interface in the plane of the
resonator mentioned in the previous paragraph. This would
correspond to a modification of the reflection coefficients used
in Eq. (7), and the corresponding change of the reflection
phases could account for the frequency deviations. In the case
studied here, however, it is not clear to what extent these two
approximations contribute to the deviations between measured
and calculated resonance frequencies each. The difference
decreases approximately linearly with increasing frequency.
The solid line is a linear fit to �f = fexpt − fcalc,

�ffit = A − Bfexpt, (24)

where each data point was weighted by the overlap between
the model and the measured WF. The fit parameters are
A = (89.0 ± 0.6) MHz and B = (4.79 ± 0.01) MHz/GHz. It
should be noted that a linear fit was chosen for the sake of
convenience and because it describes the data well. In reality,
we expect that the frequency deviations tend to zero in an
asymptotic manner for f → ∞.

VII. LENGTH SPECTRUM AND TRACE FORMULA

While the resonant states of the dielectric square resonator
are associated with classical tori that generally consist of
nonperiodic trajectories, the spectrum of the resonator can
nonetheless be associated with the POs of the classical square
billiard. This connection is expressed by a trace formula.
It connects the density of states (DOS) of wave-dynamical
systems with the POs of the corresponding classical (or
ray-dynamical) system [72–74]. Recently, it has also been
applied to open dielectric resonators [45,46,54,75–79]. In the
following two subsections we will introduce the trace formula
for the dielectric square resonator, discuss its connection to
the ray-based model for the dielectric square, and compare its
predictions with the measured spectral data.

A. The trace formula for the dielectric square resonator

The DOS of an open cavity is given by

�(k) = − 1

π

∑
j

Im(kj )

[k − Re(kj )]2 + [Im(kj )]2
, (25)

where the kj are the resonance wave numbers [75]. It can
be written as the sum of a smooth and a fluctuating part.
The former is known as the Weyl term ρWeyl and is the
derivative ρWeyl(k) = dN

dk
of the smooth part of the resonance

counting function N (k), which for a 2D dielectric resonator
with refractive index n is given by

N (k) = An2

4π
k2 + r̃(n)

L

4π
k. (26)

Here A = a2 is the area and L = 4a is the circumference of
the resonator and

r̃(n) = 4n

π
E

[
n2 − 1

n2

]
− n (27)

with E(x) the complete elliptic integral of the second kind [80].
In the case discussed here, n is the effective refractive index neff

and hence exhibits a non-negligible dispersion. Accordingly,
n will be treated as a frequency-dependent quantity in the
following. In the semiclassical limit k → ∞ the fluctuating
part of the DOS, ρfluc, can be expressed as a sum over
the periodic orbits of the corresponding classical (billiard)
system. In the case of the dielectric square resonator it is given
by

ρscl
fluc(k) =

√
k

2π3

∞∑
nx=1

nx∑
ny=0

Fnx,ny

√
n

(
n + k

dn

dk

)
a2√

po(nx,ny)

× [r(χx)]2nx [r(χy)]2ny ei[knpo(nx,ny )−π/4] + c.c.

(28)

This formula can be derived from the quantization condi-
tion, Eq. (7), as detailed in the Appendix. The indices nx,y

denominate a family of POs of the square billiard, with nx

(ny) being half the number of reflections of the orbits at the
side walls perpendicular to the x (y) axis. Some examples are
shown in Fig. 10. The lengths of the POs are

po(nx,ny) = 2a

√
n2

x + n2
y (29)

and the factor Fnx,ny
equals Fnx,ny

= 2 if either nx = ny , nx =
0, or ny = 0, and Fnx,ny

= 4 otherwise. The angles of incidence
of the POs on the edges (cf. Fig. 10) are given by

χx,y = arctan(ny,x/nx,y). (30)

It should be noted that the trace formula (28) is identical to the
formula given in Ref. [75] for dielectric resonators with regular
classical dynamics except for an additional factor (1 + k

n
dn
dk

)
accounting for the dispersion of n. The same factor was found
in Ref. [54].
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(a) (b)

(c () d)

χx

χy

x

y

FIG. 10. Examples of POs in the square billiard. (a) (1,0) orbit,
which is also called Fabry-Pérot orbit, (b) (1,1) or diamond orbit, (c)
(2,1) orbit, and (d) (3,2) orbit. The angles of incidence of an orbit on
the edges perpendicular to the x (y) axis are χx (χy).

B. Comparison with the experimental length spectrum

We compared the FT of the measured DOS with the FT
of the trace formula, Eq. (28). Here a modified definition of
the FT was used to account for the dispersion of the refractive
index n,

ρ̂() =
∫ kmax

kmin

dk ρfluc(k) exp[−ikn(k)]

=
∑

j

e−in(kj )kj  − FT{ρWeyl(k)}, (31)

where kmin,max = 2πfmin,max/c correspond to the lower and
upper bounds of the considered frequency range, respectively,
and  is the geometric length [54]. Accordingly, the quantity
|ρ̂()| is called the length spectrum. The experimental length
spectrum |ρ̂expt()| is shown in the bottom parts of Fig. 11. It
should be noted that the (−+) modes were counted doubly
due to their degeneracy with the (+−) modes, yielding a total
of 222 resonances in the considered range of fmin = 5.5 GHz
to fmax = 10.0 GHz (cf. Table II). There are several peaks
that stick out of the background noise, which has an average
amplitude of about 〈|ρ̂()|〉 = 10. The positions of these agree
approximately with the lengths of the different POs and are
thus related to these POs as predicted by the trace formula.
The POs are indicated by their indices (nx,ny), and the arrows
indicate the expected peak positions. These deviate somewhat
from the geometric lengths of the POs due to the dispersion of
the refractive index on which the reflection phase shifts depend

and can be estimated as [54]

peak(nx,ny) = po(nx,ny) + 2nx

∂ arg(r)
∂n

(χx) dn
dk

n + k dn
dk

∣∣∣∣
k0(χx )

+ 2ny

∂ arg(r)
∂n

(χy) dn
dk

n + k dn
dk

∣∣∣∣
k0(χy )

. (32)

Here

k0(χ ) =
{

(kmin + kmax)/2 : fco(χ ) < fmin

(kcrit(χ ) + kmax)/2 : fmin � fco(χ ), (33)

where kcrit = 2πfco/c and the critical frequency is defined via
sin(χ ) = 1/n(fco). The second and third terms in Eq. (32)
therefore vanish when χx and χy are smaller than the
critical angles αcrit in the whole considered frequency range,
respectively. This shift of the peak positions in the length
spectrum with respect to the lengths of the POs should not be
confused with the Goos-Hänchen shift.

For comparison, the FT of the trace formula (called the
semiclassical length spectrum in the following, |ρ̂scl()|) is
depicted as thick gray line in the upper parts of Fig. 11. The
semiclassical length spectrum features a large number of peaks
that almost all correspond to POs confined by TIR, i.e., for
which fco(χpo) < fmax, where χpo = min{χx,χy}. These are
indicated by solid arrows in Fig. 11, whereas those associated
with POs that are not confined are indicated by dotted arrows.
In the experimental length spectrum all the visible peaks are
related to POs confined by TIR like in Refs. [45,54,79], though
not all of these POs are visible in the experimental length
spectrum. So while the experimental length spectrum shows
good qualitative agreement with the trace formula prediction,
there are quantitative deviations. First, the peak positions
of the experimental length spectrum, 

expt
peak, are slightly but

systematically shifted with respect to the peak positions of
the semiclassical length spectrum, scl

peak. Second, the peak

amplitudes Aexpt = |ρ̂expt(
expt
peak)| are smaller than those of

the semiclassical length spectrum, Ascl = |ρ̂scl(scl
peak)|. These

findings are summarized in Table III.
The difference between the peak positions of the experi-

mental and semiclassical length spectrum, �peak = 
expt
peak −

scl
peak, are shown in Fig. 12. They grow linearly with the length

of the PO, and the solid line is a fit of the form �peak =
Bscl

peak with B = (5.63 ± 2.70) × 10−3. The same effect was
observed in Ref. [54], where it was attributed to the systematic
deviations between the measured resonance frequencies and
the predictions of the neff model. It was shown that B is equal
to minus the derivative of �f = fexpt − fcalc with respect to
the frequency. This slope equals B = (4.79 ± 0.01) × 10−3

[see Fig. 9 and Eq. (24)], which is in good agreement with
B. From this we can conclude that the frequency deviations
evidenced in Fig. 9 are mainly due to the inaccuracy of the neff

approximation and not due to that of the semiclassical model
for the dielectric square.

The ratios of the peak amplitudes of the experimental and
semiclassical length spectrum, Aexpt/Ascl, are depicted in
Fig. 13 with respect to the angle of incidence of the POs,
χpo. They are in the range of 10–55% and slowly decline
with diminishing χpo (cf. Ref. [45]) and their average value
is 〈Aexpt/Ascl〉 = 27.9%. Given that the semiclassical model
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FIG. 11. Length spectrum |ρ̂()| and FT of the trace formula for the dielectric square resonator in the length regimes (a)  = 0.5–3.5 m
and (b)  = 3.5–6.5 m. Each panel is divided into two parts. The solid line in the lower parts is the experimental length spectrum. In the upper
parts, the gray line is the FT of the trace formula, Eq. (28), and the solid line is the length spectrum deduced from the set of modes that are
confined by TIR. Note the different scales of the top and bottom parts. The arrows indicate the lengths peak ≈ po according to Eq. (32) of the
POs labeled by their indices (nx,ny). The dotted arrows denote those POs not confined by TIR. Only the POs that are clearly visible in the
experimental length spectrum are indicated in the bottom parts.

and the Weyl formula predict a total of about 1866 modes in
the given frequency range, so only about 11.9% of all modes
are actually observed experimentally, it is not surprising that

the experimental peak amplitudes are significantly smaller.
Since, however, all observed modes are related to trajectories
with an angle of incidence above the critical angle (see Fig. 8),

TABLE III. Summary of the POs observed in the experimental length spectrum. The first column indicates the indices (nx,ny) of the POs,
the second their angles of incidence χpo, the third the corresponding critical frequency fco(χpo), the fourth their lengths po, the fifth the expected
peak position peak according to Eq. (32), the sixth and seventh the actual peak positions 

expt
peak and scl

peak in the experimental and semiclassical
length spectrum, respectively, and the eighths and ninths the corresponding peak amplitudes Aexpt and Ascl.

(nx,ny) χpo fco (GHz) po (m) peak (m) 
expt
peak (m) scl

peak (m) Aexpt Ascl

(1,1) 45.0◦ 5.367 0.841 0.838 0.843 0.835 88.9 161.2
(2,2) 45.0◦ 5.367 1.682 1.675 1.684 1.672 37.0 100.3
(3,2) 33.7◦ 6.376 2.144 2.135 2.132 2.133 16.9 162.3
(3,3) 45.0◦ 5.367 2.523 2.513 2.534 2.514 29.8 83.4
(4,4) 45.0◦ 5.367 3.364 3.350 3.373 3.355 24.1 74.0
(5,3) 31.0◦ 6.774 3.467 3.452 3.460 3.449 17.3 113.2
(5,4) 38.7◦ 5.858 3.807 3.792 3.813 3.792 23.9 112.7
(5,5) 45.0◦ 5.367 4.204 4.188 4.222 4.205 18.2 52.5
(6,5) 39.8◦ 5.760 4.644 4.626 4.657 4.629 27.0 97.9
(7,6) 40.6◦ 5.695 5.482 5.461 5.501 5.460 21.4 96.6
(8,7) 41.2◦ 5.649 6.321 6.296 6.336 6.298 15.7 100.9
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FIG. 12. Difference �peak between the peak positions of the
experimental and the semiclassical length spectrum versus the peak
position scl

peak. The solid line is a linear fit.

it is interesting to compare the experimental length spectrum
with the length spectrum for the set of calculated modes that
are confined by TIR. It consists of 756 modes, i.e., 40.5% of
all modes predicted by the model in the considered frequency
range. The corresponding length spectrum is depicted as solid
black line in the upper parts of Fig. 11. It agrees well with
the semiclassical length spectrum except for a few peaks
like that of the (2,1) orbit and its harmonics. This is related
to the proximity of the χpo associated with that orbit to the
critical angle and the inaccuracy of the stationary phase
approximation for such orbits [75] and not to the lack of the
nonconfined modes. In fact, the length spectrum obtained
when including all 1866 model modes (not shown) can hardly
be distinguished from the one accounting only for the confined
modes. This is expected because modes that are not confined
contribute very little to the length spectrum since their finite
imaginary part of fcalc leads to an exponential damping of
their contribution [see Eq. (31)]. So in practice, it suffices
to consider only the confined modes to obtain the length
spectrum predicted by the trace formula. Interestingly, the
number of measured modes, 222, is 29.4% of the number of
all confined modes, which is close to the mean ratio between
experimental and semiclassical peak amplitudes in Fig. 13.

In summary we demonstrated that the trace formula for
the dielectric square resonator is directly connected to our
semiclassical model and that the indices (nx,ny) of the POs
are the conjugated variables of the quantum numbers (mx,my).
Individual modes hence do not contribute to specific POs.
On the other hand, it was shown in Refs. [25,45] that a
spectrum containing only one or two families of modes related
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FIG. 13. Relative peak amplitudes Aexpt/Ascl for the POs ob-
served in the experimental length spectrum versus their angle of
incidence χpo. The indices of the POs are indicated as (nx,ny).

to trajectories with angle of incidence close to αinc = 45◦ leads
to a length spectrum that exhibits only the diamond PO. The
experimental length spectrum evidenced that the measured
modes, that are all confined by TIR, correspond only to POs
with this property in agreement with previous studies [45].
The qualitative agreement with the prediction deduced from
the trace formula was good, and the deviations between
the respective peak positions and amplitudes could be well
explained with the inaccuracy of the neff model and the limited
number of experimentally observed modes in accordance with
Refs. [45,54].

VIII. CONCLUSIONS

We investigated a dielectric square resonator in a microwave
experiment with an alumina cavity. The spectra and field
distributions were measured with various antenna positions
on different symmetry axes of the square. The experimental
data were compared with a simple semiclassical model [21]
and showed excellent agreement for an effective refractive
index in the range of neff = 1.5–2.5. The analysis of the mo-
mentum space representation of the field distributions proved
particularly useful. First, it enabled a direct measurement of
the effective refractive index of the resonator and the refractive
index of the alumina. The measured values of neff furthermore
validated the effective refractive index calculations with high
precision. Second, contributions from different waveguide
modes, i.e., z excitations in the resonator, could be easily
identified and removed within the momentum space represen-
tation. This allowed us to obtain field distributions with high
data quality in frequency regimes that would be otherwise
inaccessible experimentally. It should be noted that these two
aspects apply in general to experiments with flat dielectric
microwave resonators. Third, the association of the modes with
classical tori in the square resonator was particularly evident in
momentum space. It is presumed that similar phenomena exist
also in other dielectric resonators with (pseudo-)integrable
classical dynamics [25,26]. The ray-based model permitted
us to identify the measured resonant states and label them
with quantum numbers. This in turn allowed for a better
understanding of the structure of the measured spectra, and it
was shown that the modes of the dielectric square are organized
in a very regular way akin to that of integrable systems [70]
as also evidenced in Ref. [25]. Only modes associated with
trajectories confined by TIR were observed since the resonator
was passive. Microlasers, on the other hand, can also exhibit
other modes due to their gain.

Depending on the symmetry of the excited resonant states,
the excitation antenna was placed such that modes of specific
symmetry classes were not excited. We came to the result
that modes belonging to nondegenerate symmetry classes
exhibit their symmetry regardless of the position of the
excitation antenna, whereas for twofold degenerate modes the
symmetry of the measured WFs depended strongly on it and
could be partially controlled. This demonstrates the particular
sensitivity of highly symmetric resonant structures not only
to perturbations of their geometry but also to the manner of
excitation. While the procedures and devices used to pump
microlasers differ from those employed to excite microwave
resonators, there are nonetheless techniques to influence the
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excitation of certain lasing modes by changing, e.g., the
shape of the pumped domain [81,82] or the wavelength and
polarization of the pump beam [83]. While the aforementioned
methods do not rely on modes with specific symmetries,
the use of degenerate mode pairs might enable particularly
simple and effective schemes to control the behavior of a laser.
Furthermore, the length spectrum was investigated and yielded
good qualitative agreement with the trace formula prediction.
In addition it was demonstrated that the trace formula for the
dielectric square can be directly derived from the ray-based
model. Future projects are the extension of the model to
the far-field distributions and a refined model that can also
correctly predict the lifetimes of modes confined by TIR.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsge-
meinschaft (DFG) within the Collaborative Research Center
634.

APPENDIX: DERIVATION OF THE TRACE FORMULA

Here we derive the trace formula for the dielectric square
resonator, Eq. (28), starting from the approximate quantization
condition Eq. (7). By introducing the variable E = k2 the DOS
can be written as

�(E) =
∞∑

mx,my=0

δ
(
E − Emx,my

)
, (A1)

where Emx,my
= (k2

x + k2
y)/n2 and kx,y are the solutions of the

quantization condition Eq. (10). Hence the function

gmx,my
(E) = n2E − k2

x − k2
y (A2)

vanishes for E = Emx,my
and

�(E) =
∞∑

mx,my=0

∣∣∣∣dgmx,my

dE

∣∣∣∣δ[gmx,my
(E)

]
. (A3)

The summation over mx,y is rewritten as

∞∑
mx,my=0

[. . . ] = 1

4

∞∑
mx,my=−∞

[. . . ] + additional terms, (A4)

where the additional terms yield contributions due to grazing
orbits at the cavity boundaries [84]. Such higher-order correc-

tions are ignored in the following. The derivative of gmx,my

is

dgmx,my

dE
= n2 + 2nE

dn

dE
− 2

[
dkx

dr

dr

dn

∣∣∣∣
αx

+ dky

dr

dr

dn

∣∣∣∣
αy

]
dn

dE
.

(A5)

The last term is essentially the derivative of the Fresnel
reflection phase in the case of modes confined by TIR. Since
the reflection phase does not depend strongly on n we neglect
this term in the following. We can now transform

�(E) � 1

4

∞∑
mx,y=−∞

(
n2 + 2nE

dn

dE

)
δ
[
gmx,my

(E)
]

(A6)

by means of the Poisson resummation formula to

�(E) � 1

4

∞∑
nx,y=−∞

∫ ∞

−∞
dmx

∫ ∞

−∞
dmy

(
n2 + 2nE

dn

dE

)

× δ
(
n2E − k2

x − k2
y

)
e2πi(mxnx+myny ). (A7)

The conjugated variables nx,y turn out to be the indices of
the POs in the square billiard. The quantum numbers mx,y in
the exponential are replaced using Eq. (10) and, furthermore,
dmxdmy ≈ dkxdkya

2/(π2) is used where again the derivative
of the Fresnel coefficients was neglected. This yields

�(E)� a2

4π2

∞∑
nx,y=−∞

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

(
n2 + 2nE

dn

dE

)

×δ
(
n2E − k2

x − k2
y

)
e2ia(kxnx+kyny ) [r(αx)]2nx [r(αy)]2ny .

(A8)

The integral is calculated by introducing polar coordinates
and applying the stationary phase approximation to the radial
part. Furthermore, we revert to ρ(k) = 2k ρ(E). The saddle
point for nx = ny = 0 gives the area term of the Weyl formula
ρWeyl(k). The remaining terms yield the fluctuating part of the
DOS in the semiclassical limit, Eq. (28).
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[20] J. U. Nöckel, Phys. Scripta T90, 263 (2001).
[21] S. Bittner, E. Bogomolny, B. Dietz, M. Miski-Oglu, and

A. Richter, Phys. Rev. E 88, 062906 (2013).
[22] W. Fang, H. Cao, V. A. Podolsky, and E. E. Narimanov, Opt.

Express 13, 5641 (2005).
[23] E. Bogomolny and C. Schmit, Phys. Rev. Lett. 92, 244102

(2004).
[24] E. Bogomolny, B. Dietz, T. Friedrich, M. Miski-Oglu, A.
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