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Delay-induced Turing instability in reaction-diffusion equations
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Time delays have been commonly used in modeling biological systems and can significantly change the
dynamics of these systems. Quite a few works have been focused on analyzing the effect of small delays on the
pattern formation of biological systems. In this paper, we investigate the effect of any delay on the formation
of Turing patterns of reaction-diffusion equations. First, for a delay system in a general form, we propose a
technique calculating the critical value of the time delay, above which a Turing instability occurs. Then we apply
the technique to a predator-prey model and study the pattern formation of the model due to the delay. For the
model in question, we find that when the time delay is small it has a uniform steady state or irregular patterns,
which are not of Turing type; however, in the presence of a large delay we find spiral patterns of Turing type. For
such a model, we also find that the critical delay is a decreasing function of the ratio of carrying capacity to half
saturation of the prey density.
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I. INTRODUCTION

Time delays, also known as time lags, are becoming
common in mathematical models describing biological [1,2],
chemical [2], engineering, and physical processes [3]. In
ecology, time delay is commonly used to measure a maturation,
gestation period, or reaction time of a predator population
[1,4,5], and mathematically it may result in a much richer
dynamics for a system, such as inducing the instability of an
equilibrium so that Hopf bifurcation occurs [6–12]. Therefore,
systems with time delays have received wide attention over the
past years. For example, a few of works have recently focused
on the investigation of reaction-diffusion equations with small
time delays [2,3,9], where the authors reported that small time
delays might result in a Turing instability of such systems
so that spatial patterns were formed. The Turing instability
is a mechanism used to explain how a biological pattern
forms and was proposed by the pioneer Turing in Ref. [13],
where the author discussed the instability of the equilibrium
of a nonlinear system induced by diffusions [14–17]. Only
most recently have some authors reported a Turing instability
induced by time delays [2,3,9], where the authors assumed
all time delays were small so that a Taylor series expansion
could be employed to reduce systems with time delays to those
without time delays. Then the conventional Turing technique
can be applied. In these studies, the authors did not give
answers to dealing with cases with larger time delays because,
for the latter cases, a Taylor series expansion cannot applied.
However, in practice, time delays in biological systems may
be large— see Refs. [7,8,18,19], for example. For a model
described by reaction-diffusion equations, could a large time
delay induce a Turing instability? If so, how can one analyze
the effect of delay on this instability? Bearing this in mind, we
next propose a method to answer these questions by using a
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biological model with time delay. More precisely, we consider

∂u

∂t
= au

(
1 − u

k

)
− buv

c + u
+ Du�u,

∂v

∂t
= mu(t − τ )v

c + u(t − τ )
− nv + Dv�v, (1)

∂u

∂ν
= ∂v

∂ν
= 0,

u(r,0) > 0, v(r,0) > 0, r ∈ �,

where � = ∂2

∂x2 + ∂2

∂y2 is the Laplacian, r = (x,y) is a spatial

vector, � is an open set in R2, and ν is the unit outward normal
vector of the boundary ∂�. u = u(r,t) and v = v(r,t) are the
population densities of prey and predator at time t and position
r, respectively, Du and Dv are diffusive coefficients, τ � 0
is a time delay measuring the reaction time of the predator
population, and we refer explanations of all other parameters to
Ref. [20]. Without time delay and diffusion, namely, τ = Du =
Dv = 0, model (1) is the well-known population model due
to Rosenzweig and MacArthur [20]. With diffusion and when
τ = 0, the authors of Ref. [20] investigated the patterns of
system (1), which, however, are not due to a Turing instability
since the positive equilibrium is originally unstable. In the
present paper, we aim to investigate if patterns, due to the
Turing instability, exist in the presence of a time delay.

To this end, we briefly, in the context of system (1), revisit
the Turing instability, which is a mechanism used to explain
how biological patterns form [13–16]. Assume τ = 0 and the
linearization of (1) at its equilibrium is

∂u

∂t
= a11u + a12v + d1�u,

(2)
∂v

∂t
= a21u + a22v + d2�v,

where di,i = 1,2 are diffusive coefficients. Considering a
solution of (2) in the form ceλt+ikr and using Refs. [16]
or [17], system (2) has an associated characteristic equation
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λ2
k − trk λk + �k = 0, where k is known as a wave number

defined by k2 = k · k, trk = [a11 + a22 − (d1 + d2)k2], and
�k = d1d2k

4 − (d1a22 + d2a11)k2 + a11a22 − a12a21. In his
pioneering work [13], Turing assumed that the equilibrium
was originally stable, but became unstable under the influence
of diffusion so that biological patterns formed. When di = 0,
following Turing’s idea, we require that tr0 = a11 + a22 < 0,
�0 = a11a22 − a12a21 > 0 (see also Refs. [15,17]). Notice that
trk < tr0 < 0 for k �= 0. Then, the origin in the nonhomoge-
neous case changes its stability only when �k changes sign
from positive to negative. Further, notice that �k is a quadratic
equation of k2 and �0 > 0. There exists some k > 0 at which
�k < 0 if and only if �kc

= �0 − (d1a22+d2a11)2

4d1d2
< 0, where

the critical wave number kc is given by k2
c = d1a22+d2a11

2d1d2
> 0.

Hence, the necessary conditions of Turing instability are (A)
a11a22 < 0 and (B) a11 > 0(<0) implies d2 > (<)d1, which
are independent of the wave number and are always true in the
absence of time delay. In the presence of time delay, we ask
the following: Can patterns still form, even if neither (A) nor
(B) is satisfied? How does a time delay affect the formation of
patterns?

To answer these questions, some attempts have been made.
For example, the authors of Refs. [2,3,18,21,22] proposed to
use a Taylor series expansion to approximate the delayed
variable as follows: u(t − τ,x) = u(t,x) − τ ∂u(t,x)

∂t
+ O(τ 2).

Note that the approximation holds only when τ is small as it is
the Taylor series expansion for u(t − τ,u) at τ = 0. However,
in practice, the delay may be large [7,8,18,19] or, as will be
seen in this paper below, the above proposed technique is
no longer valid. Reference [9] also made an attempt to find

a critical delay and they proposed ωcτc = arccos(ω2
c−B

C
), in

which, as seen from Ref. [9], B and C are functions that are
dependent on the wave number. Apart from the dependence
on the wave number, it is easy to see that the above formula
cannot give τc so that ωcτc � π .

Therefore, in our paper here, we first propose a uniform way
of finding the critical time delay τc, which will be discussed
in Sec. II. We then apply this result to a predator-prey model
in Sec. III. Our study shows that when τ < τc, the steady
state is stable so there is no pattern to form, while for τ > τc

the steady state loses its stability and a spatial pattern forms.
Furthermore, we find in the presence of time delay that most
of the patterns discovered in Ref. [20] can be recovered via a
Turing instability.

II. A METHOD OF CALCULATING THE CRITICAL
TIME DELAY

In this section, we aim at developing a method for finding
the critical time delay for a general system of reaction-diffusion
equations with a time delay. Consider

∂ui

∂t
= fi(u1, . . . ,un,u1τ , . . . ,unτ ) + Di�ui, (3)

where uiτ = ui(t − τ ),i = 1, . . . ,n are delayed variables.
Assume system (3) has an equilibrium E∗ = (u∗

i ), at which
we define aij = ∂fi

∂uj
and bij = ∂fi

∂ujτ
. Then the linearization of

(3) at E∗ has an associated characteristic equation [7,8,10],

det(λkI − A − B−λkτ + k2D) = 0, (4)

where I is an identity matrix, A = (aij ), B = (bij ), D =
diag(Di), and k is the wave number. For simplicity, we assume
n = 2 in the rest of this section, although our method works
for any n ∈ N, and we also assume b12b21 = 0. Then the
characteristic equation (4) reads

λ2
k − Pkλk + Qk − (λkRk + Sk)eλkτ = 0, (5)

where Pk = a11 + a22 − (d1 + d2)k2, Qk = d1d2k
4 −

(d1a22 + d2a11)k2 + a11a22 − a12a21, Rk = b11 + b22, and
Sk = (d1b22 + d2b11)k2 + b12a21 + b21a12 − a11b22 − a22b11.
As λ, the root of (5), especially the real part of such a root, is
dependent on τ [6,10], we know the stability of E∗ changes
only when the real part of λ changes its sign, which happens
when τ = τc at which λ = ±iωk , ωk > 0 [7,8,10]. Next we
find such a τc. Assuming (5) has a pure imaginary root iωk ,
substituting into it, and separating the real and imaginary
parts yields

τ k
j =

⎧⎪⎪⎨
⎪⎪⎩

1
ωk

arctan
( T k

1

T k
2

) + j2π

ωk
, if T k

i > 0,

1
ωk

[
π + arctan

( T k
1

T k
2

)] + j2π

ωk
, if T k

2 < 0,

1
ωk

[
2π+ arctan

( T k
1

T k
2

)]+ j2π

ωk
, if T k

1 < 0, T k
2 > 0,

(6)

where j = 0,1, . . . , T k
1 = PkSkωk + QkRkωk − Rkω

3
k , and

T k
2 = SkQk − Skω

2
k − PkRkω

2
k . Here ωk > 0 are determined

by the positive solution of (T k
1 )2 + (T k

2 )2 = (S2
k + R2

kω
2
k)2.

Then from Ref. [11] we know the critical time delay is given by
τc = mink{τ k

0 }. Furthermore, from Refs. [11,12] we conclude
that, if E∗ is stable when τ = 0, then for τc given above (a) the
equilibrium E∗ is stable for all 0 � τ < τc, (b) E∗ is unstable
for all τ > τc, and (c) if Re( dλk

dτ
)|τ=τc

> 0, Hopf bifurcation
occurs at τ = τc.

III. APPLICATION TO THE EXTENDED ROSENZWEIG
AND MACARTHUR MODEL

In this section, we apply the result obtained in Sec. II to the
extended Rosenzweig and MacArthur model (1) with a zero
flux boundary condition. First, we apply transformations in
Ref. [20] to system (1) so that we can reduce the number of
parameters. We then reach the following dimensionless model,

du

dt
= αu

(
1 − u − v

1 + βu

)
+ d1�u,

dv

dt
= v

(
βu(t − τ )

1 + βu(t − τ )
− γ

)
+ d2�v, (7)

∂u

∂ν
= ∂v

∂ν
= 0,

where all parameters are positive, according to their physical
meaning. It is easy to check that system (7) has three equilibria,
E0(0,0), E1(1,0), and E2(u∗,v∗), with u∗ = γ

β(1−γ ) , v
∗ = (1 −

u∗)(1 + βu∗), which implies that a positive equilibrium exists
if and only if β > β0 = γ

1−γ
and 0 < γ < 1. Since we are only

interested in the dynamical behavior of the positive equilib-
rium, in the rest of this paper we assume this condition holds.
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A. Linear stability analysis of (7)

Linearizing (7) at E2 gives(
u̇

v̇

)
=

(
J11 J12

0 0

)(
u

v

)
+

(
0 0

J21 0

)(
uτ

vτ

)

+
(

d1 0
0 d2

)(
�u

�v

)
, (8)

where J11 = αu∗ −(1+βu∗)2+βv∗
(1+βu∗)2 = αγ (β−β1)

β
, J12 = −αu∗

1+βu∗ =
−αγ

β
< 0, J21 = βv∗

(1+βu∗)2 = (1 − γ )(β − β0) > 0, and β1 =
1+γ

1−γ
> 1. The characteristic equation associated with (8) is

λ2
k + [(d1 + d2)k2 − J11]λk

+d1d2k
4 − d2J11k

2 − J12J21e
−λkτ

= λ2
k + pkλk + qk + ske

−λkτ = 0, (9)

the roots of which determine the stability of E2 [6–8,10]. So,
we next investigate the distribution of such roots.

1. The case without diffusion

In this case we have d1 = d2 = 0. Then the characteristic
equation (9) becomes

λ2
0 − J11λ0 − J12J21e

−λ0τ = 0. (10)

Assuming (10) has a pure imaginary root iω, substituting it
into (10), and separating the real and imaginary parts yields

ω2 + J12J21 cos(ωτ ) = 0,
(11)

J11ω − J12J21 sin(ωτ ) = 0.

It implies

ω4 + J 2
11ω

2 − J 2
12J

2
21 = 0. (12)

Obviously, Eq. (12) has a unique positive solution ω0 given by

ω2
0 = −J 2

11+
√

J 4
11+4J 2

12J
2
21

2 and at which we have

τj=
{

1
ω0

arctan
(− J11

ω0

)+ 2πj

ω0
,j = 0,1, . . . , if J11 < 0,

1
ω0

arctan
(− J11

ω0

)+ 2πj

ω0
,j = 1, . . . , if J11 > 0.

(13)

Clearly, 0 < τ0 < τ1 < · · · < τj < · · · , and when τ = τj ,
λ0 = ±iω0 are a pair of pure imaginary roots. From (10),

we have ( dλ
dτ

)−1 = J11−2λ

λ(λ2−J11λ) − τ
λ

. Then at τ = τj , we have

sgn Re

(
dλ

dτ

)
= sgn Re

(
dλ

dτ

)−1

= sgn

(
J 2

11 + 2ω2
0

ω2
0

(
J 2

11 + ω2
0

)
)

> 0, (14)

which is known as the transversality condition. Notice that
when τ = 0, the equilibrium E2 is stable if and only if β < β1.
From Refs. [7,8,10], transversality condition (14) implies the
following: (1) If β � β1, E2 is unstable for all τ � 0; (2) if
β < β1, there τ0 > 0 given by (13) such that E2 is stable for
all 0 � τ < τ0, and unstable for τ > τ0; and (3) when τ = τ0,
Hopf bifurcation occurs.

More precisely, Hopf bifurcation happens with a stable
bifurcated periodic solution on the center manifold due to
the stability of the equilibrium changes from stable to unstable
when τ crosses τ0 from the left to the right. In full phase
space, however, the stability of the periodic solution needs to
be determined by the normal form [7,10].

Note that, from the above conclusions, the positive equilib-
rium E2 exists when β > β0 and 0 < γ < 1; furthermore, it is
stable when τ = 0, β < β1, which agrees well with Ref. [20].

2. The case with diffusion

The existence of diffusion implies d1d2 �= 0. As what we
did in the previous section, assume (9) has a pure imaginary
root iωk (ωk > 0), but is dependent on the wave number k.
Then we have

− ω2
k + qk + sk cos(ωkτ ) = 0,

(15)
pkωk − sk sin(ωkτ ) = 0,

which implies

ω4
k + (

p2
k − 2qk

)
ω2

k + q2
k − s2

k = 0. (16)

Since p2
k − 2qk = (d2

1 + d2
2 )k4 − 2J11k

2 + J 2
11 > d2

1k4

− 2J11k
2 + J 2

11 = (d1k
2 − J11)2 � 0, Eq. (16) has a unique

positive solution ω2
k if and only if

q2
k − s2

k < 0. (17)

Noticing that J11 < 0 when β < β1, and J12 < 0, J21 > 0
yields pk > 0, qk > 0, and sk > 0. Condition (17) is equivalent
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FIG. 1. (Color online) Values of the critical delay τc for (a), (b) α = 1 and (c) γ = 0.4.
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FIG. 2. (Color online) Pattern selection for d1 = 0.1, d2 = 0.01,
and α = 1 with + for spirals, ◦ for targets, and * for microspirals.

to

d1d2k
4 − d2J11k

2 + J12J21 < 0, (18)

under which, at each ωk , we have the critical delay

τ k
j =

{
1
ωk

arctan
(

pkωk

qk−ω2
k

) + 2πj

ωk
, if qk − ω2

k > 0,

1
ωk

[
arctan

(
pkωk

qk−ω2
k

) + π
] + 2πj

ωk
, if qk − ω2

k < 0,

(19)

where j = 0,1, . . . . From (9), we have ( dλ
dτ

)−1 = 2λk+pk

λkske
−λk τ −

τ
λk

= − 2λk+pk

λk (λ2
k+pkλk+qk )

− τ
λk

, which yields, at τ = τ k
j , the fol-

lowing transversality condition:

sgn Re

(
dλ

dτ

)
= sgn Re

(
dλ

dτ

)−1

= sgn

(
p2

k − 2qk + 2ω2
k(

qk − ω2
k

)2 + p2
kω

2
k)

)
> 0. (20)

Notice that when τ = 0 equilibrium E2 is stable if and only if
pk > 0, namely,

(d1 + d2)k2 > J11, (21)

which is automatically satisfied due to the assumption β < β1,
made in the previous section. Let τc = min{τ k

0 ,0 � k � kc},
where kc is determined by (18). Then we make our conclusion
as follows: (1) If β � β1, E2 is unstable for all τ � 0; (2) if
β < β1, there is τc > 0 given by (19) such that E2 is stable for
all 0 � τ < τc, and unstable for τ > τc; and (3) when τ = τc,
Hopf bifurcation occurs when τ crosses τ0 from the left to the
right.

The bifurcation direction can be determined by using the
normal form [11]. If we choose the time delay as the control
parameter, then from this conclusion, we obtain the so-called
Turing space [15–17], α > 0, 0 < γ < 1, β0 < β < β1, and
τ > τc in which the Turing instability occurs.

Please note that when β > β1, τ = 0, the authors of
Ref. [20] also investigated the formation of patterns of system
(7). However, as seen from our discussion above, the patterns
in Ref. [20] are not of Turing type, which was pointed out in
the Introduction.

B. Pattern selection

In order to study the selection of patterns, we first discuss the
relation between the critical delay and parameters appearing
in the model equations. Using a numerical method, we found
that the critical delay is a decreasing function of α,β and an
increasing function of γ , as seen in Fig. 1, where we showed
two cases in Figs. 1(a) and 1(a) for α = 1 and Fig. 1(c) for
γ = 0.4. In Fig. 1(a), where we set α = 1 and γ = 0.4, the
critical delay varies from 50 to 10 as β varies in the range
from 0.67 to 2.3. In Fig. 1(b), we fixed α = 1 only and varied
both β and γ . Then for any given β the critical delay increases
as γ increases. For example, for β = 2 we can see that the
critical delay increases as γ changes from 0.4 to 0.8. In
Fig. 1(c) we set γ = 0.4, and it shows that τc decreases as α

increases.
Recalling the model equations (1) and (7) and Ref. [20],

we know α = a
m

, β = k
c
, γ = n

m
, where a is the growth rate

FIG. 3. (Color online) Micro spirals: (a) prey and (b) predator. The parameters are d1 = 0.1, d2 = 0.01, α = 1, γ = 0.4, β = 1, τ = 12.7,
and time t = 9100.
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FIG. 4. (Color online) Four-head spirals: (a) prey and (b) predator. The parameters are d1 = 0.1, d2 = 0.01, α = 1, γ = 0.1, β = 0.5,
τ = 10.5, and time t = 1500.

of prey, c the half saturation of prey density, k the carrying
capacity defined as the maximum number of prey that the
environment can sustain indefinitely, and m and n are the birth
rate and death rate of the predator. Then, from an ecological
point of view, if the prey grows faster than the predator or
the net increase of the predator gets bigger, the steady state of
system (1) becomes unstable at a small time delay, otherwise
the stability of the steady state is more robust towards the effect
of time delay. In other words, a large ratio of the prey’s growth
rate and the birth rate of the predators results in a small critical
period of maturation or gestation of the predators; however,
a large ratio of the birth rate and death rate of the predators
implies a large critical maturation or gestation period of the
predators. The latter says that the predator has a large critical
period of maturation or gestation if the birth rate of the predator
is larger than its death rate.

We know from a previous analysis that the Turing instability
occurs in system (1) or (7) when the time delay crosses its
critical value τc and all other parameters are in the Turing
space. Now, we numerically investigate the effect of time delay
on the formation of patterns, and we found three types of

patterns (see Fig. 2), where we fixed α = 1 and varied γ from
0 to 1 and β from β0 to β1.

We note that when γ is small, say, less than 0.5, the
spirals dominate the dynamics of the system, while for large
γ , say, greater than 0.5, microspirals or lattices dominate.
Furthermore, when the parameters are close to curve β0, we
observed target patterns. Again, we would like to emphasize
that all patterns observed are due to the Turing instability,
which is different from the case investigated in Ref. [20],
where all patterns are not due to the Turing instability and the
time delay is zero.

To observe the patterns, in our simulations we set the
parameters as follows: d1 = 0.1, d2 = 0.01, α = 1, the spatial
step size is 0.5, and the time step is 0.1. Furthermore, γ = 0.4,
β = 1 for the microspirals; then we know the critical time
delay is τc = 12.6818. So we use τ = 12.7. See Fig. 3, which
shows the microspiral patterns in both the predator and prey
populations.

To see spirals, we set γ = 0.1, β = 0.5, τ = 10.5. Then
τc = 10.4367, and at times t = 1500 and t = 1000 we ob-
tained Figs. 4 and 5, respectively. If we set γ = 0.8, β = 5,

FIG. 5. (Color online) Nine-head spirals: (a) prey and (b) predator. The parameters are d1 = 0.1, d2 = 0.01, α = 1, γ = 0.1, β = 0.5,
τ = 10.5, and time t = 1000.
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FIG. 6. (Color online) Targets: (a) prey and (b) predator. The parameters are d1 = 0.1, d2 = 0.01, α = 1, γ = 0.8, β = 5, τ = 31.5, and
time t = 10 000.

τ = 31.5, then τc = 31.4859, and at time t = 10 000 we
obtained Fig. 6.

For our simulation, we used the standard two-dimensional
(2D) finite difference method with special settings for the
initial values due to the delay, namely, we used u(t) = u(0),
v(t) = v(0) for −τ � t < 0. The initial value [u(0),v(0)] is
the perturbation of the equilibrium E∗(u∗,v∗). For example,
for Fig. 4 the initial values are u(0) = u∗ − 0.000 001(x −
20)(x − 80) and v(0) = v∗ − 0.000 001(y − 20)(y − 80), and
for Fig. 5 we used u(0) = u∗ − 0.000 001(x − 20)(x −
50)(x − 80) and v(0) = v∗ − 0.000 001(y − 20)(y − 50)(y −
80).

IV. CONCLUSION

Time delay is commonly used for providing more realistic
models to describe biological and chemical processes, and

it may significantly change the dynamics of systems. In this
paper we have formulated a way of calculating the critical
time delay, which can be used to investigate the Turing
instability due to the time lag. Then we applied our result
to a predator-prey model with time delay, which ecologically
measures the maturation, gestation period, or reaction time of
the predator population. Turing patterns have been observed
from the predator-prey model in question under the influence
of time delay.
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