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Generic Hamiltonian systems have a mixed phase space where regions of regular and chaotic motion coexist.
We present a method for constructing an integrable approximation to such regular phase-space regions including
a nonlinear resonance chain. This approach generalizes the recently introduced iterative canonical transformation
method. In the first step of the method a normal-form Hamiltonian with a resonance chain is adapted such that
actions and frequencies match with those of the nonintegrable system. In the second step a sequence of canonical
transformations is applied to the integrable approximation to match the shape of regular tori. We demonstrate the
method for the generic standard map at various parameters.
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I. INTRODUCTION

Hamiltonian systems are an important class of dynamical
systems having particular relevance for physical applications,
e.g., in celestial mechanics, accelerator dynamics, or meso-
scopic and molecular physics. A special case of Hamiltonian
systems are integrable systems, where the dynamics is re-
stricted to invariant tori in phase space. The other extreme
is given by fully chaotic systems, where the dynamics shows
sensitive dependence on the initial conditions and explores the
whole phase space.

Generic Hamiltonian systems, however, have a mixed
phase space where regions of regular and chaotic motion
coexist [1–3]. This is illustrated using the example of the
standard map in Fig. 1(a). Here, according to the Kolmogorov-
Arnold-Moser (KAM) theorem [4–7], a set of regular tori
(lines) forms a regular phase-space region. As predicted by
the Poincaré-Birkhoff theorem [8,9], these tori are interspersed
with nonlinear resonance chains leading to a rich self-similar
structure. The regular region is embedded in a phase-space
region of chaotic motion (dots).

Constructing integrable approximations to regular phase-
space regions is helpful or even necessary for many problems,
e.g., for toroidal magnetic devices [10], diffusion in random
maps [11–13], Arnold diffusion [14,15], or regular-to-chaotic
quantum tunneling [16–19]. Such an integrable Hamiltonian
system should mimic the dynamics inside the regular phase-
space region as closely as possible. There are situations where
it is essential to include a nonlinear resonance chain into the
integrable approximation. Here our main motivation is the de-
scription of resonance-assisted tunneling [20] using complex
paths [19] and the fictitious integrable system approach [17]
without perturbation theory.

Up to now, integrable approximations can be provided
for near-integrable systems, e.g., by using classical pertur-
bation theory based on Lie transforms [2,20–22], normal-
form techniques [23–27], or the Campbell-Baker-Hausdorff
formula [28–30]. Also for the more challenging case of generic
nonintegrable systems with a mixed phase space, there are
methods available to provide integrable approximations to
the regular phase-space region [18,31]. Particularly flexible
is the recently introduced iterative canonical transformation

method [31] as it independently accounts for the frequencies
and the shape of regular tori and is applicable to higher dimen-
sions. However, in the generic case, none of these methods is
so far capable of producing an integrable approximation which
includes a nonlinear resonance chain.

In this paper we present a method for constructing
an integrable approximation to a regular phase-space re-
gion and one nonlinear resonance chain. This is achieved
by choosing a normal-form Hamiltonian with a resonance
chain [3,17,20,27,32–34] as the starting point of the iterative
canonical transformation method of Ref. [31]. To illustrate the
method, we apply it to the generic standard map, giving, e.g.,
the integrable approximation of Fig. 1(b).

The paper is organized as follows: In Sec. II we discuss the
phase-space structure of a resonance chain using the example
of the standard map. In Sec. III we present the method for
constructing an integrable approximation to a regular phase-
space region and one nonlinear resonance chain. In Sec. IV
we apply the method to the standard map. In Sec. V we give a
summary and outlook.

II. EXAMPLE SYSTEM WITH A RESONANCE

The construction of integrable approximations described
in this paper applies to time-periodically driven Hamiltonian
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FIG. 1. (Color online) (a) Phase space of the standard map,
Eq. (3), at κ = 3.4, with regular orbits (gray lines) and chaotic orbits
(gray dots) and (b) its integrable approximation (thin red lines).
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systems with one degree of freedom. These systems obey
Hamilton’s equations of motion,

q̇ = ∂H (q,p,t̃)

∂p
, (1a)

ṗ = −∂H (q,p,t̃)

∂q
, (1b)

for position q and momentum p. Considering the correspond-
ing trajectories stroboscopically at times t̃ = tT with t ∈ Z,
which are multiples of the external driving period T , gives a
symplectic map U ,

(qt+1,pt+1) = U (qt ,pt ), (2)

for the evolution of the point (qt ,pt ) to (qt+1,pt+1) in phase
space.

The paradigmatic example of such a system is the standard
map [3]

qt+1 = qt + pt , (3a)

pt+1 = pt + κ

2π
sin[2π (qt + pt )], (3b)

which we consider for (q,p) ∈ [0,1[×[−0.5,0.5[ with peri-
odic boundary conditions. In this paper we focus on κ = 3.4.
Here the standard map has an elliptic fixed point at (q∗,p∗) =
(0.5,0) which is surrounded by a large regular phase-space
region embedded in a chaotic phase-space region, see Fig. 2.

According to the KAM theorem [4–7], the regular region is
composed of invariant one-dimensional tori, along which the
iterated points rotate with a sufficiently irrational frequency ω.
Following from the Poincaré-Birkhoff theorem [8,9], these
irrational tori are interspersed by nonlinear r:s resonance
chains [2,3] with rational frequencies

�r:s = 2π
s

r
. (4)
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FIG. 2. (Color online) Phase space of the standard map, Eq. (3),
at κ = 3.4 with a chaotic orbit (gray dots), regular tori (gray lines)
including the dominant 6:2 resonance chain and a chaotic layer (inset).
The arrows indicate one iteration step when applying the maps U

and Ur .

For example, for κ = 3.4, the dominant r:s = 6:2 resonance
has r = 6 resonance regions, see Fig. 2. Here s denotes the
number of resonance regions that are surpassed in one iteration
step of U . Thus after r periods of the external driving, one has
s rotations around the elliptic fixed point (q∗,p∗). Note that
this 6:2 resonance is composed of s = 2 disconnected groups
of r

s
= 3 resonance regions. As the rational numbers are dense

within the real numbers, there are infinitely many nonlinear
resonance chains within the regular region, where the dominant
one typically has the lowest order r . Each resonance chain is
surrounded by a thin chaotic layer, see the inset in Fig. 2. It
is important to note that applying the r-times iterated map
Ur gives the same phase-space structure as U ; however, each
resonance region is mapped onto itself, see Fig. 2.

III. ITERATIVE CANONICAL TRANSFORMATION
METHOD WITH A RESONANCE

In this section we demonstrate how a regular phase-space
region of a mixed system and one considered nonlinear reso-
nance chain can be approximated by an integrable Hamiltonian
Hr:s(q,p). More specifically, Hr:s(q,p) is constructed such
that the final point of a time evolution over the time span
�t = r is close to Ur (q,p) if the initial point (q,p) is chosen
from the regular region. The reason for using the resonance
order r as the time span �t instead of considering �t = 1 is
indicated in Fig. 2. Here the r resonance regions are connected
by the dynamics of U , a property that cannot be modeled by a
time-independent integrable approximation. We consider the
r-fold map Ur instead, where each resonance region is mapped
onto itself.

In order to find Hr:s(q,p), we generalize the iterative
canonical transformation method of Ref. [31] to include the
considered nonlinear resonance chain. The iterative canonical
transformation method is based on the idea that the tori of
the regular region and their dynamics can be decomposed into
the properties (i) action and frequency as well as (ii) shape.
Accordingly, an integrable approximation is constructed in
two steps: (i) Find an integrable approximation with matching
frequencies and actions. (ii) Transform this integrable approx-
imation to match the shape of the tori in phase space using
iterative canonical transformations.

To include a resonance chain into the integrable ap-
proximation, step (i) is extended to normal-form Hamilto-
nians [3,17,20,27,32–34], as discussed in Sec. III A. This is
followed by a presentation of step (ii) in Sec. III B. The spe-
cific implementation of the iterative canonical transformation
method with a resonance for the standard map is demonstrated
in Sec. IV.

A. Action and frequency approximation

We now describe the first step of constructing an integrable
approximation to a regular phase-space region of Ur and the
considered nonlinear resonance chain. This step requires us
to extract information about the actions and frequencies of
motion along tori in the regular phase-space region. This in-
formation is then condensed into an integrable approximation.

052906-2



INTEGRABLE APPROXIMATION OF REGULAR REGIONS . . . PHYSICAL REVIEW E 90, 052906 (2014)

1. Extracting actions and frequencies of U r

To compute actions and frequencies of Ur , we compute the
orbit

x̄τ
	r = (Ur )	

(
q̄τ

0 ,p̄τ
0

)
, (5)

with initial conditions (q̄τ
0 ,p̄τ

0 ) for 	 = 1, . . . ,	max iterations of
Ur . These orbits lie on a set of tori labeled by τ in the regular
region, including tori of the resonance regions. Their action J̄τ

can be evaluated according to the general formula

J = 1

2π

∮
torus

p dq. (6)

Their frequency ω̄τ = ω̂/r ∈ [−π
r
, π

r
[ can be determined from

the frequency ω̂ of the orbit x̂τ
	 = x̄τ

	r . Thus the orbit x̄τ
	r is

described by the Fourier series x̄τ
	r = ∑

k∈Z cτ
k exp(iω̄τ 	rk).

Note that this definition of ω̄τ based on Ur is equivalent to the
definition of Ref. [17] where the frequencies of U are shifted
by �r:s into the corotating frame of the r:s resonance. Finally
this leads to the data set of actions and frequencies

(J̄τ ,ω̄τ ) (7)

of the regular region of Ur . Note that all quantities related to
Ur are marked by an overbar to clearly distinguish them from
those quantities related to the integrable approximation.

2. Integrable approximation

Based on the determined actions and frequencies we now
introduce an integrable approximation. Following the idea of
normal forms [3,17,20,27,32–34], we choose as an ansatz the
Hamiltonian

Hr:s(θ,I ) = H0(I ) + V(I ) cos(rθ ), (8)

where r is the order of the resonance. The phase space
of this Hamiltonian consists of three integrable parts, see
Fig. 3(a), which correspond to the regular region of Ur with
the considered resonance chain, see Fig. 3(b). The ansatz
for Hr:s(θ,I ) contains two arbitrary functions H0(I ) and
V(I ). They need to be determined according to the following
criterion: For every torus of the map Ur with action J̄τ

and frequency ω̄τ , there should (i) exist a torus of Hr:s(θ,I )
with the same action J = J̄τ having (ii) a similar frequency
ω(J = J̄τ ) ≈ ω̄τ . Here ω(J ) is the frequency function induced
by the Hamiltonian Hr:s(θ,I ) in the corresponding parts of
phase space.

To achieve (i),H0(I ) and V(I ) are chosen such that the total
area Ar:s of the resonance regions and the area A1 below the
resonance region agree with the corresponding areas of Ur ,
see Fig. 3,

Ar:s ≈ Ār:s , (9a)

A1 ≈ Ā1. (9b)

To achieve (ii), we further choose H0(I ) and V(I ) such that
the distance of corresponding frequencies in Ur and Hr:s ,∑

τ

|ω̄τ − ω(J̄τ )|2, (10)

is minimized. An explicit determination of H0(I ) and V(I )
from these conditions in terms of a series expansion is
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FIG. 3. (Color online) (a) Phase space of the normal-form Hamil-
tonian Hr:s(θ,I ), Eq. (8), with the areas Ar:s of the resonance regions
and the area A1 below the resonance regions. (b) The corresponding
areas Ār:s and Ā1 for the standard map, Eq. (3), at κ = 3.4.

demonstrated in Sec. IV A for the example of the standard
map.

B. Shape approximation

We now show how the second step of the iterative
canonical transformation method is implemented. For this the
normal-form Hamiltonian Hr:s(θ,I ) with adapted frequencies
is transformed to the phase-space coordinates (q,p) such that
its time evolution over the time span �t = r closely agrees
with Ur in the regular phase-space region. To achieve this the
transformed tori of the integrable approximation should match
the shape of the corresponding tori in the regular phase-space
region of Ur including the considered nonlinear resonance
chain. For this we adapt the iterative canonical transformation
method [31] to the case of an additional resonance chain: In
Sec. III B 1 we explain how an initial canonical transformation
is used to find an initial integrable approximation which
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roughly resembles the regular phase-space region of the
mixed system including the considered resonance chain. In
Sec. III B 2 we introduce a family of canonical transformations.
In Sec. III B 3 we explain how iterative application of canonical
transformations gives an improved integrable approximation.

1. Initial integrable approximation

To transform the normal-form Hamiltonian Hr:s(θ,I ) to
the phase-space coordinates (q,p) of the regular phase-space
region of Ur , we apply an initial canonical transformation

T0 : (θ,I ) �→ (q,p). (11)

This initial canonical transformation T0 should map the tori
of Hr:s(θ,I ) to the neighborhood of the corresponding tori
of Ur . In particular the torus with action J = 0 should be
mapped onto the fixed point (q∗,p∗) of Ur . This gives the
initial integrable approximation

H 0
r:s(q,p) = Hr:s

[
T −1

0 (q,p)
]
. (12)

It is convenient to choose T0 in a simple closed form, see
Sec. IV B for an example.

2. Family of canonical transformations

In the following we improve the agreement between the tori
of the initial integrable approximation H 0

r:s(q,p) and those of
the regular phase-space region of Ur . To this end we introduce
a family of type two generating functions

F a(q,p′) = qp′ +
α∑

ν=1

aνGν(q,p′), (13)

defined by a choice of α parameters a = (a1,a2, . . . ,aα) ∈ Rα

and a choice of independent functions Gν . The corresponding
canonical transformation

T a : (q,p) �→ (q ′,p′) (14)

is implicitly defined by the equations

q ′ = ∂F a

∂p′ (q,p′) = q +
α∑

ν=1

aν

∂Gν(q,p′)
∂p′ , (15a)

p = ∂F a

∂q
(q,p′) = p′ +

α∑
ν=1

aν

∂Gν(q,p′)
∂q

, (15b)

which need to be solved for (q ′,p′). For sufficiently small
a and bounded C2 functions Gν this solution globally exists
according to Hadamard’s global inverse function theorem [35]
and represents a near-identity transformation.

3. Iterative improvement

We now use a family of canonical transformations T a to
improve the agreement between the initial integrable approxi-
mation H 0

r:s(q,p), Eq. (12), and the regular phase-space region
of Ur . From a theoretical point of view it is tempting to find
a canonical transformation T a leading to a new Hamiltonian
which shows maximal agreement with the regular phase-space
region of Ur . However, finding this transformation, e.g., by
making an ansatz for T a using Fourier basis functions Gν

in Eqs. (13) and (15) with an infinite set of coefficients,

is practically impossible. Therefore, we fix the number α

of coefficients in our ansatz for the family of canonical
transformations T a. Subsequently, we use members from
this family to iteratively improve the agreement between the
integrable approximation and the regular phase-space region
of Ur . This gives a sequence of canonical transformations

Tn : (q,p) �→ (q ′,p′), n = 1,2, . . . ,N, (16)

with Tn ∈ {T a} such that the nth integrable approximation

Hn
r:s(q,p) = H 0

r:s

[
T −1

1 ◦ · · · ◦ T −1
n (q,p)

]
(17)

agrees more and more with the regular phase-space region of
Ur when n is increased.

For this, each canonical transformation has to minimize
the distance of points with corresponding action-angle coordi-
nates, (ϑ,J ) = (ϑ̄,J̄ ), in Hn

r:s and Ur , respectively. To achieve
this (i) we explain how to obtain the corresponding sample
points and (ii) we set up a cost function to minimize their
distance.

(i) Using the orbit of Eq. (5), we obtain the sample points
x̄τ

	r of Ur , which correspond to action J̄τ and angles

ϑ̄ τ
	r = ω̄τ 	r. (18)

For the integrable approximation we first define the corre-
sponding sample points of Hr:s(θ,I ),

θτ
	r = θ (ϑ,J )

∣∣
(ϑ,J )=(ϑ̄τ

	r ,J̄τ ), (19a)

I τ
	r = I (ϑ,J )

∣∣
(ϑ,J )=(ϑ̄τ

	r ,J̄τ ). (19b)

Here (ϑ,J ) denote the action-angle coordinates ofHr:s(θ,I )
which exist, as Hr:s(θ,I ) is locally integrable. If the used
transformation θ (ϑ,J ),I (ϑ,J ) is known explicitly, as, e.g., for
the pendulum Hamiltonian [2], an evaluation of Eqs. (19) is
straightforward. If this transformation is not known explicitly,
which is typically the case, we construct (θτ

	r ,I
τ
	r ) using the

time evolution with Hr:s(θ,I ). More specifically, we choose
(θτ

0 ,I τ
0 ) to be the point on the torus of action J̄τ which is

closest to T −1
0 (x̄τ

0). We then obtain the points (θτ
	r ,I

τ
	r ) from

an evolution with Hr:s(θ,I ) up to the time t = 	rf . Here, the
factor f = ω̄τ /ω(J̄τ ) is of order 1 and ensures that the angle
ϑ = ω(J̄τ )t = ω̄τ 	r agrees with the corresponding angle ϑ̄ τ

	r

of Ur , Eq. (18). Finally this gives the sample points of the nth
integrable approximation Hn

r:s(q,p),

xτ,n
	r = Tn ◦ · · · ◦ T1 ◦ T0

(
θτ
	r ,I

τ
	r

)
, (20)

which correspond to the sample points x̄τ
	r of Ur .

(ii) To minimize the distance between x̄τ
	r and xτ,n

	r in the
(n + 1)st iteration step, we apply the canonical transformation
T a and minimize the cost function

L(a) = 1

N
∑

τ

∑
	

[
x̄τ

	r − T a(xτ,n
	r

)]2
. (21)

Here N is the total number of sample points. Since a = 0
gives the identity transformation according to Eq. (15), L(0)
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measures the quality of Hn
r:s . Thus any choice of a with L(a) <

L(0) improves Hn
r:s .

Furthermore, following the strategy of Ref. [31], we
determine an optimal parameter a. To this end we exploit
that H 0

r:s(q,p) agrees well with the approximated phase-space
region already, such that the optimal transformation should
be close to the identity transformation, i.e., the sought-for
parameter a is small,

|a| 	 1. (22)

This allows for solving Eq. (15) to linear order, giving a
quadratic approximation to the cost function L(a) [31]. From
this a good estimate of the optimal parameter a∗ close to the
minimum of L(a) is determined. For this parameter a∗ one
solves the canonical transformations (15) numerically using
Newton’s method. If for this parameter a∗ Eq. (15) is not
invertible on the relevant domain of phase space, we replace
T a∗

by T ηa∗
using a damping factor η 	 1. This is possible

as L(a∗) < L(ηa∗) < L(0), but requires us to increase the
number N of iteration steps.

IV. APPLICATION TO THE STANDARD MAP

In this section we describe how the iterative canonical
transformation method with a resonance is implemented for
the central regular phase-space region of the standard map.
We first consider this map, Eq. (3), for κ = 3.4, where it has a
nonlinear 6:2 resonance, see Fig. 2.

A. Action and frequency approximation

1. Extracting actions and frequencies of U r

According to Sec. III A 1 we start by determining the actions
and frequencies (J̄τ ,ω̄τ ) from the regular phase-space region of
the map Ur . For a rough scan of the regular region, we consider
a set of points on a line at p̄0 = p∗ with q̄0(λ) = q∗ + λ using
equidistant parameter values λ ∈ ]0,0.0931]. To each of these
points we apply the map Ur to obtain an orbit and determine
its frequency ω̄(λ) [36,37]. Since frequencies change in a
nonsmooth way across the infinitely many resonances of the
regular region, we focus on so-called noble tori, which are
farthest away from these resonances. We determine a set of
τmax = 80 target frequencies ω̄τ from the range of frequencies
ω̄(λ) as described in the Appendix. For each target frequency
ω̄τ we solve ω̄(λτ ) = ω̄τ for λτ numerically.

This gives a set of initial conditions (q̄τ
0 ,p̄τ

0 ) = (q̄0(λτ ),p̄0)
on noble tori τ . From these initial conditions we compute the
orbits x̄τ

	r , Eq. (5), using 	max = 104 iterations of the map Ur ,
resulting in the black tori shown in Fig. 4(a). We compute their
action J̄τ according to Eq. (6). This gives the data set of actions
and frequencies (J̄τ ,ω̄τ ) which is depicted by the black dots
in Fig. 4(b). Note that a similar procedure could be applied to
the tori inside the considered resonance chain. However, for
convenience we do not use those tori which will turn out to be
sufficient.

2. Integrable approximation

As explained in Sec. III A we now require a normal-form
Hamiltonian which matches the corresponding actions and
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FIG. 4. (Color online) (a) Phase space of the standard map,
Eq. (3), at κ = 3.4 (gray lines and dots) with regular orbits x̄τ

	r (black)
on noble tori. (b) Frequencies ω̄τ of these orbits (black dots) and the
fitted function H′

0(J ) (red solid line).

frequencies of the standard map Ur by satisfying the area
conditions (9) and minimizing Eq. (10). For this normal-form
Hamiltonian Hr:s(θ,I ), Eq. (8), we use

H0(I ) = (I − Ir:s)2

2Mr:s
+

K∑
k=3

hk(I − Ir:s)
k, (23)

and the lowest order ansatz for a resonance chain encircling a
fixed point [17,27,34],

V(I ) = 2Vr:s

(
I

Ir:s

)r/2

. (24)

To determine the unknown parameters {Ir:s ,Mr:s ,Vr:s ,hk} we
analyzeHr:s(θ,I ) first close to the resonance and then far away
from the resonance.
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Close to the resonance, the leading-order expansion of
Hr:s(θ,I ) around Ir:s is the pendulum Hamiltonian [20,32,33]

Hpend
r:s (θ,I ) = (I − Ir:s)2

2Mr:s
+ 2Vr:s cos(rθ ). (25)

Here Ir:s gives the location of the resonance, while Mr:s and
Vr:s control the size Ar:s of the resonance and the frequency
at the center of the resonance region. We compute these
parameters according to [38]

Ir:s = 1

2π

(
Ā1 + 1

2
Ār:s

)
, (26a)

Mr:s = μr2

16
Ār:s arccos

(
1

2
TrM̄r:s

)−1

, (26b)

Vr:s = μ

32r2
Ār:s arccos

(
1

2
TrM̄r:s

)
. (26c)

This accounts for condition (9) by matching the areas Ār:s and
Ā1 of Ur , see Fig. 3. Furthermore, the frequency at the center of
the resonance region enters via the monodromy matrix M̄r:s .
Note that these parameters contain the essential information
on action and frequency within the resonance regions. Finally,
we find for the sign μ = −1, because the frequencies decrease
with increasing action, see Fig. 4(b).

We now determine the parameters {hk} which describe the
frequency behavior far away from the resonance regions. There
the frequency function ω(J ) is approximately described by

ω(J ) ≈ H′
0(J ) = J − Ir:s

Mr:s
+

K∑
k=3

khk(J − Ir:s)
k−1, (27)

which neglects the resonance as a perturbation. In this
approximation, Eq. (10) becomes∑

τ

|ω̄τ − H′
0(J̄τ )|2, (28)

which we minimize to determine {hk}. For K = 4 we obtain
a satisfactory agreement between the data set (J̄τ ,ω̄τ ) and the
approximate frequency function H′

0(J ), see Fig. 4(b). Note
that this comparison is meaningful only far from the resonance,
where the approximation (27) is justified.

The determined parameters give the resulting Hamiltonian
Hr:s(θ,I ), see Fig. 6(a). For a global comparison, we perform
a numerical evaluation of the exact frequency function ω(J )
of Hr:s(θ,I ). We obtain a good agreement with a mean error
of �ω = 0.0002 for the data set (J̄τ ,ω̄τ ) and also near the
resonance [light blue dots in Fig. 5(a)] we have �ω < 0.001.
Moreover, even inside the resonance regions where no data
of tori have been used for the optimization, but only the
parameters of Eqs. (26), the frequency is well approximated,
see Fig. 5(b).

B. Shape approximation

We proceed by mapping the integrable approximation
obtained in the previous section to the phase space of Ur .
As a first step, we choose the initial canonical transformation

T0:

(
θ

I

)
�→

(
q∗
p∗

)
+ R

( √
2J cos(θ )

−√
2J sin(θ )

)
(29)
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FIG. 5. (Color online) Comparison of the frequency function
ω(J ) of the determined integrable approximation Hr:s(θ,I ) (red thin
lines) to frequencies of Ur (dots): (a) the frequencies ω̄τ (black dots),
frequencies close to the resonance region (light blue or gray dots) and
(b) frequencies inside the resonance region (green or gray dots).

with

R =
(

1 1/2
0 1

)(
1/

√
σ 0

0
√

σ

)
. (30)

The parameter σ of T0 is chosen such that the hyperbolic
periodic points of the nonlinear resonance chain along the line
p = 0 agree both for the standard map and the induced initial
integrable approximation H 0

r:s(q,p), Eq. (12). The specific
choice for T0 incorporates the symmetries of the standard map
into the initial integrable approximation. The result for κ = 3.4
using σ = 3.96851 is depicted in Fig. 6(b).

To improve the initial integrable approximation we define
the family of canonical transformations T a using the Fourier

052906-6



INTEGRABLE APPROXIMATION OF REGULAR REGIONS . . . PHYSICAL REVIEW E 90, 052906 (2014)

0

Ir:s

0 π 2π

I

T0

(a)

θ

−0.35

0.35

0.25 0.75

(b)

q

p

T1

0.75

(c)

T2 ... TN

(d)

FIG. 6. (Color online) (a) Phase space of the normal-form Hamiltonian Hr:s(θ,I ), Eq. (8), with H0(I ) and V(I ) as determined in Sec. IV A
(thin colored lines). (b–d) Phase space of the standard map, Eq. (3), at κ = 3.4 (light gray lines and dots) and tori (thin colored lines) of
the integrable approximations Hn

r:s(q,p) obtained from the transformation Tn ◦ · · · ◦ T1 ◦ T0 (b) H 0
r:s(q,p), (c) H 1

r:s(q,p), and (d) HN
r:s(q,p),

N = 15. The magnifications show the improvement of the integrable approximations.

ansatz for the generating function

F a(q,p′) = qp′ +
Nq∑

ν1=0

Np∑
ν2=0

a+
ν1ν2

f +
ν1

(
q − q∗

Lq

)
f +

ν2

(
p − p∗

Lp

)

+
Nq∑

ν1=1

Np∑
ν2=1

a−
ν1ν2

f −
ν1

(
q − q∗

Lq

)
f −

ν2

(
p − p∗

Lp

)
,

(31)

with basis functions

f +
ν (x) = cos(2πνx), (32a)

f −
ν (x) = sin(2πνx). (32b)

This ansatz gives canonical transformations, Eq. (14),
which preserve the parity of the standard map. Since
shifting the generating function by a constant term
is irrelevant for the canonical transformation, we set
a+

00 = 0. Furthermore we choose Lq = Lp = 1.1 and
Nq = Np = 3.

To set up the cost function L(a), Eq. (21), we compute
the sample points x̄τ

	r within the regular phase-space region
of the standard map, using Eq. (5) with 	max = 103 iterations
for the same initial conditions x̄τ

0 as in Sec. IV A. Hence, x̄τ
	r

are points on noble tori of action J̄τ and frequency ω̄τ . We
compute the corresponding sample points xτ,0

	r of H 0
r:s(q,p) by

numerical integration over times t = 	rω̄τ /ω(J̄τ ), as explained
in Sec. III B 3. For this we use initial conditions xτ,0

0 on the
line p = p∗, q > q∗, such that the corresponding tori have
action J̄τ .

Having defined the sample points x̄τ
	r and xτ,0

	r , we now
minimize the cost function L(a), Eq. (21), according to

the procedure described in Sec. III B 3, i.e., we iteratively
determine and apply canonical transformations Tn from the
family of canonical transformations defined by Eq. (31). Here,
we use the damping factor η = 0.25. Applying N = 15 steps
of the iterative canonical transformation method, we typically
observe a saturation of the cost function, see Fig. 7, giving
a sequence of improved integrable approximations Hn

r:s(q,p)
as shown in Fig. 6. The final integrable approximation Hr:s =
HN

r:s gives a very good description of the regular region and
the 6:2 resonance regions. Even the tori inside the resonance
regions which have not yet been included in the cost function,
are well approximated.

In Fig. 8 we show integrable approximations for further
parameters κ = 2.9, 3.3, 3.5 of the standard map also including
a case with a 10:3 resonance. Here we used the same procedure
with parameters τmax = 80, K = 4, Lq = Lp = 1.1, Nq =
Np = 3, 	max = 103, and damping factors η = 0.1, 0.4, 0.25,

10−6

10−5

10−4

10−3

0 5 10 15

L

n

FIG. 7. (Color online) Cost function L, Eq. (21), vs iteration
step n.
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FIG. 8. (Color online) Integrable approximations for the standard map, Eq. (3), at different parameters (a) κ = 2.9, (b) κ = 3.3, and (c)
κ = 3.5. Top: Phase space of the standard map (light gray lines and dots) and tori of the integrable approximation (thin colored lines). Bottom:
Cost function L, Eq. (21), vs iteration step n.

respectively. This demonstrates the general applicability of the
presented method.

V. SUMMARY AND OUTLOOK

In this paper we present how an integrable approximation
can be constructed to the regular phase-space region of a mixed
system and one nonlinear resonance chain. To achieve this goal
we combine the theory of normal-form Hamiltonians with
the iterative canonical transformation method. We apply this
approach to the generic standard map for various parameter
values and find an integrable approximation which closely
resembles the dynamics in the regular phase-space region
including the considered resonance chain.

One possible generalization of this approach would be to
approximate multiple resonance chains. This would require
normal-form Hamiltonians with more than one nonlinear
resonance chain, which is the topic of current research [39].
Another generalization would be the application to systems
with a higher-dimensional phase space. Here the main diffi-
culty is to find an integrable normal-form Hamiltonian with
tori of appropriate actions and frequencies. On the other
hand, the shape approximation using the iterative canonical
transformation method should be straightforward.
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APPENDIX: DETERMINATION OF NOBLE
FREQUENCIES

Here we describe the determination of frequencies ω̄τ of
noble tori τ inside the regular region. According to the KAM
theorem [4–7], tori persist for which ω̄τ /(2π ) is sufficiently
irrational, i.e., satisfies a Diophantine condition. This is, for
example, fulfilled for noble numbers whose continued fraction
expansion is eventually periodic with 1. Such noble numbers
are as far as possible away from rational numbers in the sense
that they are hardest to approximate by rationals [40]. Thus
noble tori are particularly suited for the iterative canonical
transformation method.

For convenience, we relate the frequencies ω̄τ to numbers
ξτ ∈ [0,1[ by

ξτ = ω̄τ

2π
mod 1. (A1)

We now calculate τmax noble numbers ξτ . This is done by first
constructing the Stern-Brocot tree [41–43] of rational numbers
and then determining corresponding noble numbers.

(1) To build the Stern-Brocot tree in the interval [0,1]
one starts in the first level with the two fractions m/n =
0/1 and m′/n′ = 1/1. In each iteration for each pair of
adjacent fractions m/n and m′/n′ we insert the medi-
ant ζ = (m + m′)/(n + n′). This leads to the sequence of
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sets {0/1,1/1}, {0/1,1/2,1/1}, {0/1,1/3,1/2,2/3,1/1}, . . . .
Alternatively one could also use the Farey tree [40,44] which
is a subtree of the Stern-Brocot tree.

(2) For each new rational ζ of a level, one determines its
finite continued fraction expansion

ζ = ζ0 + 1

ζ1 + 1

ζ2 + 1

. . . + 1

ζk

, (A2a)

=: [ζ0; ζ1,ζ2, . . . ,ζk]. (A2b)

Appending the infinite continued fraction expansion of the
golden mean σ = (

√
5 − 1)/2 = [0; 1,1,1, . . . ] at the end of

the continued fraction expansion (A2) gives the noble number

ξ = [ζ0; ζ1,ζ2, . . . ,ζk,1,1,1, . . . ]. (A3)

The construction is such that there is precisely one such noble
number between each pair of adjacent rationals of a given level
of the Stern-Brocot tree.

(3) Each noble number ξ leads to a frequency ω̄ according
to Eq. (A1).

(4) The iteration is stopped when τmax frequencies are found
within the range of frequencies ω̄(λ) of the regular region.
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