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Synchronization is a ubiquitous phenomenon occurring in social, biological, and technological systems when
the internal rythms of their constituents are adapted to be in unison as a result of their coupling. This natural
tendency towards dynamical consensus has spurred a large body of theoretical and experimental research in
recent decades. The Kuramoto model constitutes the most studied and paradigmatic framework in which to study
synchronization. In particular, it shows how synchronization appears as a phase transition from a dynamically
disordered state at some critical value for the coupling strength between the interacting units. The critical
properties of the synchronization transition of this model have been widely studied and many variants of its
formulations have been considered to address different physical realizations. However, the Kuramoto model
has been studied only within the domain of classical dynamics, thus neglecting its applications for the study of
quantum synchronization phenomena. Based on a system-bath approach and within the Feynman path-integral
formalism, we derive equations for the Kuramoto model by taking into account the first quantum fluctuations.
We also analyze its critical properties, the main result being the derivation of the value for the synchronization
onset. This critical coupling increases its value as quantumness increases, as a consequence of the possibility of
tunneling that quantum fluctuations provide.

DOI: 10.1103/PhysRevE.90.052904 PACS number(s): 05.45.Xt

I. INTRODUCTION

Synchronization is perhaps the most cross-disciplinary
concept emerging from collective behavior [1] as it manifests
across many branches of natural and social sciences. Ensem-
bles of neurons, fireflies, or humans are prone to synchronize
their internal rhythms when they become sufficiently coupled,
producing a macroscopic dynamically coherent state. In all
these seemingly unrelated situations, regardless of the precise
nature of the coupled units, the interaction drives the system’s
components to behave homogeneously. Thus, the study of the
microscopic rules that drive ensembles towards synchrony has
had a long and fruitful history since the seminal observations
made by Huygens [2–4].

The mathematical formulation of the early models showing
synchronization phenomena dates back to the 1970s when,
after some preliminary work by Peskin and Winfree [5],
Kuramoto [6] formalized his celebrated model. The Kuramoto
model incorporates the minimum dynamical ingredients aimed
at capturing a variety of physical phenomena related to the on-
set of synchronization. In particular, the Kuramoto model links
physical concepts such as self-organization, emergence, order
in time, and phase transitions and thus is the most paradigmatic
framework in which to study synchronization [5,7,8].

Despite the large body of literature devoted to the Kuramoto
model and its variants, its study has always been restricted to
the classical domain. Initially, given the usual nature (scale)
of the systems in which synchronization is typically observed,
it seems superfluous thinking of a quantum theory for the
Kuramoto model. However, there is not doubt about the fun-
damental importance of studying quantum fluctuations within
the emergence of synchronized states [9–16]. Moreover, the

Kuramoto model has been implemented on circuits and micro-
and nanomechanical structures [17,18], systems that have
already met the quantum domain [19,20]. At the quantum level,
synchronization, understood as the emergence of a coherent
behavior from an incoherent situation in the absence of external
fields, is reminiscent of phenomena such as Bose-Einstein
condensation and has been observed in interacting condensates
of quasiparticles [21,22]. Additionally, synchronization has
been suggested to occur in ensemble of atoms and enhance
the coherence time of the next generation of lasers [23]. Thus,
moved by its fundamental and applied importance, in this work
we provide the semiclassical version of the Kuramoto model
in an attempt to understand the influence that quantumness has
on the emergence of synchronized states.

Our work in this paper consists, as stated by Caldeira
and Leggett [24], in finding consistent equations that in the
classical limit match the Kuramoto model. Our derivation
relies on the quantization of open systems in the framework
of Feynman’s path-integral formalism. We compute quantum
corrections to the classical Kuramoto model. We also analyze
its critical properties by deriving the critical point from
which synchronization appears and determine how quantum
fluctuations affect this synchronization transition.

The rest of the paper is organized as follows. In Sec. II we
review the main features of the classical model. Section III,
which constitutes the main part of our work, presents the
semiclassical equations and our numerical results on the syn-
chronization dynamics. In Sec. V we derive the critical value
for the synchronization transition. We summarize and discuss
our results in Sec. VI. The technical steps for the semiclassical
calculations and the critical value are given in the Appendices.
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FIG. 1. (Color online) Synchronization in the classical Kuramoto model. Each panel on the top shows the collection of oscillators situated
in the unit circle (when each oscillator j is represented as eiθj (t)). The color of each oscillator represents its natural frequency. From left to right
we observe how oscillators start to concentrate as the coupling K increases. In the panels below we show the synchronization diagram, i.e., the
Kuramoto order parameter r as a function of K . It is clear that Kc = 1 as obtained by using the distribution g(ω) shown in the right panel.

II. CLASSICAL KURAMOTO MODEL

The original Kuramoto model [6] considers a collection of
N phase oscillators, i.e., it assumes that the characteristic time
scale of their amplitudes is much faster than that of the phases.
Thus, the dynamical state of the ith unit is described by an
angular variable θi ∈ (0,2π ] whose time evolution is given by

θ̇i = ωi + K

N

N∑
j=1

sin(θi − θj ). (1)

This equation thus describes a set of weakly coupled phase
oscillators whose internal (natural) frequencies {ωi} are, in
principle, different as they are assigned following a frequency
distribution g(ω) that is assumed to be unimodal and even
around the mean frequency � of the population g(� + ω) =
g(� − ω).

In the uncoupled limit (K = 0) each element i describes
limit-cycle oscillations with characteristic frequency ωi . Ku-
ramoto showed that by increasing the coupling K the system
experiences a transition towards complete synchronization,
i.e., a dynamical state in which θi(t) = θj (t)∀i,j and ∀t . This
transition occurs when the coupling strength exceeds a critical
value whose exact value is

Kc = 2

πg(�)
. (2)

To monitor the transition towards synchronization, Ku-
ramoto introduced a complex order parameter

r(t)ei�(t) = 1

N

N∑
j=1

eiθj (t). (3)

The modulus of the above order parameter r(t) ∈ [0,1]
measures the coherence of the collective motion, reaching the

value r = 1 when the system is fully synchronized and r = 0
for the incoherent solution. On the other hand, the value of �(t)
accounts for the average phase of the collective dynamics of
the system.

We illustrate in Fig. 1 the synchronization in the Kuramoto
model. The top panels show, for different values of the coupling
K , how the oscillators concentrate as K increases. The bottom
panels show the usual synchronization diagram r(K) for which
the exact value of r for each K is the result of a time average
of r(t) over a large enough time window. In this diagram we
can observe that Kc = 1 as a result of using the distribution
g(ω) shown on the right.

Let us note that the all-to-all coupling considered originally
by Kuramoto can be trivially generalized to any connectivity
structure by introducing the coupling matrix Aij inside the sum
in Eq. (1) so that each term j accounting for the interaction
between oscillators i and j is assigned a different weight. The
latter allows for the study of the synchronization properties of
a variety of real-world systems for which interactions between
constituents are better described as a complex network [25].
The formalism developed in this work is completely general
and valid for any form of Kij , thus making possible the
extension of the large number of studies of the Kuramoto
model in any topology [26] to the semiclassical domain.
However, the numerical part of our work will deal with the
all-to-all coupling for the sake of comparison with the original
Kuramoto work.

III. QUANTIZATION OF THE KURAMOTO MODEL

The most important problem when facing the quantization
of the Kuramoto model is its non-Hamiltonian character
since, as introduced above, Eq. (1) assumes the steady state
for the dynamical state of the amplitude of the oscillators.
Thus, a question arises as to how we introduce quantum
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fluctuations in the Kuramoto model. One possible choice is
to resort to the original microscopic dynamics of amplitude
and phases and then identify the underlying Hamiltonian
dynamics. However, many different dynamical setups can
have the Kuramoto model as their corresponding limiting
case of fast amplitude dynamics. Thus, in order to keep the
generality of the Kuramoto model, it is desirable not to resort
to any specific situation (Hamiltonian) and introduce quantum
fluctuations directly.

A similar problem was faced by Caldeira and Leggett in
the 1980s [24] when they studied the influence of dissipa-
tion in quantum tunneling. In their case, the corresponding
classical dynamics dates back to the studies on activation
theory by Kramers [27]. Classically, a particle in a potential
experiences an energy barrier to surmount, which is typically
acquired from thermal fluctuations. On the other hand, a
quantum particle finds in tunneling an alternative way to
bypass an energy barrier. Caldeira and Leggett were thus
interested in quantifying the catalytic effect of tunneling in
(effectively) lowering the energy barriers. However, as in
the Kuramoto model, Kramers activation theory is based
on Langevin equations, i.e., stochastic equations that are
not directly obtained from any Lagrangian. Furthermore,
most of the reaction rate equations were phenomenological.
Therefore, they searched for a consistent way to introduce
quantum fluctuations regardless of the microscopic origin of
the effective classical evolution. As a by-product their work
opened the field of quantum Brownian motion in the most
general way.

We take here the same route followed by Caldeira and
Leggett to introduce quantum fluctuations in the Kuramoto
model. In order to accommodate our dynamical system (1)
to the framework provided in [24] we start by writing its
corresponding Langevin equation

θ̇i = −∂V

∂θi

+ ξi, (4)

with

V (θ1, . . . ,θN ) ≡ −
∑

i

ωiθi + K

N

∑
i,j

cos(θi − θj ). (5)

As usual, ξi is a Markovian stochastic fluctuating force
with 〈ξi(t)〉 = 0 and 〈ξi(t)ξj (t ′)〉 = 2δijDδ(t − t ′). In the limit
D → 0, Eq. (4) reduces to the Kuramoto model in Eq. (1).

Equation (4) is a Langevin equation in the overdamped
limit. It is first order rather than second order in time as the
inertia term is neglected. Consequently, the Kuramoto model
can be viewed as a set of phases evolving in the overdamped
limit. The absence of fluctuations in the limit D → 0 means
that the system of phases is at zero temperature D ∼ T . Such
identification with a Langevin equation has been used already
for generalizations of the original Kuramoto model taking into
account noise and/or inertial effects [8]. In particular, in [28]
it was shown that the critical value Kc reads

Kc = 2∫∞
−∞ dω D

D2+ω2 g(ω)
, (6)

which, in the limit D → 0, recovers the Kuramoto critical
coupling (2).

The key point of deriving the Langevin equation (4)
corresponding to the Kuramoto model is that it can be obtained
from a fully Hamiltonian framework by coupling the system,
in our case the coupled phases θi , to a macroscopic bath or
reservoir [27]. In this way, both the damping and fluctuations
are seen to be caused by the coupling of the system of phases
to the bath. The Hamiltonian description is properly cast in the
system-bath approach

Htot = Hsys + Hbath + Hint, (7)

where the bath is an infinite collection of harmonic oscillators
with frequencies {ωα} (note that greek subindexes denote the
oscillators in the bath). In the case we are dealing with the
total Hamiltonian, which reads

Htot =
∑

i

π2
i

2
+ V (θ1, . . . ,θN )

+ 1

2

∑
i,α

P 2
i,α + ω2

α(Qi,α − λαθi)
2, (8)

where {(θi,πi)} and {(Qi,α,Pi,α)} denote the system and bath
canonical coordinates, respectively, and λα stands for the
coupling constant between bath and system coordinates.

Under well-defined conditions, the equations of motion for
the system coordinates derived from the Hamiltonian (8) lead
to the previously derived overdamped Langevin equation (4).
In particular, one needs to assume (i) thermalized initial
conditions for the bath

〈Qi,αQi ′,α′ 〉 = δi,i ′δα,α′kBT /ω2
α, (9)

〈Pi,αPi ′,α′ 〉 = δi,i ′δα,α′kBT ; (10)

(ii) the frequency spectrum of the bath oscillators is flat (this
assumption leads to the widely used Ohmic dissipation); and
finally (iii) the changes in time of the velocity (acceleration)
induced by the energy potentials are far slower than the energy
loss induced by the coupling between the system and the bath
(this is the situation when the system and the bath are strongly
coupled), so we could neglect the inertial term.

Semiclassical equation

Once we have a Hamiltonian description for the Kuramoto
equation (1), we are ready to perform its quantization. First,
we associate the phases and their associated momenta with
the positions and momenta for the bath by providing them
with the canonical commutation rules. The hardest work is
to find an effective quantum evolution depending only on
phase operators, i.e., the so-called quantum Langevin equation.
It turns out that such an operator equation is a differential
equation that is nonlocal in time, which makes it extremely
difficult to manipulate in general. However, the quantum
version of Eq. (4) in the overdamped limit is a c-number
local differential equation [29–34]. The full derivation for
the quantum Langevin equation is based on the path-integral
formulation. It is lengthy and rather technical. Let us first
present the final result and then a sketch of the derivation.
Further details can be found in Appendix A.
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The resulting quantum evolution in the Itô representation
reads as follows:

θ̇i = −V ′
i

Fi

+ �

Fi

∑
j

(βV ′
jV

′′
ij − V ′′′

jji) − �

2Fi

V ′′′
iii +

√
1

Fi

· ξi,

(11)

where we have used the compact notation V ′···′
i,...,k ≡ ∂θi ,...,θk

V ,
ξi is an stochastic force with the same statistics as in (4),

Fi = e−(�/D)V ′′
ii , (12)

and � is the quantumness parameter

� = 2

mβ

∑
n

1

ν2
n + γ νn

= �

mπγ

(
�

[
�βγ

2π

]
− C + 2π

�βγ

)
, (13)

with C = 0.577 . . . the Euler-Mascheroni constant and �

the Digamma function. Note that in the limit �βγ → 0,
� → 0. Making � → 0, the quantum Langevin (11) reduces
to the classical equation (4). This is a remarkable property.
Our result is perturbative in β�, giving quantum corrections
containing, as a limit, the Kuramoto model. We notice that,
being perturbative, β� must be small, which means that our
equation is valid at high temperatures and damping. As a
drawback of the perturbative character, the model cannot be
pushed to the zero-temperature limit. Compared to its classical
counterpart [β� → 0, Eq. (4)], Eq. (11) has a renormalized
effective potential (5) (the third term on the right-hand side).
Besides, both the diffusion and consequently its noise terms
are also modified by the quantum fluctuations (the second and
last terms on the right-hand side, respectively).

The noise, because of the
√

1/Fi , is now multiplicative.
In the limit β� → 0, F → 1. Hence, in the classical limit
the multiplicative noise switches into additive noise. This
immediately suggests that the multiplicative nature is related
to the underlying quantum stochastic process. Quantum noise
depends, undoubtedly, on the state of the system, the dynamics
of observables depend on the state the system is in, and
therefore quantum noise in a Langevin equation must depend
upon the dynamics of the system itself. This explains the
multiplicative character of the noise in Eq. (11) at the single-
variable level. This result is consistent with previous works
along this line (see, e.g., Ref. [30,32–34]).

Sketch for the derivation of Eq. (11)

Any Langevin equation, classical or quantum, is an effective
evolution of the degrees of freedom for the system of interest.
If we start with the total Hamiltonian, the bath degrees of
freedom need to be integrated out. In the quantum regime, this
means taking the partial trace over the bath Hilbert space. We
follow here the program explained in Refs. [29,30]. The steps
are as follows. (i) The equilibrium reduced density matrix [35]

�β(θ ; θ ′) =
∫

dQWβ(Q,θ ; Q′,θ ′) (14)

is obtained in the overdamped limit. Both Q and θ are a
shorthand notation to denote the bath and system coordinates.

In such a regime the damping is sufficiently strong to suppress
the nondiagonal elements (coherences) of the reduced density
matrix, i.e., a regime where 〈θ1, . . . ,θN |�β |θ ′

1, . . . ,θ
′
N 〉 ∼∏

δ(θi − θ ′
i ). We define

Pβ(θ ) := �β(θ ; θ). (15)

As detailed in Appendix A, the reduced density matrix in the
overdamped limit can be written as

Pβ (θ ) = Z−1 exp

(
−β�

∑
i

V ′′
i,i

)

× exp

(
−βV + 1

2β2�
∑

i

(V ′
i )2

)
. (16)

Once the equilibrium density matrix is obtained, (ii) the
master equation for the probability distribution P (q,t) [cf.
Eq. (15)] is proposed. Taking into account the results for the
harmonic oscillator [31] and the single-particle case [29,32],
the master equation can be formally written as

∂tP (θ ; t) = ∂θLP (θ ; t). (17)

(iii) The actual master equation takes a Fokker-Planck form.
It is obtained by imposing that the equilibrium density
distribution Pβ given by Eq. (16) is stationary under (17),
LPβ(q) = 0. The final result is

∂tP =
∑

i

∂

∂θi

{[
V ′

i

�Fi

− β

�Fi

�
∑

j

V ′
j V ′′

i,j + �

�Fi

∑
j �=i

V ′′′
jji

]

+ ∂

∂θi

[
D

γ 2Fi

]}
P. (18)

Finally, (iv) the Langevin equation (11) is obtained via the
equivalence of Fokker-Planck equations, as Eq. (18) and
Langevin-type equations [36].

IV. TRANSITION TO SYNCHRONIZATION IN THE
SEMICLASSICAL MODEL

Once we derived the semiclassical version of the Kuramoto
equation, it is natural to unveil the effects that quantum
fluctuations induce in the transition to synchronization. As
introduced previously, to study the synchronization transition
one resorts to the order parameter r [introduced in Eq. (11)]
that reveals the synchronized state of the system. We solve
both the classical Kuramoto model (� = 0) and the quantum
one (� > 0) numerically, extracting from the dynamics the
stationary value of r . Throughout this work, the numerical
calculations are performed with N = 103 oscillators and the
distribution of natural frequencies is Lorentzian:

g(ω; ω0,α) = 1

π

α

(ω − ω0)2 + α2
, (19)

with α = 0.5 and centered around ω0 = 0.
Figure 2(a) shows the typical synchronization diagram,

namely, the value of r as a function of the coupling strength
K . The comparison of the semiclassical (for � = 0.1) and
classical curves r(K) evinces that quantum fluctuations delay
the onset of synchronization, i.e., the critical point Kc is seen
to move to larger values with �. We have also considered the
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FIG. 2. (Color online) Classical vs semiclassical synchroniza-
tion transitions. (a) Synchronization diagrams r(K) for the classical
(� = 0) and the quantum (� = 0.1) Kuramoto models. In both
cases the thermal noise is chosen such that D = 1. The number of
oscillators is N = 103 and the distribution of natural frequencies is
given in Eq. (19) centered in ω0 = 0 and α = 0.5. It is clear that the
synchronization onset is delayed as soon as quantumness enters into
play. (b) and (c) Probability P (θ ) of finding an oscillator at a given
phase θ as a function of K . Note that for each value of K , the phases
have been equally shifted so that the mean phase is located at θ = π .
A thick gray line indicates the critical values Kc and Kq

c for classical
and quantum dynamics, respectively.

evolution for the distribution of the phases as a function of K to
monitor the microscopic distinctive identifying characteristic
of the synchronization transition. The evolution of the classical
and quantum Kuramoto models is shown in Figs. 2(b) and 2(c),
respectively.

To explain the delay in the synchronization onset introduced
by quantum fluctuations we resort to the simplest situation:
two coupled Kuramoto oscillators. In this case the Kuramoto
model (4) consists of just two coupled equations for the

FIG. 3. (Color online) System of two coupled Kuramoto oscilla-
tors. (a) Analogy between the system of two coupled oscillators and
an overdamped particle in a washboard potential. The two possible
regimes are shown: the synchronized state (the particle is at rest
ϕ̇ = 0 at a local minimum) and the unsynchronized phase (the particle
drifts across the potential). (b) Possibility that tunneling allows one
to anticipate the drifting state. (c) Result of the computation of the
velocity ϕ̇ as a function of �ω/K for the classical (solid red line)
and quantum (dashed blue line) systems.

evolution of θ1 and θ2. By taking the difference of those
two equations and introducing as a new variable the phase
difference ϕ := θ1 − θ2, we obtain for its evolution the
following equation:

ϕ̇ = �ω − K sin ϕ + 2Dξ. (20)

This equation describes the evolution of an overdamped
particle in a washboard potential (see Fig. 3). With this image
in mind, we map the synchronous movement of the two
oscillators (defined as a state in which the frequencies of the
oscillators are locked: θ̇1 = θ̇2) with the resting state of the
overdamped particle inside a local minimum of the potential
energy (ϕ̇ = 0). On the other hand, when the two oscillators
are not synchronized the particle drifts across the potential
(ϕ̇ �= 0). Both situations are shown in Fig. 3.

The quantum version for the diffusion of an overdamped
particle in a periodic potential was previously studied in
Ref. [33]. The main result is that the escape rate of the
particle, and thus its unlocking mechanism, is enhanced
through quantum fluctuations. This effect can be seen as a
consequence of the enhancement of the transition probability
for energies below the height of the barrier, which is the
well-known tunnel effect [37]. In Fig. 3 we show, for both the
classical and semiclassical (� = 0.1) systems of two coupled
Kuramoto oscillators, the value of ϕ̇ = 0 as a function of
the ratio between the difference of the natural frequencies
of the two oscillators |�ω| and the coupling K . It is clear
that, as stated above, quantum tunneling facilitates the drift or,
equivalently, delays the transition to the synchronous state.

V. ANALYTICAL EXPRESSION FOR THE
SYNCHRONIZATION ONSET

Returning to the original model of N interacting oscillators,
we now make an analytical estimation of the value for critical
coupling at which the synchronization transition occurs. The
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FIG. 4. (Color online) Analysis of the behavior of the critical coupling. (a) Synchronization diagrams r(K) for different values of the degree
of quantumness �. Note that the coupling strength has been normalized to its value in the classical (� = 0) limit. The analytical estimation in
Eq. (21) is shown by the vertical lines confirming its validity. (b) Plot of r(K) for two different temperatures, corresponding to D = 1 and 0.2,
for the classical and quantum (� = 0.1) models. Again the analytical estimation is shown by the vertical lines.

procedure is a generalization of the one presented in Ref. [28]
and takes advantage of the mean-field description of the
Kuramoto model. The derivation (detailed in Appendix B)
yields a rather simple equation for the critical coupling:

Kq
c = (1 + �)Kc, (21)

with Kc the classical critical value shown in Eq. (6).
The above result states that quantum fluctuations act by

effectively decreasing the coupling strength with the degree of
quantumness �. Returning to the physical image of a particle
in a washboard potential, we can consider the effect of the
quantum correction by considering the first and third terms
on the right-hand side of Eq. (11). In this way, quantum
corrections can be cast in the form of an effective potential

Veff = V + �V ′′, (22)

which in the particular case of the washboard potential reads

Veff = −�ωϕ − (K − �) cos ϕ. (23)

This equation makes clear that tunneling is formally reflected
by an effective barrier reduction that yields the observed shift
to higher values for the critical coupling.

Our analytical estimation for K
q
c (�) is plotted in Figs. 2

and 4 (vertical arrows), confirming its validity. To corroborate
further the correctness of Eq. (21), we explore the synchro-
nization transition for different values of � in Fig. 4(a). As
expected, the onset of synchronization shifts to higher values
as the degree of quantumness increases. Again, the predicted
value for K

q
c is plotted (vertical arrows), corroborating the

validity of Eq. (21).
To complete our study, we show in Fig. 4(b) the dependence

of the synchronization diagram on the thermal fluctuations
D for both the classical and quantum (� = 0.1) cases. In
all the curves explored the coupling K is rescaled by the
corresponding critical coupling Kc in the classical regime.
In this way we show for both the classical and quantum cases
the robustness of the critical value (21) against temperature
changes.

VI. DISCUSSION

The search for quantum corrections to classical phenomena
has been pervasive in physics. Some examples related to
our work are the generalization to the quantum domain of
chaos [38], dissipation [35], and random walks [39]. Each of
these examples has its own difficulties when incorporating
quantum fluctuations and unveiling their role. Some of
these obstacles are the quantum linearity versus the typical
nonlinearity of classical systems and the quantization of
the non-Hamiltonian system or phenomenological equations.
Overcoming these obstacles provides a consistent quantum
description that presents a variety of classical problems and
their associated physical phenomena.

Among the most studied phenomena in (classical) complex
systems is synchronization. This emergent phenomenon is
intriguing as well as beautiful since it ranges from the descrip-
tion of the sympathy of clocks to the neuronal functioning
in our brain, thus overcoming the disparate diversity in the
spatial and time scales associated with the bunch of systems in
which synchronization is observed. However, the concept of
synchronization usually associated with the classical domain
such as clocks, fireflies, or humans is too macroscopic to
think about the need to introduce quantum fluctuations in the
description of the associated dynamical models.

Several experimental works have shown that synchroniza-
tion can be observed in the laboratory within Josepshon
junction arrays [40], nanomechanical systems [17], or op-
tomechanical systems [41]. All of these systems share one
prominent property: They behave quantum mechanically at
sufficiently low temperatures. Therefore, adapting the concept
of synchronization to coupled entities within the quantum
theory is, apart from an interesting theoretical issue, a necessity
imposed by the rapid experimental advances.

A first step consists in taking the most widely used
framework for studying synchronization phenomena, the
Kuramoto model, and adapting it to the quantum domain.
Being a paradigmatic theoretical setup, the quantization of
the Kuramoto model avails the theoretical study of quantum
synchronization in the widest possible manner. To this end, and
to overcome the non-Hamiltonian character of the Kuramoto
equations, we have mapped the model to an overdamped
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Langevin equation that has a Hamiltonian description by
embedding the system in a bath of oscillators. In this way,
the quantization of the Kuramoto model is straightforward
and includes its classical counterpart as a limiting case: The
quantum version incorporates quantum fluctuations for the
phases, while the strength of these quantum corrections is
encoded in a single parameter.

The route chosen here must be understood as complemen-
tary to the study of particular models of coupled quantum
systems. The reason is twofold. First, we aim to be as general
as possible. The essence of an emergent phenomenon is its
ability to describe very different situations with different
microscopic dynamics. This is the goal of the Kuramoto model,
as it explains the synchronization without resorting to the
specific dynamics. Second, a force brute study of many-body
quantum entities is a very difficult task that usually implies the
reduction of the system to a few coupled systems. However,
the observation of a true synchronization transition demands
hundreds or thousands of interacting dynamical systems.

Being general, the results obtained allow us to make
general statements about the impact that quantumness has
on the synchronization of coupled dynamical units. The
most important one is that quantum fluctuations delay the
appearance of a synchronized state. The explanation of this
effect relies on the fact that in the quantum domain not
only do the phases have a different natural frequency but
also the fluctuations around the classical trajectories are
different depending on those internal rhythms. To illustrate
this interpretation we recall the simple case of two coupled
Kuramoto oscillators. In this case quantum fluctuations are
nothing but thermal-assisted tunneling favoring the phase
unlocking. Therefore, the coupling needed to synchronize the
two oscillators is higher in the quantum limit.

Finally, we want to point out that in a recent publication
the question of synchronization in quantum evolutions was
also discussed [11]. Under rather general conditions bounds
for the degree of synchronization were found based on
the Heisenberg uncertainty principle: The phases, derived
as averages of noncommuting operators, cannot take values
infinitely close. Instead, in our case, which has focused on the
quantum version of the Kuramoto model, we have discussed
not the maximum degree of synchronization but the critical
onset for the appearance of partially synchronized states.
In this case quantumness also limits the emergence of a
synchronous state. Therefore, similarly to what happens in
quantum chaos, synchronization seems to be a quasiclassical
phenomenon [12].
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APPENDIX A: TECHNICAL DETAILS OF THE
SEMICLASSICAL KURAMOTO MODEL

In this Appendix we provide some technical details to obtain
the semiclassical Kuramato model in Eq. (11). As sketched in
See III, we need the equilibrium density matrix and to calculate
some coefficients in a Fokker-Planck equation and transform
the latter to a Langevin-type equation.

1. Equilibrium density matrix: Path-integral formalism

Let us compute the equilibrium density matrix. In particular
we are interested in the reduced density matrix (at equilibrium)

�β = Trbath{Wβ}, (A1)

where Wβ is the total equilibrium density operator Wβ ∼
e−β(Hsys+Hbath+Hint). The equilibrium reduced density matrix can
be expressed as [42]

�β(θ,θ ′) = 1

Z

∫ θ ′
1

θ1

Dθ1 · · ·
∫ θ ′

N

θN

DθN exp

(
− 1

�
SE

eff[θ]

)
,

(A2)

with the effective action

SE
eff[x] =

∫
�β

0
dτ

⎛
⎝∑

j

1
2mθ̇2

j + V (θ1, . . . ,θN )

⎞
⎠

+ 1

2

∑
j

∫
�β

0
dτ

∫
�β

0
dσ K(τ − σ )θj (τ )θj (σ ),

(A3)

which contains the kernel

K(τ ) = m

�β

∑
n

|νn|γ̂ (|νn|)eiνnτ , (A4)

with νn the Matsubara frequencies

νn = 2πn

�β
(A5)

and the Laplace transform of the damping kernel given by

γ̂ (z) = 2

m

∫ ∞

0

dω

π

J (ω)

ω

z

z2 + ω2
. (A6)

2. Overdamped equilibrium

Based on previous works [30,31] for the single-particle
case, we compute the equilibrium distribution in the
overdamped limit. The overdamped dynamics refer to a
regime in the parameter space where damping is suffi-
ciently strong to suppress the nondiagonal elements (coher-
ences) of the reduced density matrix, i.e., a regime where
〈θ1, . . . ,θN |�β |θ ′

1, . . . ,θ
′
N 〉 ∼∏ δ(θi − θ ′

i ). These semiclassi-
cal diagonal contributions can be computed perturbatively on
the quantum fluctuations.

a. Minimal path

Let us denote the minimal action path by xMA
i ≡ θ̄i . Besides,

since we are interested in the diagonal contributions in the
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imaginary-time path integral in Eq. (A2), this means that the
trajectories are taken as

θ̄i(0) = θ̄i(�β) ≡ θi, (A7)

i.e., periodic trajectories with frequencies νn. The minimal
action path satisfies the generalized Lagrange equations [43]

m ¨̄θi − ∂V

∂θ̄i

−
∫

�β

0
dσ k(τ − σ )θ̄i(σ ) = 0. (A8)

The periodic condition in Eq. (A7) suggests the Fourier
expansion of θ̄i(τ ) such that

θ̄i(τ ) =
∑

n

θn,ie
iνnτ , (A9)

where the Fourier components satisfy

−ν2
nθn,i + γ (νn)θn,i + vn,i = bi, (A10)

with

vn,i =
∫

�β

0
dτ

∂V

∂θi

e−iνnτ (A11)

and the inhomogeneous term

bi = ˙̄θi(�β) − ˙̄θi(0), (A12)

which result from the jump and cusp singularities arising from
fact that the Fourier series expansion for θ̄i(τ ) periodically
continues the path outside the interval 0 � τ � �β [43].
Note that terms such as ai = θ̄i(�β) − θ̄i(0) are, in general,
expected. However, since we are interested in the diagonal
contributions, they do not contribute to the present case.

At this point, we notice that by setting n = 0 for bi we
obtain

bi = �β

m

∂V

∂θi

. (A13)

In addition, the components θn,i with n �= 0,

θn,i = −bi

ν2
n + γ (νn)

, (A14)

are suppressed by dissipation. Hence

θ0,i
∼= θ̄i(0) + bi

�
�, (A15)

where � measures the quantumness

� = 2

mβ

∑
n

1

ν2
n + γ νn

= �

mπγ

(
�

[
�βγ

2π

]
− C + 2π

�βγ

)
, (A16)

with C = 0.577 . . . the Euler-Mascheroni constant. Note that
in the limit � → 0, � → 0, as it must be, thus recovering the
classical result.

The contribution of the minimal action can be further
simplified by considering that

1

2

∫
dτ ˙̄θ2

i = 1

2

[
θi( ˙̄θi(�β) − ˙̄θi(0)) −

∫
dτ θi

¨̄θi

]
(A17)

together with (A7) and substituting Eq. (A8) for the second
term on the right-hand side of Eq. (A17) such that

S = 1

2

∑
i

θibi +
∫

�β

0
dτ

(
V − 1

2

∑
i

θ̄i∂θi
V

)
. (A18)

By using the relation (A13) and noticing that θ̄i
∼= θ0,i [θn,i are

suppressed, see Eq. (A14)], we have that θ̄i − θi = bi�/� [cf.
Eq. (A15)]. Hence,

SMA = �βV − 1
2

∑
i

�β2�
(
∂θi

V
)2

. (A19)

b. Fluctuations around the minimal action path

We study now the fluctuation around the minimal path

θi = θ̄i + yi (A20)

subjected to the boundary conditions

yi(0) = yi(�β) = 0. (A21)

Consequently, the correction to the path integral reads

F (q) =
∫

Dy1 · · ·
∫

DyN exp

(
− 1/�

∫
�β

0
dτ 〈y|L|y〉

)
,

(A22)

where we have used an economical notation, in the manner
of Dirac, for the quadratic form 〈y|L|y〉 =∑Lijyiyj , with
L = {{Lij }} defined as

L = −I
(

m
d2

dτ 2
+
∫

�β

0
dσ k(τ − σ )

)
+ V′′, (A23)

where I is the identity matrix and the second-derivative
potential matrix V′′ = {{V ′′

ij }} is defined as

V ′′
ij := ∂V

∂θi∂θj

. (A24)

We proceed as above and Fourier expand the fluctuations
around the minimal path [cf. Eq. (A21)]

yi = 1

�β

∑
n

yn,ie
iνnτ , (A25)

which allows us to effectively replace the boundary condition
yi(0) = 0 in terms of a product of Dirac delta functions∏

i δ(yi(0)) =∏i δ(1/�β
∑

n yn,i) in the integral expressions
above, i.e., by changing

∏
i

δ(yn,i) ∼
∫ ∏

i

dμie
i/�β〈μ|yn〉, (A26)

where 〈μ|yn〉 =∑i μiyn,i . Therefore,

F (q) ∼
∫ ∏

i

dμi

∏
n

∏
j

dyn,j e
i/�β〈μ|yn〉e−1/�β〈yn|An|yn〉,

(A27)
with

An = Iλn + V′′, λn = ν2
n + |νn|γ. (A28)
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This is a Gaussian integral that can be performed by
resorting twice to the formula

∫ ∏
j

dθj e
−〈x|A|x〉+〈b|x〉 =

√
πN

detA
e−〈b|A−1|b〉 (A29)

so that

F (q) ∼
√∏

n detA−1
n∑

n detA−1
n

. (A30)

Up to first order in 1/γ we get [cf. Eq. (A28)]

A−1
n

∼= 1

λn

I − 1

λ2
n

V′′. (A31)

To be consistent, we also need to compute the determinants at
first order in 1/γ [44],

detA−1
n

∼= 1

λN
n

e−Tr(V′′
)/λn . (A32)

Based on all the consideration above, in Appendix B we
explicitly present the thermal equilibrium state with first-order
corrections in the fluctuations along the semiclassical minimal
path results. We further derive the associated Smoluchowski
equation. Based on the result obtained in Sec. A, the equilib-
rium density matrix in the overdamped limit reads [see also
Eq. (16)]

Pβ(θ ) = 1

Z exp

(
−β�

∑
i

V ′′
i,i

)

× exp

(
−βV + 1

2
β2�

∑
i

(V ′
i )2

)
, (A33)

where we have introduced the notation Pβ(θ ). In the over-
damped limit only the diagonal elements �β(θ,θ ) matter [cf.
Eq. (15)]. We have also introduced the compact notation [see
the text below Eq. (11)] V ′···′

i,...,k ≡ ∂θi ,...,θk
V .

3. Quantum master equation for the Kuramoto model

We proceed here as Ankerhold and co-workers did in
Refs. [30,31].

a. One-particle master equation

As an introduction, we consider the one-particle model. In
the classical case, the Fokker-Planck equation can be expressed
as

∂tP = ∂θLP, (A34)

where

L = D1(θ ) + ∂θD2 (A35)

with

D1 = V ′ = ∂θV (A36)

and

D2 = D

γ 2
= kβT

mγ
= 1

mγβ
= 1

�β
. (A37)

Here � := mγ .

Let us switch to the quantum regime. The reduced density
matrix for the single-particle case [see (16)] reads

Pβ = 1

Z
e−β�V ′′

exp

(
−βV + β2�

2
V ′2
)

, (A38)

where Z is the partition function and

S = −βV + β2�

2
V ′2. (A39)

Up to leading order in �,

Pβ = 1

Z
(1 − β�V ′′)e−βV

(
1 + β2�

2
V ′2
)

. (A40)

Imposing the consistency condition L�β = 0 together with the
election for D2,

D2 = D

γ 2
(1 + β�V ′′) = D

γ 2F
, (A41)

where F = 1 − β�V ′′, we find

D1 = D

γ 2
βV ′ = 1

mγ
V ′. (A42)

This yields the quantum master equation for the single case in
the overdamped limit

∂tP = ∂x

{
1

mγ
V ′ + ∂x

[(
D

γ 2
(1 + β�V ′′)

)]}
P. (A43)

b. The N-particle master equation

The generalization for (A34) and(A35) for the multivariate
case reads

L = D1,i(θ ) + ∂θ,iD2,i , (A44)

whereas the stationary solution Pβ in Eq. (16) can be rewritten
as

Pβ = 1

Z
e−β�Tr(V′′

) exp

(
−βV + β2�

2
V′ · V′

)
, (A45)

where Tr(V′′) denotes trace of the matrix V′′. The stationary
solution can be always be written as

Pβ(θ ) ≡ 1

Z
F (θ )eS. (A46)

With the experience gained in the single-particle case, our
choice for F and eS will determine the values for D1,i and
D2,i . If we choose F = 1 we do not recover the overdamped
equation for a quantum harmonic oscillator in the one-particle
limit, which is an exact result [31]. On the other hand, we can

set, by analogy with the single site case, F = e−β�Tr(V′′
). To

recover the uncoupled case, F can be rewritten as F =∏i Fi .
The actual value for Fi must recover the master equation for
the harmonic oscillator.

We choose

D2,i = D

γ 2Fi

(A47)
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and impose Pβ [Eq. (A46)] to be the stationary solution

D1,iPβ + ∂θi
D2,iPβ = D1,i

∏
j

Fj e
S + D

γ 2
∂θi

⎛
⎝∏

j �=i

Fj

⎞
⎠ eS

= eS

⎡
⎣D1,i

∏
j

Fj + D

γ 2

⎛
⎝∏

j �=i

Fj

⎞
⎠ ∂θi

S + D

γ 2

∑
j �=i

⎛
⎝F ′

j,i

∏
k �=j �=i

Fk

⎞
⎠
⎤
⎦ = 0.

Thus,

D1,i = − D

γ 2Fi

∂θi
S −

∑
j �=i

D

γ 2Fi

F ′
j,i

Fj

. (A48)

We have already justified the form for F , giving

F =
∏

i

Fi =
∏

i

e−β�V ′′
ii . (A49)

Combining (A47)–(A49), the final form for the master equation is obtained, describing a system of N particles in the
Smoluchowski regime

∂tP =
∑

i

∂

∂θi

⎧⎨
⎩
⎡
⎣ V ′

i

�Fi

− β

�Fi

�
∑

j

∂V

∂θj

∂2V

∂θi∂θj

+ �

�Fi

∑
j �=i

V ′′′
jji

⎤
⎦+ ∂

∂θi

[
D

γ 2Fi

]⎫⎬
⎭P. (A50)

It is easy to check that setting N = 1 above the single-particle
master equation (A43) is recovered.

c. Langevin equation

Once we have derived the master equation, we can easily
find the associated Langevin equation in the form

∂θi

∂t
= Ai(θ,t) +

∑
k

Bik(θ ,t)ξk(t), (A51)

following the guidelines explained in Ref. [36] and Chap. 3 in
Ref. [46]. Here ξk is Gaussian δ-correlated white noise with
zero mean and variance 2D. Following Ref. [36], the Langevin
equation is equivalent to the Fokker-Planck-type equation for
the probability distribution

∂tP = −
∑

i

∂

∂θi

⎧⎨
⎩
⎡
⎣Ai + D

∑
jk

Bjk

∂Bik

∂θj

⎤
⎦P

⎫⎬
⎭

+ D
∑
ij

∂2

∂θi∂θj

{[∑
k

BikBjk

]
P

}
. (A52)

The coefficients Ai and Bij can be identified by compar-
ing (A50) and (A52). For the concrete case of the Kuramoto
potential (5), we finally end up with the semiclassical Ku-
ramoto model in Eq. (11).

APPENDIX B: CRITICAL COUPLING VALUE

We generalize here the work presented in Ref. [28] to the
quantum domain.

1. Periodicity and self-consistency of the master equation

The order parameter r is given by

rei(ω0t+φ0) = 1

N

N∑
j=1

eiφj . (B1)

The Kuramoto potential V (5) in a mean-field approximation
reads

V = −ωψ − Kr cos ψ. (B2)

Neither V nor the stationary solution (16) is 2π periodic.
We have to find a periodic stationary solution. Following
a procedure similar to the one performed by Risken (see
Ref. [46], pp. 98 and 287–288), we derive the periodic
stationary solution

P (ψ ; ω) = e−βVeff P (0; ω)

[
1 + (e−2βπω − 1)

∫ ψ

0 dφ eβVeff∫ 2π

0 dφ eβVeff

]
,

(B3)

with Veff = V − 1
2β�V ′2 + �V ′′. In the classical limit � →

0, Veff → V , recovering the classical periodic stationary
solution derived by Sakaguchi [28]. It is not hard to check that
the 2π -periodic distribution (B3) is also a stationary solution
for (A50).

2. Critical value

We follow Sakaguchi [28] to find the critical coupling
strength K

q
c . The order parameter r can be expressed in terms

of ψ as

r =
∫ ∞

−∞
dω g(ω)

∫ 2π

0
dψ n(ψ ; ω)exp(iψ). (B4)
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Replacing (B3) above, we have a self-consistent equation for r . On the right-hand side of (B4), the imaginary part is always zero
because g(ω) is symmetric around ω = 0. The real part is expanded in powers of Kr/D,

r = Kr

[ ∫ ∞

−∞
dω g(ω)

πω/D[1 + �(ω2/D2 − 1)][1 + coth(πω/D)]

ω2/D2 + 1

]
+ O((Kr/D)2). (B5)

Assuming a peaked g(ω) distribution, we also expand around ω = 0, obtaining

r = Kr

[ ∫ ∞

−∞
dω g(ω)

(1 − �)(1 + πω/D)

(ω2/D2 + 1)

]
+ O((Kr/D)2). (B6)

Since g(ω) is an even function, the linear term πω/D does
not contribute to the integral. Finally, the critical coupling
strength, as a function of the temperature, is obtained
from (B6),

Kq
c (β) = 2

(1 − �)
∫∞
−∞ dω g(ω) D2

ω2+D2

. (B7)

As K increases, a nontrivial solution branches off the trivial
solution r = 0 at K = Kc. This solution reduces to the
classical one [5,28] when � = 0 at the classical critical
coupling strength Kc

c . A simple relation between the classical
and the quantum critical values can be obtained

Kq
c

(
Kc

c ; �
) = Kc

c

1 − �
. (B8)
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