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The identification of the topological structures of complex networks from dynamical information is a significant
inverse problem. How to infer the information of network topology from short-time dynamical data is a challenging
topic. The presence of synchronization among nodes makes the identification of network topology difficult. In this
paper we present an efficient method called the repeated-drive adaptive feedback scheme to reveal the network
connectivity from short-time dynamics. By applying the short asynchronous transient data as a repeated drive,
the adjacency matrix can be successfully determined in terms of the modified adaptive feedback scheme. This
improved scheme is valid for both synchronous and asynchronous cases of the network and is especially efficient
in the presence of global or local synchronization, where the transient drive can be obtained by perturbing the
system to get a very short asynchronous transient. The detection speed of our scheme exhibits the optimized
effect by adjusting the time-series segment length and the coupling strength among nodes in the network.
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I. INTRODUCTION

Understanding the relationship between dynamics and the
network structure is a central issue in studying network dy-
namics [1–3]. Network synchronization has been extensively
studied for miscellaneous systems, and the role played by the
topology can be marvelously separated and appreciated by
analyzing the master stability function [4–6]. Such progress
has greatly enhanced the significance of identification and
detection of these important topological characteristics [7].
Arenas et al. studied the relationship between topological
scales and dynamic time scales in complex networks [8]. It was
found that modular structures corresponding to well-defined
communities of nodes emerge in different time scales in a
hierarchical way.

An important inverse problem, i.e., how to infer the
topological properties of complex networks from dynamical
information, still remains a great challenge. For a network with
known dynamics but unknown network topology, how can we
reveal the structure of this “black box,” i.e., the topology of this
network? This issue is significant because we may frequently
encounter the difficulty of direct detections of a network. It is
well known that the output data we get from any node possess
the information of links of nodes in a network. However, how
to excavate the topological information from this dynamical
information seems to be a harder while more significant issue.

Progress has been made recently on the dynamical estima-
tions of the network topology, and some methods in addressing
this inverse problem have been proposed. Yu et al. applied the
adaptive feedback approach for estimating the topology of a
network [9], which had been extensively adopted in estimating
parameters of nonlinear systems [10]. Timme showed that
the information about network connectivity can be obtained
by exploiting the response dynamics to the driving [11].
Bu and Jiang suggested a scheme in estimating the degree
distribution in coupled chaotic oscillator networks in terms
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of the reconstruction of phase space based on the output
time series and found the link between node degree and
the deformation of a reconstructed attractor [12]. Nawrath
et al. made a detailed study in distinguishing direct from
indirect interactions in oscillatory networks [13]. Ren et al.
studied the relationship between dynamical properties and
interaction patterns in oscillatory networks in the presence
of noise and revealed a general correspondence between the
dynamical correlation and the node connections in various
networks [14]. Very recently, Pikovsky’s group proposed an
ensemble method to reconstruct the network structure [15].
Related works include the detection of communities and
modules of networks [16], identification of weighted net-
works [17–19], measuring interactions among neurons from
spike trains [20], Granger analysis on topology detections of
complex networks with stochastic perturbations [21], time-
series-based prediction of complex oscillator networks via
compressive sensing [22], and inferring network topology by
analyzing the mean first passage time [23].

In practice one often faces the situation that only partial
dynamical data can be obtained. It should be valuable if one
can infer the network structure from very limited data. This
often happens when there exists synchronization among nodes
in a network, where the network dynamics becomes degener-
ated [24]. Most of the previous schemes cannot be successfully
applied to topology detections in the presence of synchronous
motion on a network. A direct idea of extracting topology
information from dynamical data is to drive the system away
from the synchronous state by applying external perturbations.
When the external drive is applied for a long time, practically
this drive may do harm to the network system. When one
exerts a short-term perturbation, one can obtain a finite-time
asynchronous data segment before the system relaxes back
to the synchronous state. The connection information among
nodes is embedded in this short asynchronous transient. This
again naturally gives rise to the above question of detecting
network structure in terms of finite dynamical data. It is our
motivation to exploit this issue. We present, in this paper,
an efficient scheme in revealing network connectivity from
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transient dynamics. We show that, by applying the transient
dynamical signals as a periodic drive, the adjacency matrix can
be determined in terms of the finite-time adaptive feedback
scheme. This improved scheme is found to be very efficient
and useful in the presence of global or local synchronization.

II. THE ADAPTIVE FEEDBACK SCHEME:
SYNCHRONIZATION HINDERS NETWORK

IDENTIFICATION

The adaptive feedback scheme (AFS) is a method to esti-
mate system parameters by using chaos synchronization [10].
It has been successfully extended to the topology detection
of networks [9], where the parameters under detection here
are the couplings among oscillators. Consider a dynamical
network of N coupled oscillators, where each node is described
by an n-dimensional dynamical system. The dynamics of the
network can be written as the following coupled ordinary
differential equations:

ẋi = F(xi) + s

N∑

j=1

cij H(xj ), (1)

where xi(t) describes the state of the ith oscillator (i =
1,2, . . . ,N ), F governs the dynamics of isolated oscillators,
H is an output function describing the detail of the interaction,
the adjacency matrix C = {cij } describes all the topological
information of the weighted network, and s is the global
coupling strength. We assume that the topology of the network,
i.e., the adjacency matrix C, is unknown, which could be
determined based on the dynamics of X(t) = {xi(t)}. To
do this, we first resort to the adaptive feedback control
method [9,17,24]. One can design a drive-response system,
where the drive system is described by Eqs. (1) and the
response system Y(t) = {yi(t)} is built as follows:

ẏi = F(yi) + s

N∑

j=1

dij (t)H(yj ) + ui , (2)

where ui = −kiei drives the response network in a feedback
manner, and ei = yi − xi . The parameter ki is governed by
k̇i =‖ ei ‖2 /2. The adjacency matrix of the response network
dij (t) evolves with time and adapts itself to the drive network
ḋij = −eT

i H(yj ) [9,17,24]. When the response network is
synchronized by the drive system, i.e., yi(t) = xi(t), the
response adjacency matrix dij approaches a steady one. As
long as dij (t) → cij when t → ∞, this indicates that the
topology of the network described by the adjacency matrix
cij can be successfully detected by the response matrix dij (t)
in terms of the above adaptive feedback scheme.

The availability of the AFS can be justified by means of
the Lyapunov-function analysis. If the nonlinear functions Fi

and the output function H are Lipschitzian, i.e., if there exist
positive constants Li and LH such that ‖ Fi(x) − Fi(y) ‖�
Li ‖ x − y ‖ and ‖ H(x) − H(y) ‖� LH ‖ x − y ‖, we can
define the following Lyapunov function:

V = 1

2

N∑

i=1

eT
i ei + 1

2

N∑

i=1

N∑

j=1

(dij − cij )2 +
N∑

i=1

(ki − ρ)2,

(3)

where ρ is a positive constant. It has been proved [9] that
there exists a positive constant ρ, such that V̇ � 0. When t →
∞, dij (t) → d∗

ij .
∑N

j=1(dij (t) − cij )H(xj (t)) → 0, and this
requires that the coefficients d∗

ij − cij = 0 for j = 1,2, . . . ,N .
However, the values of d∗

ij do not necessarily coincide with
cij when nodes in the network, for example, say, i and j ,
are synchronous to each other [xi(t) = xj (t)] [24]. When all
nodes are not synchronized, the output functions H[xj (t)]
are linearly independent of each other, and the coefficients
dij (t) − cij → d∗

ij − cij = 0. This condition implies that the
topology of the drive network cannot be correctly detected
when there exists synchronization (complete or partial) among
nodes.

Let us demonstrate the above identification scheme by
considering a network consisting of N = 4 Lorenz chaotic
oscillators:

F1(x) = 10(x2 − x1),

F2(x) = 28x1 − x1x3 − x2,

F3(x) = x1x2 − 8x3/3. (4)

The topology is shown in Fig. 1(a), whose adjacency matrix
C is weighted and asymmetric with elements c2,4 = c4,2 =
0,c3,2 = 2 and the other nondiagonal elements cij = 1. The
network dynamics is described by Eqs. (1), and the coupling
function H(x) = x.

We first study the synchronization of nodes in this network
and estimate the critical coupling strength for synchronization
in terms of the master-stability-function (MSF) analysis [4,5].

(b)

(a)

FIG. 1. (Color online) (a) The topology of a network with four
nodes. (b) The normalized global coupling strength sλ against the
master-stability function �(sλ) for a network of Lorenz oscillators.
The curve of �(sλ) is below the dotted line � = 0 in the interval
sλ > 0.65.
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FIG. 2. (Color online) (a) Top: The evolution of the difference in
the first component of nodes 1 and 4, �1,4(t), for the global coupling
strength s = 1. The network evolves from the asynchronous state to
the synchronous state. Bottom: The evolution of one element in the
estimator d14(t) driven by this transient time series, and the true value
c14 = 1 is labeled by dotted line. (b) The probability of successful
identification, Ps , varies with the global coupling strength s by using
the traditional AFS.

In Fig. 1(b), the normalized global coupling strength sλ versus
the master-stability function �(sλ) is given, with λ being the
second largest eigenvalue of the Laplacian matrix −C. It can
be found that when s > 0.325 the synchronous state is stable
[for the network in Fig. 1(a), λ = 2].

In the upper part of Fig. 2(a), the evolutions of two nodes
i = 1,4 are given for s = 1. �1,4(t) = x1

1 (t) − x4
1 (t) → 0 as

t → ∞ implies the synchronous evolution of these two nodes.
We further check the validity of the AFS to identify the matrix
element c14 in representing the linking between nodes 1 and
4. We plot the evolution of the response element d14 in the
lower part of Fig. 2(a). It can be found that d14(t) evolves to
a value far from c14 = 1. This indicates that synchronization
among nodes in a network degenerates the linking information
among nodes and thus hinders the identification of network
topology [24].

Let us introduce the success rate, i.e., the probability of
successful identification, Ps(s). Practically Ps(s) is the portion
of successful identifications in a finite time (usually long
enough) by starting from uniformly random initial states
{Xi(0)} for a given coupling strength s. In Fig. 2(b), the success
rate Ps , which varies with the global coupling strength s, is
plotted. It can be found that Ps decreases with increasing
s. For small couplings, when there is no synchrony among
nodes, Ps = 100%; when s > 0.5, Ps = 0%. This indicates
that the traditional AFS fails in the presence of network
synchronization.

III. THE REPEATED-DRIVE ADAPTIVE
FEEDBACK SCHEME

A natural way of extracting the linking information among
nodes in the presence of synchronization is to desynchronize
the network and extract the linking information from these
desynchronized data. Desynchronization can be achieved by
changing the global coupling strength s or the output function

H [24]. However, it is usually difficult or even impossible
to significantly change the parameters and skeletons of the
system. One may also drive the network dynamics away from
the synchronous state by applying external perturbations. If
the external perturbation is removed, the system will usually
evolve back to the synchronous state, and one can only
get transient asynchronous data. This asynchronous segment
contains the linking information, but it is not long enough
to apply the original AFS to correctly extract the network
connectivity [25].

One option to tackle this difficulty is to produce many
segments of short asynchronous data {x(t),t l1 � t � t l2),l =
1,2, . . .} and merge into a “longer” time series. To get these
segments, a common way is to apply an external perturbation
many times to get an ensemble of copies [15]. However, this is
not the most efficient choice since one should apply many
perturbations. If one uses only one asynchronous segment
{x(t),t1 � t � t2)}, by copying it into many copies and
combining them, one can get a longer segment. One can use
this longer asynchronous segment as the driver. By replacing
the driver x(t) used in the traditional AFS and adopting
the traditional AFS, one expects the successful detection
of network topology. We call this improved scheme the
repeated-drive adaptive feedback scheme (RDAFS). However,
is it possible to successfully identify the network topology by
using the RDAFS?

To check the availability of RDAFS, we refer back to
the Lyapunov analysis of AFS. It has been proved that
the Lyapunov function defined for the AFS [9] decreases
monotonically with time. This monotonicity remains valid
even when synchronization among nodes occurs, as shown
in our numerical observation in Fig. 2(b), where dij has a
tendency of approaching cij when the response network is
driven by an asynchronous transient. With this in mind, we
check the validity and efficiency of our proposed RDAFS.

Suppose �t to be the length of the short transient time
series. During the lth period of the repeated drive, one uses
the transient time series to drive the response starting from
the new initial values Dl(0) = Dl−1(�t) and kl

i (0) = kl−1
i (�t).

By repeating this procedure many times, we obtain a series
{Dl(�t) | l = 1,2,3, . . . }. We expect that Dl(�t) → C when
l → ∞. By adopting the Lyapunov function proposed for the
AFS in Sec. II, V̇ � 0 still remains valid within the lth driving
period. Therefore,

V l(�t) � V l(0). (5)

Considering that ρ is a positive constant, because k̇i � 0,
k̇i(t)[ki(t) − ρ] � 0 can be satisfied for all t > 0 as long as
initially ki(0) � ρ. Therefore, one has the relation

N∑

i=1

[
kl
i (�t) − ρ

]2 �
N∑

i=1

[
kl
i (0) − ρ

]2
. (6)

Furthermore, relation (6) becomes

N∑

i=1

[
kl
i (�t) − ρ

]2 �
N∑

i=1

[
kl
i (0) − ρ

]2
(7)
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if ki(0) � ρ are sufficiently large, i.e., ki(0) � ρ. Although
[el

i(�t)]T el
i(�t) � [el

i(0)]T el
i(0), the inequality

N∑

i=1

N∑

j=1

[
dl

ij (�t) − cij

]2 �
N∑

i=1

N∑

j=1

[
dl

ij (0) − cij

]2
(8)

can still be ensured as long as one has relation (7).
If the time series {H[xj (t)],t ∈ (0,�t)} are linearly inde-

pendent, the two sides of relation (8) become equal only if
Dl(0) = C. This conclusion can be proved in the same way
proposed by Chen and Lu [24]. Relation (8) confirms that if
the information obtained by the previous drive after each drive
is utilized as the next drive, i.e., Dl+1(0) = Dl(�t), all the
information of the drive network topology can be obtained:
liml→∞ Dl(�t) = C.

IV. NUMERICAL SIMULATIONS

We perform numerical simulations to study the topology
identification of the network by using the above scheme. We
still employ the four-node network shown in Fig. 1(a) with
node dynamics given by the Lorenz oscillator Eq. (4). The
global coupling strength s = 1. For this network, ρ = 10 is
a sufficiently large constant to guarantee V̇ � 0. We set the
initial value k1

i (0) = 10.
In Figs. 3(a)–3(d), the evolutions of the three components

of the Lyapunov function V (t) = V1(t) + V2(t) + V3(t), i.e.,
V1(t) = 1

2

∑N
i=1 eT

i ei , V2(t) = ∑N
i=1(ki − ρ)2, and V3(t) =

1
2

∑N
i=1

∑N
j=1(dij − cij )2, respectively, are shown when re-

peated drives are applied. At the end of each drive, we reset
t = 0 to be the starting point of the next drive. It can be clearly
observed that all three components of the Lyapunov function
evolve and approach the steady values. This conforms to the
above analysis of the Lyapunov function.

In Fig. 4(a), we give an example of the RDAFS for
identifying the element c14 of the adjacency matrix of the
network presented in Fig. 1(a) for s = 1.0. The usual AFS

FIG. 3. (Color online) The evolutions of different terms in the
Lyapunov function [Eq. (3)] and the Lyapunov function V (t) under the
repeated asynchronous drives (�t = 2.0), where the global coupling
strength s = 1. At the end of every drive, we reset t = 0. (a) V1(t),
(b) V2(t), (c) V3(t), and (d) the Lyapunov function V (t).

FIG. 4. (Color online) The numerical simulation results for the
RDAFS, where the global coupling strength s = 1. (a) Top: The
repeated transient time series {xi(t),t ∈ (0,2)} with each segment the
same as in Fig. 2(a). Bottom: The evolution of d14(t), and c14 = 1
is labeled by the dotted line. Coincidence can be clearly found. (b)
The rate of successful identification, Ps , versus the global coupling
strength s for 2000 drives.

fails to predict the network links [see Fig. 2(a)]. A segment
of asynchronous transient with a time duration �t = 2.0
is applied as the repeated drive, as shown in the top of
Fig. 2(a). By applying this periodic asynchronous drive, it
can be found that the matrix element d14 evolves in a steplike
way and approaches c14 quickly (here we only adopt L � 10
drive periods). This indicates that in the presence of network
synchronization the RDAFS exhibits an excellent and efficient
ability of topology identification. In fact, all the elements of
the adjacency matrix C can be correctly predicted in terms of
this procedure. Moreover, the error of the estimation decreases
exponentially, as can be clearly seen in Fig. 4(a).

We are concerned with the success rate of this method. In
Fig. 4(b), we give the probability of successful identification
Ps in l = 2000 drives for different coupling strengths. It can
be found that when s ∈ (0,2.0), Ps > 90%. We find that as
the number of driving segments l increases, the success rate
increases. As l → ∞, Ps → 1. For example, when l = 20 000,
Ps ≈ 100%. This indicates the availability of our approach.
Moreover, our approach works well at very strong couplings,
where global synchronization is robust (e.g., s = 10.0).

As seen from the above analysis and Fig. 4(b), the RDAFS
is naturally applicable to cases of different coupling strengths.
For the asynchronous state, one can still successfully detect the
adjacency matrix by using a short segment of dynamic data as
the repeated drive in terms of the RDAFS. This can be well
understood by using the above Lyapunov-function analysis.

V. OPTIMIZATION OF NETWORK IDENTIFICATION

The length of the asynchronous segment used for the
repeating drive plays an important role in the topology
identification process. If the segment length is too short, there
will not be enough information for a successful identification
of network structure. On the other hand, if the length of each
segment is too long, it may include the nearly synchronous
information that slows down the estimation process. Therefore,
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FIG. 5. (Color online) (a) The evolution of derr(t) for s = 0.01
(asynchronous regime) and different segment lengths �t = 0.2,2,20.
(b) The evolution of derr(t) for s = 4.0 (global synchronization) and
different segment lengths �t = 0.2,2,10. (c) The identification speed
v varying against the segment length �t for the global coupling s =
4.0 (global synchronization). (d) The identification speed v varying
against the global coupling s for different segment lengths �t =
0.2,2,20.

one expects an optimized transient length for networks with
synchronization among some nodes.

To measure the speed of the identification, let us introduce
an average relative identification error as

derr(t) = 1

N2

N∑

i=1

N∑

j=1

|dij (t) − cij |
c′
ij

, (9)

where c′
ij = max{|cij |,c̃}, and c̃ is the value of the minimal

nonzero element in the matrix C. This quantity measures
the efficiency of the identification of the adjacency matrix
(network topology). Obviously the error derr(t) → 0 for a
successful identification of the adjacency matrix, and in this
case limt→∞ D(t) → C. In numerical simulations, derr(t) is
found to decrease approximately in an exponential way, i.e.,
derr(t) ∝ exp(−vt). Therefore, the exponent v can be used to
measure the identification rate.

We perform numerical simulations of the Lorenz network
shown in Fig. 1(a) for different coupling strengths. To make
a comparison, we study the identification efficiency by using
the repeated procedure with different lengths of the time-series
segments. In Fig. 5(a), the evolution of the error derr(t) for
s = 0.01 is given, when the motion of oscillators in a network
is asynchronous. It can be clearly found from Fig. 5(a) that the
relative error derr(t) decays exponentially for different segment
length �t . Moreover, for a longer segment, the error decays
more rapidly, implying a faster identification. This can be well
understood because a longer asynchronous segment contains
more linking information of a network. For a very long seg-
ment, the identification rate v approaches the value of the AFS
(�t → ∞). When synchronization exists among some nodes
in a network, the length of the asynchronous segment becomes
finite due to the relaxation to synchronous motion. Therefore,
even if one extracts a longer segment, the nearly synchronous
part does not provide valuable identification of the network

topology. The competition between the asynchronous and
synchronous parts in a segment leads to an optimization of
the identification. In Fig. 5(b), the evolution of derr(t) at a very
strong coupling s = 4.0 is plotted, where all oscillators in the
network are synchronized. In this case, it can be observed
that derr(t) → 0 for different segment lengths, indicating that
the RDAFS can successfully estimate the network structure.
However, the fastest estimation is found for an intermediate
length �t = 2.0, and a very long segment may slow the
identification process. In Fig. 5(c), we compute the rate v

varying with the segment length �t for s = 4.0. It can be
found that the adjacency matrix of the network cannot be
successfully identified for very short asynchronous segments,
and the identification efficiency becomes low if the segment is
long. The speed v becomes the largest at �t ≈ 3, implying an
optimization of the identification process.

In Fig. 5(d), the identification speed v varying against
s is plotted for different �t . For small s, it can be found
that v ∝ sν , where ν ≈ 1.0. This indicates that when there
is no synchronization in a network, the identification speed
of the RDAFS increases with increasing coupling strength.
As some nodes become synchronous, one can find that v

reaches the maximum at certain coupling strength and then
decreases with further increasing the coupling. This indicates
an optimization of identification by varying the coupling
strength. Our preliminary result indicates that the optimal
�t is closely related to the relaxation time scale of the
synchronization among nodes in a network, and a deeper
study in understanding the mechanism of this optimization
is necessary.

VI. CONCLUSIONS

To summarize, in this paper we explored the identification
of network topology in the presence of limited dynamical
data. How to dig out the topological information from limited
data is a challenging and significant issue. The presence
of synchronization among nodes degenerates the linking
information between them and may deteriorate the ability of
network topology detection. In this work, we showed that
the identification process can be successfully executed by
adopting the adaptive feedback scheme that repeatedly uses
the asynchronous data as the drive. This improved scheme
is found to be very useful in the presence of global or local
synchronization, where the transient drive can be obtained by
perturbing the system to get an asynchronous transient. We
also studied the detection speed of this scheme and found the
optimized effect of network detection against the time-series
segment length and the coupling strength among nodes in
the network. Moreover, the validity of the RDAFS proposed
here and the optimization in detections are numerically tested
in other cases, for example, different number of nodes,
different network topologies (e.g., weighted and directed net-
works), different linking ways, different node dynamics, and
so on.

Since the AFS has been extensively applied to numerous
cases of parameter detections of nonlinear systems, the
RDAFS we proposed here can also be naturally applied to
chaos-synchronization-based parameter identifications. There
are some merits in our approach. First, only a very short
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segment of dynamical data is needed to perform the parameter
identification by using the RDAFS, and this is very economic
in practice. Second, different from the traditional AFS, one
does not need to stay online to monitor the system under
detection. The gathered data segment can be stored offline
and used at any time for convenience. This provides a high
possibility in applying the RDAFS proposed in this paper to
practical situations.
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