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Properties of interaction networks underlying the minority game
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The minority game is a well-known agent-based model with no explicit interaction among its agents. However,
it is known that they interact through the global magnitudes of the model and through their strategies. In this
work we have attempted to formalize the implicit interactions among minority game agents as if they were links
on a complex network. We have defined the link between two agents by quantifying the similarity between them.
This link definition is based on the information of the instance of the game (the set of strategies assigned to each
agent at the beginning) without any dynamic information on the game and brings about a static, unweighed and
undirected network. We have analyzed the structure of the resulting network for different parameters, such as
the number of agents (N ) and the agent’s capacity to process information (m), always taking into account games
with two strategies per agent. In the region of crowd effects of the model, the resulting networks structure is a
small-world network, whereas in the region where the behavior of the minority game is the same as in a game of
random decisions, networks become a random network of Erdos-Renyi. The transition between these two types
of networks is slow, without any peculiar feature of the network in the region of the coordination among agents.
Finally, we have studied the resulting static networks for the full strategy minority game model, a maximal
instance of the minority game in which all possible agents take part in the game. We have explicitly calculated
the degree distribution of the full strategy minority game network and, on the basis of this analytical result, we
have estimated the degree distribution of the minority game network, which is in accordance with computational
results.
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I. INTRODUCTION

One of the first attempts to use mathematics to study
problems from the social world can be found in the pioneering
work [1] by John V. Neumann and O. Morgenstern, who
applied the game theory to economical phenomena. Later, one
of the questions followed by Axelrod is to understand if the
cooperation can emerge in a system of selfish individuals using
agent-based in an iterated Prisoners’ Dilemma [2,3]. Recently,
from statistical physics, many works have addressed the issues
of cooperation within the framework of social dilemmas [4,5].
In some situations, individuals compete for resources which
are limited, like in traffic problems. The minority game (MG)
falls in this framework of competing agents with limited
resources. It was introduced in [6] by Challet and Zhang
as an attempt to choose some essential characteristics of a
competitive population, in which an individual achieves the
best result when he or she manages to be in the minority
group [6,7]. They are inspired by the El Farol problem [8].
The minority game is an adaptive agent-based model and
presents emergent properties like coordination among agents
under certain circumstances.

The original model was formulated as follows: There are
N agents that in each t step of the game must choose between
one of two alternatives (0 or 1, for example). Once agents
have played, it is necessary to count how many of them went
to each side [N1(t) and N0(t) so N1(t) + N0(t) = N for all
values of t] and the winners are those who happen to be in
the minority group [the minimum value between N1(t) and
N0(t)]. The only information available for the agents is the
state of the system μ, that is, one of the H possible patterns
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labeled for an integer value μ = 1, . . . ,H. Agents play using
strategies. A strategy is a function that assigns a prediction
(0 or 1) to each of the possible states. In this way, there are
L = 2H different strategies; the set of L strategies defines the
so-called full strategy space (FSS). At the beginning of the
game, each agent randomly chooses s strategies from the FSS.
In this paper, we will work with s = 2. As strategies are chosen
with repetition, it is possible for an agent to have two identical
strategies and for two agents to have the same pair of strategies.
In the original formulation [6], μ is an endogenous variable
determined by the sides which turn out to be the minority ones
in the last m steps of the game. Therefore, the number of states
isH = 2m. Every agent receives one point every time he or she
manages to be in the minority group. On the other hand, agents
also record whether their strategies were good or bad. They
assign a virtual point (to distinguish it from the points assigned
to the agents) to the strategies which correctly predicted the
side that resulted minority for a given step, regardless of the
fact that the strategy may or may not have been used. At every
step, the agent chooses the best strategy to play (the one that
accumulated the most virtual points up to that time). When
two or more strategies have scored equally well, the agent
randomly chooses one of them.

Many works have studied the effect which a definition of
the state based on exogenous information has on the behavior
of the model [9–11]. For example, Cavagna proposed a new
updating rule for the state of the system [9] (here denoted
MGrand) consisting of choosing one of the H states at random
from an uniform distribution at every step of the game. The
behavior of the MGrand essentially turns out to be the same as
that of the MG [11,12]. Moreover, this model has allowed us
to carry out analytical approaches [13,14].

An instance I of the MG with s = 2 is a particular assign-
ment of two strategies to the agents, I = {(e1

1,e
1
2),(e2

1,e
2
2), . . . }
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[15]. For i = 1, . . . ,N , the pair (ei
1,e

i
2) represents the set of

strategies assigned to the agent i. We define a realization E
of the game as a pair E = {SE ,I }, where SE = {μ̃1,μ̃2, . . . }
is a sequence of states (generated by any updating rule) and
I is an instance of the MG [15]. We will follow this notation
proposed in previous works (Ref. [15] for example).

The most studied variable of the MG is the so-called
reduced variance σ 2/N = 〈(N1(t) − N/2)2/N〉E , a measure
of the population’s squandering of resources [7]. It measures
the population’s waste of resources by averaging—over time
and over different realizations E—the quadratic deviation from
N/2 of the number of agents that choose a fixed side (for
example, N1). If s is fixed for a game, σ could depend on
two parameters, N and m. However, it has been found that
the relevant control parameter of the model is α = H/N =
2m/N [16]. The magnitude σ 2/N shows scaling as a function
of α, and the model presents a phase transition with symmetry
breaking. Reference [17] shows that the transition occurs
when σ 2/N reaches its lowest value, at αc, and separates
the symmetric phase (α < αc) from the asymmetric phase
(α > αc). The broken symmetry is the equivalence of the
two sides: In the symmetric phase 〈N1(t)|μ〉 = 0 for all μ

state values, while, in the asymmetric phase, 〈N1(t)|μ〉 �= 0
at least for one μ state. This means that the minority side
becomes predictable. The behavior of the MG for α � 1 is
equivalent to that of a game in which agents take decisions
at random. In this way, σ 2/N ≈ 0.25. In the region where
α � 1, crowd effects arise at some steps of the game. These
crowds of agents moving together to one of the two sides turn
out to be the majority and are, of course, the losers; at this point
where crowds emerge, the contribution to σ is very important.
Crowds effects are the reason why σ is a large number in this
region, a fact which shows that fewer resources are allocated
to the population as a whole. Period two dynamics (PTD) in
the sequence of the minority sides was first observed within
this region by Manuca et al. [16]. The dynamics established in
this region enables the number of virtual points assigned to the
strategies to be reduced to a limited set of cases [15,18], which
facilitates the analytical treatment of the model. One of the
reasons why the MG has attracted attention is that in a certain
region of the parameters, the reduced variance is smaller than
that obtained for a game in which each of the agents randomly
chooses between the two sides (see Fig. 1), meaning there
is better use of resources by the population [7,13]. But it is
interesting to note that the reduced variance does not reveal
how that wealth is distributed among the agents. In [19], Ho
et al. redefined a Gini index for the MG which showed that
whenever the reduced variance takes its minimum value, the
inequality among the agents is maximized.

In a recent work [15], we studied crowd region and
presented a calculation of σ that matched the simulation
results. This calculation was based on the full strategy minority
game (FSMG), an imaginary instance of the MG where all
possible agents (N ) participate in the game. As a consequence,
a lot of symmetries could be exploited to obtain an explicit
analytical solution for the magnitude σ . Once the FSMG was
solved, we obtained results for σ for the MG (in the region in
which PTD is valid) by sampling N agents from the N agents
of the FSMG [15]. Additionally, in a more recent work [20], we
analyzed two well-known properties, quasiperiodicity of the
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FIG. 1. Reduced variance (σ 2/N ) as a function of the control
parameter (α = H/N = 2m/N ) for the MG for different values of
m (from 2 to 14) and N agents (plus symbols denote the 1001 case,
triangle denotes 501 case, and X denotes the 101 case). For each
value of N and m, 100 runs have been performed, with each of
T = 100 000 time steps discarding the first 50 000 steps. The dashed
line corresponds to the case of random decisions. Regions of crowd
effects, coordination, and random decisions are highlighted.

sequence of outcomes of the game and period two dynamics,
by studying the sequence of minority sides through a network
and by using the FSMG to shed light on these properties.

The MG has been studied using very different tools: numer-
ical simulations [6,7,16], a generalization with a temperature-
like variable [21], and a mapping of the model to a spin
glass [14], to mention just a few.

In recent years, many areas of science have become highly
interested in the properties of complex networks of very
different complex systems, which include communication,
biochemical, ecosystems, the Internet, and social networks,
among others [22–24].

Different extensions of the MG allow agents to access
to information from their neighborhood by including ex-
plicit interactions and the exchange of information among
agents [25,26]. For example, in Ref. [27], μi is defined for
the agent i by taking into account the output move of i

agent’s neighbors, as if they were Boolean agents. Recently,
in Ref. [28], the authors studied a system of Boolean agents
playing a generalized minority game. In Ref. [29], the authors
studied the evolution of the networked evolutionary minority
game (NEMG), where each agent can evolve his or her strate-
gies taking into account information from his or her neighbors.
In Ref. [30], connections between agents are dynamically
inserted or removed from the network. In Ref. [31], the
authors applied the crowd-anticrowd theory to the NEMG.
In Refs. [32], we introduced some degree of local information,
which is only available for some agents in an ordered network.
In all these works, the agents’ neighborhood had been provided
by a complex network before the game had started (although
it can evolve in some generalizations), partially changing the
original rules of the game by introducing explicit interactions.
These works studied how different network organizations
affect the dynamics of the generalized MG, using ordered,
random, small-world, and scale-free networks.
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In this work, we have proposed to characterize the implicit
interactions among the MG agents which are established
from the instance of the game (before the game started) on
a static complex network. Agents play the original rules of
the MG, without the context of the neighborhood or explicit
interactions. We have not changed the rules of the game but
represented implicit interactions of the MG as links on a
network. We were inspired by two strongly related questions
which are usually asked in other complex systems: What is the
underlying complex network that connects individuals in this
system? and Is the structure of this network related to different
properties of the system behavior?

We have defined a link between two agents by quantifying
the similarity between their set of strategies. In Sec. II, we
present the chosen definition for the link and the properties
of the obtained networks. In Sec. III, we will analyze the
network of the FSMG, given the same link definition for the
MG, and we will analytically calculate the degree distribution
of these networks as a function of m. In the same section, we
will describe how we have estimated the degree distribution of
the MG networks from the analytical results for those of the
FSMG. In Sec. IV we will present our conclusions.

II. THE UNDERLYING NETWORK OF
THE MINORITY GAME

Agents will be represented by nodes and the link between
a pair of nodes is established whenever certain condition is
given for both sets of the agents’ strategies.

Before introducing the definition of the link, we need to
define the Hamming distance [33] between two strategies: The
Hamming distance between a pair of strategies e1 and e2,
d(e1,e2), is the number of bits in which they differ normalized
by the length of the strategy (measured by the number of bits).
For example, the Hamming distance between the two strategies
e1 = (1,1,0,0) and e2 = (1,1,1,1) is d(e1,e2) = 1/2. Let us
note that previous strategies correspond to a game with m =
2 and therefore there are H = 4 states; that is, this is why
each strategy assigns four predictions, one for each possible
state.

For games with two strategies per agent, we will establish
a link Lij = 1 between agents i and j , whose strategies are
(ei

1,e
i
2) and (ej

1,e
j

2), if the condition

d
(
ei
k,e

j

l

)
< 1

2 (1)

is met for all k and l values, such as k = 1,2 and l = 1,2.
This means that there will be a link between two agents if,
whichever strategy each agent chooses to play, the Hamming
distance between those strategies is less than 1/2. Let us note
that this definition does not use any dynamic information,
but the complete set of available strategies for the agents. In
a context of ergodicity of the game (each state occurs with
equal probability), the following is valid: Lij = 1 if and only
if agents i and j play the same side more than one half of
the time steps. In a context of nonergodicity, the previously
mentioned statement does not apply. Lij = 1 does not imply

anything about the moves of agents i and j , because they could
be frozen agents who use only one of their strategies, and the
system could concentrate on only a set of states. Conversely,
two agents l and k could play the same side more than one half
of the time steps and yet Lij may still be equal to 0.

In Ref. [20] we showed that a MG with a deterministic
rule to play in case of a tie of the strategies for which the
strict period two dynamics (SPTD, the PTD with probability
equal to 1) for even occurrences of the states is met is a periodic
game. For example, it applies to the MGprior where agents have
an a priori favorite strategy to use in case of tie. We proved
that if the MG is periodic and meets the SPTD for the even
occurrences of the states, then all the states appear in the period
the same even number of times, which implies the ergodicity
of the game (see theorem 4 in Sec. 4 of Ref. [20]). Then
Lij = 1 ensures that agents i and j play the same side more
than one-half of the time steps. Moreover, the period length P

can be written as P = 2nH, with n being an integer number
�1. This deterministic version of the MG leaves the same
behavior of the MG, a fact which is evidenced in simulations
of σ 2/N , which show the same curve as in the MG case.
The only difference appears in the fluctuations of the reduced
variance of the MGprior, which are bigger than in the MG case
[20].

This definition of link leads to an unweighed and undirected
network. To find the network of connections for a particular
game, we have generated an instance of the game (an allocation
of strategies for both values of N and m) and looked at the
resulting K connections complying with a previous definition
of the link (1). These two sets, the nodes (set of agents)
{n1,n2, . . . ,nN } and the connections {l1,l2, . . . ,lK}, whose
sizes are N and K , respectively, define the associated network
of the MG, which we note GMG(N,K(N,m)), which depends
both on the definition of the link and on the instance of
the game. We will study the properties of GMG for different
parameters of m (ranging from 2 to 14) and N (101, 501,
1001, and 5001), including the degree distribution, the degree
correlation, the clustering coefficient, the average minimum
path, and some aspects of the clusters structure.

A. Degree distribution and degree correlation

Figure 2 shows the probability of finding links on the net-
work c = K/(N (N − 1)) = 〈k〉/(N − 1), where 〈k〉 = K/N

is the mean degree of the network. Points for different values
of N and the same value of m overlap. c grows with m up to a
stabilization around a value which is close to but less than 1/16
(in Sec. III, we will return to this value). Standard deviation of
c is shown in the inset plot of the figure on a different scale.
The standard deviation becomes smaller while N increases;
for the case of N = 5001 it is smaller than the size of the
circle symbol.

Figure 3 shows the degree distribution of GMG for different
values of m (m = 3, 5, 8 and 11) and the same value of N =
1001; the continuous curve in the figure corresponds to the
theoretical degree distribution for an Erdos-Renyi network,
GER, with N nodes and mean degree 〈k〉I , which is the value
obtained by averaging the mean degree of the GMG over 100
instances. For greater values of m, connections behave like they
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FIG. 2. Probability of finding links on the MG networks,
〈k〉/(N − 1), vs m for different values of N (circle symbols for
N = 5001 case, plus for 1001, triangle for 501 and X for 101 case).
Each point correspond to an average value over 100 instances. The
inset of the figure shows the standard deviations for the values of the
probability of finding a link by using the same symbols as in the main
figure. The case of N = 5001 presents an error bar which is lower
than the symbol size of main figure.

do on a random network, as reflected by the degree distribution
for the case of m = 11 for N = 1001, which matches those of
an Erdos-Renyi network. Hence, from m = 9 to m = 14, using
the Pearson’s χ2 test, we cannot reject the hypothesis that the
observed degree distribution of GMG is normally distributed
with equal mean and variance (see the caption of Fig. 3
for details). On the other hand, for small values of m, the
obtained degree distributions differ substantially from those
of a random network, as can be seen in the case of m = 3,
where the histogram shows different peaks. This multimodal
degree distribution could be understood using the FSMG in
Sec. III.

Figure 4 shows the degree correlation coefficient as a
function of m for different values of N . We have noticed that for
small values of m, networks turn out to be disassortative, while
as m grows, the degree correlation of the network increases
until there is no correlation.

We understand a cluster as the set of nodes V of the network
for which for each pair of them v,u ∈ V , u �= v, there exists a
directed path from v to u throughout the network. For values of
m greater than 4, for values of N = 5001, 1001, and 501, and
m = 8 for N = 101, GMG turn out to be connected networks
(with only one cluster).
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FIG. 3. In gray, degree distribution of MG networks for (a) m = 3, (b) m = 5, (c) m = 8, and (d) m = 11 for N = 1001, averaged over
100 different instances. The continuous black curves correspond to the degree distributions for equivalent Erdos-Renyi networks, where we
approximate the Poisson distribution with a normal distribution N (μ,σ ) with the parameters μ = 〈k〉I and σ = √〈k〉I , where 〈k〉I is the value
obtained by averaging the mean degree of the GMG over 100 instances. We performed a Pearson’s χ2 statistical test in order to check the
following null hypothesis H0: “data observed of degree distribution of GMG are distributed like in random networks, i.e. a normal distribution
with equal mean and variance.” We computed the statistical value X2 as the weighed sum of the squared deviations from the number of events
observed and expected in each class of the histogram, i.e., X2 = ∑l

i=1 (ni − np0i)2/npoi , where ni is the number of observed events in class
i and np0i is the predicted number of events in the class i, with n being the total number of events and p0i the predicted probability of class i

for the underlying distribution. In our case, we are testing that this is a normal distribution with equal mean and variance μ which has been
estimated from the same set of data. When H0 is true, X2 is approximately a χ 2

l−2 distribution with l − 2 degrees of freedom (because of
the constrait of the normalization condition of p0i and the parameter μ estimated from data) [34]. We can reject H0 for m = 8 case with a
significance level smaller than 0.1%, in which case the normalized statistics [X2

n = X2/(l − 2) which is expected value 1] is X2
n = 2.43 and

l = 67. For m = 9, . . . ,14 we cannot reject the hypothesis H0 because the values obtained for the normalized statistics are X2
n = 0.38 and

l = 63 for m = 9, X2
n = 0.15 and l = 61 for m = 10, X2

n = 0.135 and l = 61 for m = 11, X2
n = 0.127 and l = 64 for m = 12, X2

n = 0.132
and l = 63 for m = 13, and, finally, X2

n = 0.128 and l = 62 for the m = 14 case.
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FIG. 4. Degree correlation coefficient of GMG as a function of
m for different values of N (circles denote the N = 5001 case, plus
signs denote the 1001 case, triangles denote the 501 case, and X

denotes the 101 case). Each point corresponds to an average value
over 100 instances. The inset shows the values of standard deviation
of the degree correlation in a log scale by using the same symbols.

B. Clustering and minimum mean path

We have also calculated the clustering coefficient and the
minimum average path for GMG. The clustering coefficient
takes into account the biggest cluster of the network if it is not
connected. We have studied the clustering in terms of m and
N and we have found that MG networks for various values
of N show roughly the same clustering in terms of m, as
shown in black symbols of Fig. 5. For example, for the case of
m = 6, the clustering coefficient of GMG for different values
of N = 101,501,1001,5001 are very similar, as shown in the
inset figure (error bars correspond to the standard deviation
which is lower as N grows), and, using a χ2 statistical test, we
cannot reject the null hypothesis H0: “the values of clustering
coefficient obtained from GMG for N = 101,501,1001, and
5001 are mutually consistent (i.e., correspond to variables
with the same mean value)” for any value of m from 2 to
14 (see details in the caption of the Fig. 5). On the other
hand, MG clustering is greater than the corresponding value for
random networks for values of m up to m = 9–10. In Fig. 5, the
gray symbols represent values of link probability previously
reported in order to appreciate that, for greater values of m,
the clustering coefficient is very similar to them (although a
little greater), as occurs in random networks where there is no
correlation. The dashed line on the figure corresponds to the
value 1/16.

As observed in real networks, high clustering is typical of
networks where the link represents a social relationship, such
as in friendship networks (it is very likely somebody’s friends
are also friends to one another). In the case of MG, we have
seen this feature for small values of m, more precisely, in
the region where crowd effects emerge, and make the system
inefficient in the use of resources. As m grows, although the
number of connections increases, clustering reflects that these
connections are allocated without transitivity; in other words,
the probability that two neighbors of a node are connected to
each other is the same as the probability of finding a link on a
random network, where there is no correlation.

2 4 6 8 10 12 14

0.
00

0.
05

0.
10

0.
15

0.
20

m

cl
us

te
rin

g 
co

ef
fic

ie
nt

101

501 1001 5001

m=6

0.
06

0.
08

0.
10

FIG. 5. Black symbols are the clustering coefficient as a function
of m for games with a different number of agents N (circles denotes
the N = 5001 case, plus signs denote the 1001 case, triangles denote
the 501 case, and X denotes the 101 case). In all cases, the results
shown are averages over 100 different instances. Gray symbols are the
link probability reported in Fig. 2. The inset of the figure shows values
of clustering coefficient for the case of m = 6 for different values
of m; error bars are the standard deviation obtained over the 100
instances. Error bars corresponding to the N = 5001 case are smaller
than the size of the symbols. A χ 2 statistical test cannot reject the null
hypothesis H0: “the values obtained from N = 101,501,1001, and
5001 are mutually consistent (i.e., correspond to variables with the
same mean value)” for any value of m. The figure inset reports the
values corresponding to m = 6 with error bars for different values
of N . For each value of m we performed a χ 2 statistical test on
means in order to check the null hypothesis H0: “the four values
are mutually consistent within these error bars, i.e., the obtained
values of clustering coefficient for N = 101, N = 501, N = 1001,
and N = 5001 correspond to measurements of variables with the
same mean value, and normal distribution” [34]. We computed the
statistical value S as the weighed sum of the squared deviations
from the weighed average value of the four measurements (x), i.e.,
S = ∑4

i=1 (xi − x)2/�x2
i , where xi and �xi are the variable and error

corresponding to the i case (i.e., each one of the obtained clustering
coefficients for GMG with N = 101, N = 501, N = 1001, and with
N = 5001 agents) and x is the maximum likelihood estimator of the
mean of the four values. When H0 is true, S is approximately a χ2

3

distribution with 3 degrees of freedom (because the parameter x is
estimated from data) [34]. For m = 2, we obtained S = 0.0013; for
m = 3, S = 0.0009; for m = 4, S = 0.0009; for m = 5, S = 0.0006;
for m = 6, S = 0.000008, for m = 7, S = 0.0007; for m = 8, S =
0.0002; for m = 9, S = 0.00003; for m = 10, S = 0.0006; for m =
11, S = 0.00005; for m = 12, S = 0.00002; for m = 13, S = 0.0004;
and for m = 14, S = 0.0006. For this reason H0 cannot be rejected
for any value of m.

We have calculated the average shortest path length of GMG

and compared it with the corresponding values for GER for
all the values of N and m we have worked with. Figure 6
shows that the minimum average path of GMG coincides with
that of GER for all values of m greater than m = 5, and it is
close to this value for lower values of m. Given the values
of clustering, minimum average path, degree correlation, and
the degree distribution, we can say that for small values of
m (when crowds emerge), the MG network is a small world
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FIG. 6. Big symbols: minimum mean path as a function of m for
MG networks with different number of agents. In each case of MG
network, data show the mean value of 100 instances (each instance
consists in a different assignment of strategies to the agents). Small
symbols: minimum mean path for Erdos-Renyi networks (GER) with
the same value of N and 〈k〉 as GMG; we used the igraph of the R

project package to calculate the minimum mean path [35,36].

network, while for greater values of m, GMG behaves as a
random network. It is remarkable that the instance of the game
has sufficient information to define which of these two cases
the game will fall in. The transition between these two types of
networks is slow, without any peculiar feature of the network
in the region of the coordination among agents. Perhaps the
instance (i.e., static) network may not be sufficient to offer
information about this region, and it might be necessary to
consider the dynamic network, which should be obtained using
information related to the strategies which the agents actually
used.

In order to understand aspects of the GMG, we will analyze
the network of a maximal instance of the MG, the FSMG in
the next section.

III. THE UNDERLYING NETWORK OF THE FULL
STRATEGY MINORITY GAME

The FSMG model was introduced in Refs. [15,18] as an
instance of the MG where its N agents were chosen in a
particular way: They are all different possible agents that could
exist by combining strategies from the set ofL = 2H strategies
of the FSS. Thus, for a game with s = 2 strategies per agent,
there are as many agents as possible pairs of strategies (with
repetition) from the FSS. Therefore, for s = 2, the number of
players will depend on m in the following form:

N (m) = L +
(
L
2

)
= 22m +

(
22m

2

)
= 2H

2
(2H + 1). (2)

The first term in the Eq. (2) represents the number of agents
who have two identical strategies and the last term the number
of agents who have two different strategies. For the sake of
simplicity, we will write N instead of N (m) in the following

part of this work. For example, in a game with m = 2, FSMG
has N = 136 agents. Reference [15] presents an extensive
analysis of the FSMG and its application to obtain analytical
results for the MG with different updating rules (standard MG,
MGrand [9] and MGper, a MG with a periodic updating rule
introduced in Ref. [37]). Likewise, we have proved that the
FSMG necessarily meets SPTD, the PTD with probability
equal to 1, and we have estimated the probability that a MG
meets PTD from this analytical result.

By definition, the network of FSMG, GFSMG, has N nodes.
Let us analyze the resulting network of FSMG given the link
definition proposed in Eq. (1). As N is only a function of m,
the set of connections, K , will also be a function of m. Then
the network and its properties will only depend on m, which is
why we adopt the following notation for the FSMG network:
GFSMG(N (m),K(m)) (although we use the simplified GFSMG).

For the first stage, in Sec. III A we describe the analytical
calculation of the degree distribution of GFSMG as a function
of m. For the second stage, in Sec. III B, we present the
estimation of the degree distribution of MG networks from
this exact result.

A. Calculation of the degree distribution
of the network of the FSMG

As previously (see Ref. [15]), we will again benefit from the
symmetry of the FSMG model, in which all possible strategy
combinations in pairs (each of them representing one agent
and therefore one node of the GFSMG network) are present.
As a result of this symmetry, the nodes of the FSMG network
can take only a few values of degree, as we will proceed to
prove. In fact, the number of different possible values of degree
is, at most, 2m + 1. Actually, in the appendix we will prove
that the maximum is 2m. For m = 2, for example, there exist
nodes with only degree 0, 2, 3, and 14 on the FSMG network.
To understand this, let us divide the set of agents (nodes) of
the FSMG into different subsets, so all nodes belonging to a
given subset will be the same value of Hamming distance h

between their pair of assigned strategies. We will show that
nodes belonging to the same subset will have the same number
of neighbors on the network though not the same neighbors
and, as a consequence, they will be the same degree. The
degree of each node from a given subset will be a function of
both h and m.

We define the subset Nh ∈ N as the set of agents whose
pair of strategies show a Hamming distance equal to h between
them. The number of subsets will be 2m + 1, because h can
take on the values h ∈ Sh = {0, 1

2m , 2
2m , . . . ,1}. For example,

in a FSMG of m = 2, there are five subsets, because h can
take the values {0, 1

4 , 1
2 , 3

4 ,1}, in general h = i
2m with i being an

integer value in the range [0,2m].
The symbol Nh stands for the cardinality of a set, i.e., Nh

is the size of the subset Nh. Let us count Nh for each value of
h, which is as follows:

Nh = 2(2m−1)

(
2m

2mh

)
for h > 0 and N0 = 22m

. (3)

The value of N0 represents the number of agents whose two
strategies are equal. There are exactly L = 22m

agents which
meet this condition. Note that N0 is the same value which
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appeared in the first term of the Eq. (2). In order to calculate
the size Nh we should count the number of agents whose two
strategies differ in exactly 2mh bits. This means that we need
to count how many pairs of strategies there are so the two
strategies predict both different minority sides for 2mh states
and the same minority sides for the 2m(1 − h) remaining states.
Then Nh for h > 0 results from the product of three factors,
where

(i) factor 1 represents all the possible ways of choosing h

states in which the pair of strategies make different predictions,
thus, ( 2m

2mh).
(ii) factor 2 represents all the possible predictions for (1 −

h)2m states, that is to say all those in which the pair of strategies
coincide (they can coincide because both strategies predict 1
or because both predict 0), thus, 22m(1−h).

(iii) factor 3 represents all the possible ways in which two
strategies predict different minority sides for the 2mh states
chosen in factor 1. Then the dividing factor 2 is present because
actually the pair of strategies is not an orderly pair, thus, 22mh/2.

For a particular m value and h > 0, the product of the three
factors descripted results in expression (3), and the sum of all
subset size will be the number of agents of the FSMG, thus,

∑
h ∈ Sh

Nh = N , (4)

as we will prove in the appendix.
Now, let us suppose that we choose a node (that we call i)

from a subset Nh. Then we know that the strategies of the i

agent, ei
1 and ei

2, are going to show a Hamming distance equal
to h between them. In order to count the number of nodes of the
GFSMG that are connected to node i, let us count the number of
strategies of the FSS meeting the condition of being separated
from the two strategies of i agent (ei

1 and ei
2) by a Hamming

distance lower than 1/2. That is to say, let us count the size of
the set of strategies e that meet both conditions as follows:

d
(
ei

1,e
)

< 1
2 and d

(
ei

2,e
)

< 1
2 . (5)

Now we can imagine a box containing all strategies e

meeting this condition. Although the composition of this box
depends on the chosen node i, specifically of his pair of
strategies, the size of the set of strategies in the box depends
just on m and h. Therefore, we write E(m,h) for the set of
strategies in the box (for a particular i node from Nh) and
E(m,h) for the number of strategies in the box. Whenever
we pick two strategies from this box (with repetition), we are
building an agent (a network node, say j ) who is going to have a
connection to the chosen node i of the subsetNh, thus Lij = 1.
Then, by combining the strategies from the set E(m,h) in
pairs (with repetition), we will get all the nodes that have a
link with the chosen node i. The only consideration is that,
sometimes, when the box of strategies E(m,h) corresponding
to a particular node from Nh includes the particular node as
one of the elements, we must then substract a node (a pair of
strategies) in order not to consider the link between a node and
itself. This occurs for values of h < 1/2. Thus the degree of
the particular node i, also applicable to any node belonging to

TABLE I. Each panel corresponds to a particular value of h ∈
{0,1/4,1/2,3/4,1}. In each panel we exemplify a particular node
chosen from Nh (chosen node i) and for this node, the set of strategies
E(m = 2,h) which meet the condition of Eq. (5) (box of strategies),
and the size of this set E(m,h), which is applicable to every node
from Nh. The strategies are placed in vertical form, i.e. each outcome
of the strategy is placed in a row: The first one for the first state, the
second for the second one, and so on. Finally, we calculate the degree
of the nodes from the Nh set, k(m,h).

h = 0 h = 1/4

chosen box of chosen box of

node i strategies node i strategies

ei
1 ei

2 E(m = 2, h = 0)

1 1 1 0 1 1 1

1 1 1 1 0 1 1

1 1 1 1 1 0 1

1 1 1 1 1 1 0

E(m = 2, h = 0) = 5

k(m = 2, h = 0) = 5
2 + 5 − 1 = 14

ei
1 ei

2 E(m = 2, h = 1/4)

1 0 1 0

1 1 1 1

1 1 1 1

1 1 1 1

E(m = 2, h = 1/4) = 2

k(m = 2, h = 0) = 2
2 + 2 − 1 = 2

h = 1/2 h = 3/4 h = 1

chosen box of chosen box of chosen box of

node i strategies node i strategies node i strategies

ei
1 ei

2 E(m = 2, h = 1/2)

1 0 1 0

0 1 0 1

1 1 1 1

1 1 1 1

E(2, h = 1/2) = 2

k(m = 2, h = 1/2) = 2
2 + 2 = 3

ei
1 ei

2

1 0

1 0 ∅

1 0

1 1

k(h = 3/4) = 0

ei
1 ei

2

1 0

1 0 ∅

1 0

1 0

k(h = 1) = 0

Nh, is going to be

k(m,h) =
(

E(m,h)

2

)
+ E(m,h) for h � 1/2,

(6)

k(m,h) =
(

E(m,h)

2

)
+ E(m,h) − 1 for h < 1/2.

All nodes belonging to the same subset Nh will have the
same degree, k(m,h). However, the neighbors of each node will
differ in the same way the composition of the box of strategies
[with meet condition (5)] associated to each node differs.

As an example, in the current section, we will calculate
E(m,h) for the particular case of m = 2, and we will leave
the calculation for the general values of m for the appendix.
Table I can help us to understand how to compute the values
of E(m = 2,h). We are interested in determining the size of
those boxes of strategies associated with nodes whose pair of
strategies show a Hamming distance of h (i.e., they differ in
2mh bits). Thus, for each h value we choose one of the nodes
belonging to the subset Nh in order to show the particular
set of strategies included in the subset E(m,h) associated to
this node. In panel h = 0 of Table I one node is shown as an
example from the subset N0. Then both strategies of this node
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are identical (ei
1 = ei

2) and the box of strategies associated to
this node contains all strategies that differ in 0 or 1 bit from
ei

1 = ei
2, in order to meet condition (5). The size of this set

is E(m = 2,h = 0) = 5 strategies, which are shown in the
box of strategies of the same panel. Then, from this box of
strategies, we can built 15 different pairs of strategies, each
of which represents a neighbor of the agent. But we will
discount one of them (i.e., that with the same two strategies
as the i node) in order not to consider a connection of the i

node with itself. Thus, the degree of the i agent results in 14.
And k(m = 2,h = 0) = 14 for all the nodes from the subset
N0. The cases h = 1/2,1/4,3/4, and h = 1 are represented
in other panels and correspond to nodes that will be degrees
2, 3, 0, and 0 in the FSMG with m = 2, and belong to the
subsets N1/4, N1/2, N3/4, and N1.

In order to obtain the degree distribution, it will be useful to
define the probability of finding a node in the FSMG network
whose strategies are separated by a Hamming distance given by
h, thus p(m,h) = Nh

N , where N and Nh are actually functions
of the m parameter. Therefore p(m,h) is the probability of
finding a node whose degree is k(m,h) on the network. Then
the degree distribution is going to show a set of peaks. There
will be a peak for each of the possible values of k(m,h).
Hence, the maximum number of peaks is going to be the
number of values that can take the variable h (i.e., the different
subsets of nodes Nh that could exist). Nevertheless, there
could be fewer peaks of this maximum value because nodes
belonging to two different subsets Nh′ and Nh′′ may have
the same value of degree k(m,h′) = k(m,h′′), as occurs in the
example of m = 2, where k(m,h = 3/4) = k(m,h = 1) = 0.
In the appendix, we will show that, in general, k(m,h = 1) =
k(m,h = 1 − 1/2m) = 0.

As we will prove in the appendix, the general expression
for E(m,h) is as follows:

E(m,h) =
min (k,δ′)∑

i=max (0,k−δ′)

(
k

i

) δ′−J (i)∑
j=0

(
2m − k

j

)
, (7)

where J (i) = max(i,k − i), k = 2mh, and δ′ = 2mδ with δ =
1/2 − 1/2m. Applying Eq. (6) in order to obtain k(m,h) and
using p(m,h) = Nh/N , the degree distribution of GFSMG,
which we call P FSMG(k), is parametrized in terms of h as
follows:

p(m,h) = 2(H−1)

N

(
H
Hh

)
for h > 0, and

(8)

p(m,h) = 2

2H + 1
for h = 0.

Equation (8) defines the probability of the values of the
degree distribution in terms of h, and Eq. (6) describes the
location of these values of degree also in terms of h. There is
a discrete distribution with a maximum of 2m possible values
where not only the maximum number of values of the degree
but also their location and height depend on only parameter m.

Now we focus on the mode of the degree of GFSMG which
is reached when h = 1/2. In this case, Nh and thus p(m,h)
reach the maximum value. Taking into account the limit case
of 2H = 22m � 1 and using the well-known approximation
(which can be obtained straightforwardly from Stirling’s

formula) 1
2H ( H

H/2 ) ∼ √
2

Hπ
, we get

p

(
m,h = 1

2

)
�

√
2

Hπ
.

In the appendix, we will calculate the most probable value
of k, kmod, in the limit case of 2H = 22m � 1, which results in
the following:

kmod = k

(
m,h = 1

2

)
� N

16
.

B. Estimating the degree distribution of MG networks
from that of FSMG networks

We could estimate the degree distribution of GMG from
the degree distribution of GFSMG calculated in the preceding
section. The idea is to think about an instance of the MG of
N agents as an statistical sample of size N from the set of
N agents of the FSMG. Then the set of nodes of a particular
network GMG is a sample of N size of all the nodes of the
FSMG network, and the GMG is the induced subgraph from
the GFSMG by this set of N nodes. This sample is selected
at random, because the assignment of strategies to agents of
the MG is random. Thus, the new problem is well defined:
We have to choose N nodes at random, with repetition (as in
the MG there could be identical players) from the set of N
nodes of the GFSMG. So, regarding this problem, the question
is as follows: How do we infer the degree distribution of
GMG [P MG(̃k)] from the known degree distribution of GFSMG

[P FSMG(k)]? The relationship between N and N tells us how
representative the sample is. The probability that a node of the
FSMG be elected to form the network of MG is q = N/N .
As mentioned in Sec. III A, the degree distribution of FSMG
networks, P FSMG(k), can take only a few values. The degree
distribution of MG network will also be discrete (by definition
of degree), but the variable may take any integer value, k̃

(lower than the maximum value of degree of GFSMG), with
certain probability P MG(̃k) as we will see in the following.
Going from FSMG to MG for a particular value of m, we
approximated P MG(̃k) as follows:

P MG(̃k) �
∑
ki�k̃

P FSMG(ki)

(
ki

k̃

)
qk̃(1 − q)ki−k̃ , (9)

where ki corresponds to the degree of the node belonging to
a given subset Nh, thus ki is one of the possible values of
k(m,h) so k̃ � k(m,h). To understand Eq. (9), let us consider
a node belonging to the subset Nh for which the degree is
ki . The probability that each of the neighboring nodes of
this node is chosen is q. Therefore, the probability of this
particular node which has degree ki in the GFSMG results with
degree k̃ in the GMG is approximately a Binomial(ki,q), which
is the probability that k̃ of his ki neighbors is elected (by
considering k̃ � ki). The same expression was obtained in
Ref. [38] to study the sampling process on networks. Here
we use the approximation symbol in Eq. (9) because we are
actually choosing exactly N nodes from N rather than nodes
with probability q = N/N . The binomial factor has known
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FIG. 7. In gray, degree distribution for MG networks for N =
1001 and m = 3. Histogram is an average over 100 different instances.
The continuous black line shows P MG(̃k), the degree distribution
estimated using the degree distribution of FSMG, P FSMG(k). The inset
shows P FSMG(k) for m = 3: P (k = 4370) = 0.0078; P (k = 1710) =
0.14; P (k = 740) = 0.49 (actually, there are two values of degree
which were joined: 740 for the case of h = 3/8 and 741 for the case
of h = 1/2); P (k = 210) = 0.33 and P (k = 0) = 0.035.

variance and mean as follows:

〈̃k〉 = kiq, (10)

σ 2
k̃

= kiq(1 − q). (11)

Then the limit central theorem is used to approximate the
binomial factor of the distribution for a normal distribution
with the same values of variance and mean as follows:

P MG(̃k) �
∑
ki�k̃

P FSMG(ki)
1√

2πσk̃

e−(̃k−〈̃k〉)2/2σ 2
k̃ . (12)

For q � 1, we approximate σ � √
kq,

P MG(̃k) �
∑
ki�k̃

P FSMG(ki) Normal(kiq,
√

kiq), (13)

where we note Normal(μ,σ ) as the normal distribution with
mean μ and variance σ 2. The estimated degree distribution
for MG network was compared with that obtained in the
realization of networks of the MG. In Fig. 7 it is possible
to see the agreement when N = 1001 and m = 3. In this case,
the degree distribution has five peaks. Note that the maximum
number of peaks is 23 = 8. The estimation of P MG(̃k = 0), i.e.,
the probability of finding a disconnected node, is remarkable.
In this case, P MG(̃k = 0) � P FSMG(k = 0) = 0.035.

Finally, by considering the limit case of H � 1 and that
all the agents of the FSMG have the value of degree kmod

mentioned in the previous section and calculated in Eq. (A20)
in the appendix, the expected value of k̃ by sampling N

nodes at random will be 〈̃k〉 � qkmod � N
N

1
16 � N

16 . Thus, the
probability of finding links on the GMG, in this limit case, is
approximately c � 1

16 .

IV. CONCLUSIONS

This work is an attempt to characterize the implicit interac-
tions between MG agents as the links on a complex network.
We have formalized an underlying network for the MG by
quantifying the similarity of the strategies between a pair of
agents. Given the resulting definition of the link, it can be said
that in the MG region characterized by the presence of crowds,
the underlying network can be identified as a small-world net-
work, whereas in the region where the system behaves like in
a game of random decisions, the underlying network behaves
as a random one, showing the same clustering coefficient,
degree distribution, and minimal path as a random Erdos-Renyi
network. The transition between these two types of networks is
gradual, which is why we cannot characterize the coordination
region of the agents through a static network, which only
contains information on the available strategies of the agents.
In a context of nonergodicity, similarities in the available set of
strategies does not shed light on the actual moves of the agents.
This fact poses a question on whether it would be possible to
characterize the behavior of the game in the coordination re-
gion through a dynamic network, which also uses information
regarding the strategies actually used during the game.

We have analytically calculated the degree distribution
for the underlying network of the FSMG model, and from
this result, we have estimated the degree distribution of MG
networks, with a very good agreement with the obtained results
from simulations. This again shows how useful the FSMG is
to understand the MG.

In the future it would be interesting to explore the effect
of using weighed links in these networks. Additionally, in
those cases where explicit interactions between some agents
are introduced, as, for example, when some agents receive
information from their neighbors, it could be helpful to
consider the combined effects of explicit interactions network
and the underlying interactions network formalized here. Let
us remember that in the region of coordination of the agents,
the population as a whole achieves more resources, but the
inequality among the agents is maximized [19]. An interesting
approach is to study if coevolutionary rules on the minority
game can induce a cooperation mechanism in this region as
occurs in other social dilemmas [39].
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APPENDIX

First, we will prove Eq. (4), in which the sum of the number
of agents of each subset Nh over all the values of h results in
N , the total number of agents. Let us remember that h can
take the values on the set Sh = {0, 1

2m , 2
2m , . . . ,1}. Thus h can

be written as h = f/2m, with f being an integer number from
0 to 2m. According to Eq. (3), the sum of Nh for all values of
h can be written as follows:∑

h ∈ Sh

Nh =
∑

h ∈ Sh−{0}
2(2m−1)

(
2m

2mh

)
+ 22m

(A1)
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and we rewrite Eq. (A1) as follows:∑
h ∈ Sh

Nh = 2(2m−1)A + 22m

, (A2)

where

A =
∑

i ∈ {0,1,...,2m}

(
2m

i

)
−

(
2m

0

)
= 22m − 1. (A3)

By replacing Eq. (A3) in Eq. (A2), we obtain the sought
result, ∑

h ∈ Sh

Nh =
(
22m − 1

)
22m

2
+ 22m

=
(

22m

2

)
+ 22m = N . (A4)

Second, we will go on to detail how we carried out the
calculation of E(m,h). As mentioned in Sec. III A, E(m,h)
is the set of strategies from which one can choose a pair
of strategies to construct a node that will have a link with
some particular node of the subset Nh. Thus, the set E(m,h)
associated to the particular node i whose strategies are ei

1 and
ei

2 is defined as the set of strategies that meet the condition of
Eq. (5),

d
(
ei

1,e
)

< 1
2 and d

(
ei

2,e
)

< 1
2 . (A5)

As we just mentioned, although the composition of E(m,h)
depends on the particular node selected from Nh, the size of
the set, E(m,h), is the same for all the nodes belonging to Nh.
Thus E(m,h) is only a function of m and h.

As h can take only the values of the set
{0, 1

2m , 2
2m , . . . , 2(m−1)−1

2m , 1
2 , . . . ,1}, by calling the threshold value

δ = 1

2
− 1

2m
, (A6)

condition (A5) becomes

d
(
ei

1,e
)

� δ and d
(
ei

2,e
)

� δ. (A7)

Note that δ is actually a function of m, although we only
write δ [and not δ(m)] in order not to complicate the notation,
for example, for the case of m = 2, δ = 1/4, and for the case
of m = 3, δ = 3/8.

Before presenting the calculation for E(m,h), let us mention
one aspect related to the transitivity of the Hamming distance
between two strategies. Let us suppose that the Hamming
distance between two strategies e1 and e2 is h, thus d(e1,e2) =
h. And let us also consider a strategy e which differs from e1

in exactly 2ma bits. Thus, d(e1,e) = a. What can we then say
about the Hamming distance between e and e2, d(e2,e)? We
can say that d(e2,e) is limited by two boundaries as follows:

|h − a| � d(e2,e) � h + a. (A8)

The high boundary (h + a) is reached when all the bits in
which e differs from e1 are chosen from those bits for which
e1 and e2 coincide (and thus a < 1 − h). The low boundary
(|h − a|) is reached when all the bits in which e differs from
e1 are chosen from those bits for which e1 and e2 differ (when
a � h) or when all the bits in which e differs from e1 are all
those bits for which e1 and e2 differ (2mh) more other bits in

which e1 and e2 coincide (when a > h). Once this property is
described, we will focus on the calculation for E(m,h).

Let us consider a particular node belonging to the set Nh,
whose strategies are e1 and e2, thus d(e1,e2) = h. In order to
count the size of the set of strategies e that meet condition (A7),
let us consider two sets of bits: the set Bh of those h2m bits in
which e1 and e2 differ, and the complementary set of (1 − h)2m

bits in which e1 and e2 coincide, which we call B̄h. Let us
consider a strategy e so d(e1,e) = a; thus, e differs in a2m bits
from e1. Additionally, let us suppose that b2m of these bits
belong to the set Bh, and c2m of these bits belong to the set B̄h,
so b + c = a. Then the Hamming distances between strategies
are as follows:

d(e1,e) = b + c, (A9)

d(e2,e) = h − b + c. (A10)

Now we can ask what possible values b and c can
take so strategy e meets the condition (A7), knowing that
0 � b � h and 0 � c � 1 − h. Hence, b + c � δ and h −
b + c � δ. As a consequence, 0 � c � δ − max(b,h − b) and
max(0,h − δ) � b � min (h,δ). Now we can write

E(m,h) =
min (2mh,2mδ)∑

i=max (0,2m(h−δ))

(
2mh

i

) 2mδ−J (i)∑
j=0

(
2m(1 − h)

j

)
,

(A11)

with i being an integer number between values 0 and 2mh when
h � δ and between values 2m(h − δ) and 2mδ when h > δ; j

is another integer number between values 0 and 2mδ − J (i),
where J (i) = max(i,2mh − i). The first factor in Eq. (A11)
represents all the ways in which we can choose i bits from
the set Bh and the second factor all the ways in which we can
choose j bits from B̄h in order to construct a strategy e which
differs in i + j bits from e1 and in 2mh − i + j bits from e2.

A particular case included in Eq. (A11) is the case of h = 0.
In this case, for a particular node belonging to the set Nh=0,
both of its strategies are equal, thus d(e1,e2) = 0. If we replace
h = 0 in the previous equation, we obtain

E(m,h = 0) =
2mδ∑
j=0

(
2m

j

)
, (A12)

which represents the total number of strategies e which differ
in 0,1, . . . ,2mδ bits from e1, i.e., the size of the set of strategies
that meet the condition d(e1,e) = d(e2,e) � δ.

Another particular case is the h = 2δ case. If we replace
h = 2δ in Eq. (A11) we obtain

E(m,h = 2δ) =
(

2δ2m

δ2m

)
, (A13)

which can be understood because, for a particular node of
the set Nh=2δ , whose strategies are (e1,e2), there is only one
possibility for which strategy e differs from e1 and from e2

in less than 2mδ bits or is equal to 2mδ bits. The possibility
is that e differs exactly in 2mδ bits both from e1 and from e2

and that those bits in which e differs from e1 and e2 should
be chosen from those in which e1 and e2 differ. Because if we
consider strategy e so d(e1,e) = a = δ, then the low boundary
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for the distance d(e2,e) = 2δ − a = δ is reached only in this
condition.

Last, another interesting case involves two values of h:
h = 1 − 1

2m and h = 1 (both strategies of a node are opposite),
which correspond to the case 2δ < h � 1. In this case, using
Eq. (A11) we obtain E(m,2δ � h � 1) = 0. This fact can be
understood because if we choose strategy e so d(e1,e) � a,
where a � 1/2 − 1/2m, then necessarily d(e2,e) � h − a.
Then the low boundary h − a � 1

2 when h = 1 − 1
2m and h −

a � 1
2 + 1

2m � 1
2 when h = 1. As a consequence, d(e2,e) � 1

2
and there is no possible strategy e meeting condition (A7).
That is why E(m,2δ � h � 1) = 0. Due to this fact, we said
that, as a maximum, the amount of peaks of degree for the
GFSMG is 2m, because there are always two cases of h (h = 1
and h = 1 − 1/2m) for which the degree has the same value, 0.

Finally, the case of m = 2 described in the main part of the
manuscript can be obtained by replacing m = 2 in previous
analytical expressions as follows:

E(m = 2,h = 0) = 1 + 2m = 5,

E(m = 2,h = 1/4) = 22mδ = 2,

E(m = 2,h = 1/2) =
(

2

1

)
= 2, and

E(m = 2,h = 3/4) = E(m = 2,h = 1) = 0.

Third, we will calculate the value of the most probable
degree for the GFSMG network, which we call kmod and whose
probability is P FSMG(kmod). The maximum value of p(m,h) is
reached whenNh is maximum, which occurs when h = 1/2. In
the main part of the manuscript, we have already discussed that
in the limit case of H � 1 this probability is approximately√

2
Hπ

(see the final part of Sec. III A).
Let us calculate E(m,h = 1/2) in order to obtain the value

of the most probable degree on the network, kmod. We will now
rewrite the expression of Eq. (A11) for the case of h = 1/2 as
follows:

E(m,h = 1/2) =
H/2−1∑

i=1

(
H/2

i

)H/2−1−J (i)∑
j=0

(
H/2
j

)
(A14)

with J (i) = max(i,H/2 − i). Expression (A14) is the sum of
some of the products of pairs of combinatorial coefficients

in the form (H/2
i )(H/2

j ). By calling C = E(m,h = 1/2) the
following expression is met (see Ref. [40] for a hint):

4C + 2
H/2∑
i=0

(H/2

i

)2

−
(H/2

H/4

)2

=
[H/2∑

i=0

(H/2

i

)]2

.

(A15)

By solving the two sums, Eq. (A15) is reduced to the
following:

4C + 2

( H
H/2

)
−

(H/2

H/4

)2

= 2H. (A16)

In the limit case of H � 1, we approximate ( H
H/2 ) ∼

2H
√

2
Hπ

(by using the Stirling’s formula) and then we have
the following:

C � 2H
[

1

4
+ 1

πH − 1√
2πH

]
. (A17)

In the limit case of E(m,h = 1/2) � 1, thus kmod � C2/2,
we replaced Eq. (A17) in Eq. (6) to obtain the value of kmod as
follows:

kmod � 22H

2

[
1

16
− 1

2
√

2πH
+ 1

πH −
√

2

(πH)3/2
+ 1

(πH)2

]
.

(A18)

As in the limit case ofH � 1 we can approximateN � 22H

2 ,
and then

kmod

N � 1

16
− 1√

8
a−1/2 + a−1 −

√
2a−3/2 + a−2 (A19)

with a = πH. Finally, in the limit case of a � 1 (H � 1) we
obtain the following expression:

kmod

N � 1

16
. (A20)
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