
PHYSICAL REVIEW E 90, 052813 (2014)

Origin of the computational hardness for learning with binary synapses
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Through supervised learning in a binary perceptron one is able to classify an extensive number of random
patterns by a proper assignment of binary synaptic weights. However, to find such assignments in practice is quite
a nontrivial task. The relation between the weight space structure and the algorithmic hardness has not yet been
fully understood. To this end, we analytically derive the Franz-Parisi potential for the binary perceptron problem
by starting from an equilibrium solution of weights and exploring the weight space structure around it. Our result
reveals the geometrical organization of the weight space; the weight space is composed of isolated solutions,
rather than clusters of exponentially many close-by solutions. The pointlike clusters far apart from each other in
the weight space explain the previously observed glassy behavior of stochastic local search heuristics.

DOI: 10.1103/PhysRevE.90.052813 PACS number(s): 89.75.Fb, 87.19.L−, 75.10.Nr

I. INTRODUCTION

To provide an analytic explanation for general phenomena
using a simple theoretical concept is the most interesting part
of physics. Statistical physics methods in spin glass theory
provide new tools and ideas to study many hard constraint
satisfaction problems [1], especially the relation between the
detailed organization of solutions in the solution space and the
algorithmic hardness [2].

A prototypical example is the binary perceptron problem,
where N input neurons (units) are connected to a single
output unit by synapses of binary value (±1) synaptic weights.
These weights have to be inferred from a set of examples
(input patterns) with desired classification labels (supervised
learning). An assignment of these weights is referred to as
a solution if the perceptron manages to classify all the input
patterns by this assignment. The ratio between the number of
patterns and the number of synapses is called the constraint
density. Each example acts as a constraint on the solution
space, since increasing the number of examples causes the
shrinkage of the space. The critical constraint density was
reported to be about 0.833 [3], below which the solution space
is typically nonempty.

The binary perceptron serves as an elementary building
block of complex neural networks and is also one of the
basic structures for learning and memory [4]. Memory in
neuronal systems is stored in the synaptic weights, and a
binary synaptic weight is robust against noise and also suitable
for simple hardware implementation in applications. The
binary perceptron has thus a wide variety of applications
ranging from rule inference or structure mining in machine
learning [4] to error correcting codes or data compression
in information theory [5] and even high-dimensional data
analysis in biology [6]. However, a learning task in the
binary perceptron is known to be an NP (nondeterministic
polynomial time)-complete problem in the worst case [7].
Many efforts have been devoted to design low-complexity
algorithms to find a solution for a typical case of this difficult
problem [8–15]. However, for many local search heuristics,
the search process slows down as the constraint density grows,
and the learning threshold decreases as the number of synapses
increases [9,13,14]. This typical glassy behavior of stochastic
local search algorithms remains to be explained and was

conjectured to be related to the geometrical organization of
the solution space [14,16–18]. The statistical properties of this
problem were intensively studied by the statistical physics
community in the past decades [3,4,17,19]. However, an
analytic computation of a conclusive picture of the solution
space structure is still lacking so far, although this is an
important topic in both computer science (machine learning or
computational neuroscience) and statistical physics.

A recent study [18] carried out an entropy landscape
analysis by focusing on the solution pairs separated by certain
Hamming distance (the number of elements in different states
in two solutions), which motivated us to propose a suitable
and solid framework to provide a comprehensive description
of the solution space. The basic idea is to select an equilibrium
solution sampled from the Boltzmann measure and then
explore the solution space around this selected equilibrium
solution by analyzing the entropy landscape in the vicinity
of the reference equilibrium solution. This framework was
originally introduced as the name of Franz-Parisi potential to
study the metastable state structure for discontinuous mean-
field spin glasses (e.g., p-spin spherical spin glass) [20–22],
where the potential has the physical meaning of the free energy
cost to keep a system at a temperature with a fixed overlap from
an equilibrium configuration at a different temperature. In this
work, the Franz-Parisi potential is interpreted in terms of the
entropy function to describe the solution space, and we show
that a quenched computation (average over the choice of the
reference equilibrium solution) of the potential in the zero
temperature limit is possible and provides important physical
insights towards understanding the geometrical organization
of the solution (weight) space.

Our computation demonstrates that the weight space of the
binary perceptron problem is indeed made of isolated solutions
for any finite constraint density, with the minimal Hamming
distance separating two solutions growing with the constraint
density. This study reveals the origin of the computational
hardness in the binary perceptron problem, explaining the
known fact that when the number of synapses becomes
sufficiently large, an exponential scaling in computational time
is required to maintain a fixed finite constraint density for a
learning task [9,14,16].

In Sec. II, we define in detail the binary perceptron problem.
In Sec. III, we introduce the Franz-Parisi potential framework
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and derive the explicit form of the potential under the replica
symmetric approximation. Results are presented and discussed
in Sec. IV. Concluding remarks and future perspectives are
given in Sec. V.

II. THE BINARY PERCEPTRON PROBLEM

The binary perceptron is a single-layered feedforward
neural network; i.e., N input neurons are connected to a
single output neuron by N synapses of weight Ji = ±1 (i =
1,2, . . . ,N ). The perceptron tries to learn P = αN associa-
tions {ξμ,σ

μ

0 } (μ = 1,2, . . . ,P ), where ξμ ≡ (ξμ

1 ,ξ
μ

2 , . . . ,ξ
μ

N )
is an input pattern with ξ

μ

i = ±1, and σ
μ

0 = ±1 is the desired
classification of the input pattern μ. For a random classification
task, both {ξμ

i } and the desired output {σμ

0 } are generated
randomly independently with ξ

μ

i and σ
μ

0 being ±1 with
probability 1/2. Given the input pattern ξμ, the actual output
σμ of the perceptron is σμ = sgn(

∑N
i=1 Jiξ

μ

i ). If σμ = σ
μ

0 ,
we say that the synaptic weight vector J has learned the
μth pattern. Each input pattern imposes a constraint on all
synaptic weights, therefore α denotes the constraint density.
The solution space of the binary perceptron is composed of all
the weight configurations {Ji} that satisfy σ

μ

0

∑
i Jiξ

μ

i > 0 for
μ = 1,2, . . . ,P . The energy cost is thus defined as the number
of patterns mapped incorrectly [4,18]; i.e.,

E(J) =
∑

μ

�

(
− σ

μ

0√
N

N∑
i=1

Jiξ
μ

i

)
, (1)

where �(x) is a step function with the convention that
�(x) = 0 if x � 0 and �(x) = 1 otherwise. The prefactor
N−1/2 is introduced to ensure that the argument of the step
function remains at the order of unity, for the sake of the
following statistical mechanical analysis in the thermodynamic
limit. Without loss of generality, we assume σ

μ

0 = +1 for any
input pattern in the remaining part of this paper, since one
can perform a gauge transformation ξ

μ

i → ξ
μ

i σ
μ

0 to each input
pattern without affecting the result.

From a theoretical perspective, the perceptron is typically
able to learn an extensive number of random input patterns
with the storage capacity αs � 0.833 [3]. However, to find
such a solution configuration J in practice is quite a nontrivial
task. Here, to reveal the origin of this computational hardness,
we apply the replica method from the theory of disordered
systems [1] to derive an analytic expression of the Franz-Parisi
potential, which characterizes the entropy landscape of the
problem.

III. ANALYTIC COMPUTATION OF THE
FRANZ-PARISI POTENTIAL

The binary perceptron problem is a densely connected
graphical model [18] in that a proper assignment of all
synaptic weights is needed to satisfy each constraint (learn
each pattern). Its equilibrium property can thus be described by
mean-field computation in terms of the Franz-Parisi potential.
The basic idea is to first select an equilibrium configuration J
at a temperature T ′, then constrain its overlap with another
equilibrium configuration w at a different temperature T ,

which yields a constrained free energy [20],

F (T ,T ′,x) =
〈

1

Z(T ′)

∑
J

e−β ′E(J) ln
∑

w

e−βE(w)+xJ·w
〉

, (2)

after taking the quenched disorder average (over the pattern
distribution ξ , denoted by the angular bracket) and the
average over the distribution of J, which is e−β ′E(J)/Z(T ′).
Z(T ′) is the partition function for the original measure and
β(β ′) is the inverse temperature. The constrained free energy
ln

∑
w e−βE(w)+xJ·w is a self-averaging quantity with respect to

both the quenched disorder and the probability distribution of
the reference configuration J [21]. Its value does not depend on
the particular realization and coincides with the typical value,
which can be calculated via the replica method.

In our current setting, we are interested in the ground states
of the problem; thus, we set β = β ′ → ∞, arriving at

F (x) = lim
n → 0
m → 0

∂

∂m

〈 ∑
{Ja ,wγ }

∏
μ

[∏
a,γ

�
(
uμ

a

)
�

(
vμ

γ

)]
ex

∑
γ,i J 1

i w
γ

i

〉
,

(3)

where u
μ
a ≡ ∑

i J
a
i ξ

μ

i /
√

N and vμ
γ ≡ ∑

i w
γ

i ξ
μ

i /
√

N . In
Eq. (3), we have n replicas Ja(a = 1, . . . ,n) and m replicas
wγ (γ = 1, . . . ,m), with the coupling field (x) term being an in-
teraction of all the constrained replicas wγ with one privileged
replica J1. The replica method to compute the typical value
of the constrained free energy is based on two mathematical
identities: ln Z = limm→0

∂Zm

∂m
and Z−1 = limn→0 Zn−1. To

evaluate the average in Eq. (3), we need to define the overlap
matrices Qab ≡ Ja · Jb/N , Paγ ≡ Ja · wγ /N , and Rγη ≡ wγ ·
wη/N , which characterize the following disorder averages:
〈uμ

a u
μ

b 〉 = Qab, 〈uμ
a vμ

γ 〉 = Paγ , and 〈vμ
γ vμ

η 〉 = Rγη. Under the
replica symmetric (RS) ansatz, we have Qab = q(1 − δab) +
δab, Paγ = pδa1 + p′(1 − δa1), and Rγη = r(1 − δγη) + δγη,
where δab = 1 if a = b and 0 otherwise.

After some algebraic manipulations, we finally get the
constrained free energy density f (x) as

f (x) = lim
N→∞

F (x)/N = r̂

2
(r − 1) − pp̂ + p′p̂′ + xp

+α

∫
Dω

∫
DtH−1(t̃)

∫ ∞

t̃

Dy ln H (h(ω,t,y))

+
∫

Dz(2 cosh â)−1[eâ ln 2 cosh(â′ + p̂ − p̂′)

+ e−â ln 2 cosh(â′ − p̂ + p̂′)], (4)

where
∫

Dz ≡ ∫
Dz1Dz2Dz3, t̃ ≡ −

√
q

1−q
t , and H (x) ≡∫ ∞

x
Dz with the Gaussian measure Dz ≡ G(z)dz in

which G(z) ≡ exp(−z2/2)/
√

2π . h(ω,t,y) ≡ −[(p − p′)y/√
1 − q + √

vωω + p′t/
√

q]/
√

1 − r , where vω ≡ r − p′2/

q − (p − p′)2/(1 − q). â ≡
√

q̂ − p̂′z1 +
√

p̂′z3 and â′ ≡√
r̂ − p̂′z2 +

√
p̂′z3. The associated self-consistent (saddle-

point) equations for the order parameters {q,q̂,r,r̂,p,p̂,p′,p̂′}
are derived in Appendix A.

The Franz-Parisi potential V(p) is obtained through a
Legendre transform of f (x), i.e., V(p) = f (x) − xp and
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df (x)
dx

= p. V(p) has the meaning of the entropy characterizing
the growth rate of the number of solutions (eNV(p)) lying
apart at a normalized distance (1 − p)/2 (Hamming distance
divided by N ) from the fixed equilibrium solution. Detailed
information about the solution space structure can be extracted
from the behavior of this potential at different values of
p, especially those values close to one. Since the potential
curve may lose its concavity, one has to solve numerically
the saddle-point equations (see Appendix B) by fixing p and
searching for compatible coupling field x (by using the secant
method [23]).

IV. SOLUTION SPACE CONSISTS
OF ISOLATED SOLUTIONS

The Franz-Parisi potential versus the predefined normalized
Hamming distance [d = (1 − p)/2] is shown in Fig. 1(a).
At the maximum corresponding to x = 0 (x = − dV

dp
= 1

2
dV
dd

),
V(p) gives back the entropy of the original system. As the
distance gets close to zero, one finds that there exists a value
of distance at which the entropy curve loses its concavity
and turns to a convex part [see the inset of Fig. 1(a) and
note that the sign of the slope changes at the maximum
point]. This behavior leads to an important result that there

exists a minimal distance of O(N ), below which no solutions
are separated from the reference equilibrium solution. Note
that the reference solution is distributed according to the
Boltzmann measure (a uniform measure over all solutions).
The minimal distance grows with the constraint density, as
shown in Fig. 1(b). This can be understood by the following
argument. Due to the hard nature of the pattern constraint in
the binary perceptron problem—all synapses are involved in
classifying each input pattern—flipping one synaptic weight
should force the rearrangement of many weight values to
memorize the learned patterns. Similar phenomena were also
observed in Gallager’s type error correcting code [24] and
locked constraint satisfaction problem [25].

For small α, it is not easy to show the convex part
numerically. However, one can prove that when p → 1, the
Franz-Parisi potential vanishes, as expected for all α (see
Appendix C). In addition, at p → 1 (ε ≡ 1 − p → 0), we have
dV(p)

dp
= αCpε−1/2 + (ln ε)/2 + C (see Appendix B), where C

is a finite constant and Cp is a positive constant. The first term
dominates the divergent behavior in the limit ε → 0. This
means that, for any finite α > 0, the entropy curve in Fig. 1(a)
has a negative infinite slope ( dV

dd
= −2 dV

dp
) at p = 1, supporting

the existence of the convex part and the minimal distance. As
expected from the tendency shown in Fig. 1(b), the value of the

0 αsα

)()(min N~d Οα
(c)

FIG. 1. (Color online) Entropy landscape of solutions in the binary perceptron problem. Iterations of the saddle-point equations are always
converged to produce the data points. The error bars give statistical errors and are smaller than or equal to the symbol size. (a) Franz-Parisi
potential as a function of the normalized Hamming distance. The behavior of the coupling field with the distance is shown in the inset for
α = 0.7, for which an observed maximum implies the change of the concavity of the entropy curve (this also holds for other finite values of
α). (b) Minimal distance versus the constraint density. Within the minimal distance, there are no solutions satisfying the distance constraint
from the reference equilibrium solution. (c) Schematic illustration of the weight space based on results of (a) and (b). The points indicate
the equilibrium solutions of weights. αs � 0.833 is the storage capacity after which the solution space is typically empty. dmin is the actual
Hamming distance without normalization.
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minimal distance becomes very small for the less constrained
case (small constraint density). This explains why a simple
local search algorithm can find a solution when either N or α

is small [8–10,13–15]. As α increases, the minimal distance
grows rapidly, as a consequence, any algorithms working by
local move (each time a few weights are flipped) should find
increasing difficulty to identify a solution (especially at a very
large N ), which holds even for reinforced message passing (or
belief propagation) algorithms [11].

Note that a normal belief propagation without any reinforce-
ment strategy could not find a solution even if it converges at a
relatively large constraint density. However, the reinforcement
strategy could improve the learning threshold up to a value
about 0.72. This is because at each step it utilizes the marginal
probabilities of all synaptic weights to bias the local field
towards some solution; with this feature, it can overcome
an energetic or entropic barrier to some extent. Whereas, as
shown in Fig. 1(b), when the constraint density gets close
to the capacity, on one hand, the minimum distance grows
much more rapidly with N , leading to a more complex energy
or entropy landscape, and on the other hand, the number of
solutions decreases. As a result, the reinforcement strategy
fails to identify a solution. In other words, an extensive energy
or entropic barrier should be overcome. The energy landscape
is always dominated by valleys (valleys are metastable states
with positive energy cost). These metastable states are much
more numerous than the frozen ground states [26]. Local
algorithms will get trapped by these metastable states with high
probability. However, the success of the reinforced heuristics at
a relatively large constraint density still lacks a solid theoretical
support. Furthermore, it remains open whether the solution
found by the reinforced heuristics is equilibrium or not [26].

We thus conclude that, at variance with random K-SAT
(K-satisfiability) or Q-coloring problems [2], the solution
space of the binary perceptron problem is simple in the
sense that it is made of isolated solutions instead of well
separated clusters of exponentially many close-by solutions.
This picture is consistent with evidences reported in previous
studies [17,18,27]. It has been shown that the instability of
RS computation always occurs after the entropy crisis, which
is a signature of frozen ground states for this problem [27].
In Ref. [17], the entropic complexity curve consists of
only two points (�(s),s) = (stot,0) and (0,stot), where �(s)
characterizes the entropy density of clusters with internal
entropy density s, and stot is the total entropy density of the
solution space corresponding to the maximal value in Fig. 1(a).
What we evaluate in this paper is the (conditional) distance
distribution from typical weights, which is linked directly
to the single-spin-flip definition of the cluster. Figure 8 in
Ref. [17] seems to support the picture of frozen ground states
concluded in our work. In a recent study [18], we also found
that the entropy landscape of solution pairs separated by a
given distance is not always concave.

Moreover, nonconvergence of the iteration of the saddle-
point equations (shown in Appendix A) was not observed,
which may be related to the simple structure of the solution
space [28]. In fact, below the storage capacity, the RS
calculation in Refs. [3,19] is stable, and the belief propagation
converges to a fixed point giving the correct entropy of the
solution space [18]. However, if we study the finite temperature

case or when the constraint density exceeds the capacity, the
replica symmetry breaking (RSB) may take effect, and we
leave the possibility of RSB for a future study.

Our quenched computation of the Franz-Parisi potential re-
veals that synaptic weights to realize the random classification
task are organized into pointlike clusters (zero internal entropy)
far apart from each other [see Fig. 1(c)], with the result that in
the thermodynamic limit, an exponential computation time is
required to reach a finite fixed α [9,16].

V. CONCLUSION

We give an analytic expression of the Franz-Parisi potential
for the binary perceptron problem. This potential describes
the entropy landscape of solutions in the vicinity of a
reference equilibrium solution, and its shape is independent
of the choice of the reference point. Solving the saddle-
point equations, we find that the concavity of the curve
changes at some distance, leading to a minimal distance below
which there does not exist solutions satisfying the distance
constraint. Furthermore, this minimal distance increases with
the constraint density, implying that the problem is extremely
hard because the solution space is composed of isolated
solutions (pointlike clusters) with the property that to go from
one solution to another solution, one should flip an extensive
number (proportional to N ) of synaptic weights.

Our analysis establishes a refined picture of the organization
structure of the solution space for the binary perceptron prob-
lem, which is helpful for understanding the glassy behavior
of local search heuristics [9,13,14], which may have some
connections with recent studies of constrained glasses [29]
and, furthermore, is expected to shed light on design of efficient
algorithms for large-scale neuromorphic devices. The analytic
analysis presented in this paper also offers a basis for possible
rigorous mathematical (probabilistic) analysis of the entropy
landscape [30] and has potential applications for studying the
solution space structure of other hard problems in information
processing, e.g., spike time-based neural classifiers [31–33].
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APPENDIX A: DERIVATION OF CONSTRAINED
FREE ENERGY

In the current context, for a reference equilibrium configu-
ration J at temperature T ′, one is interested in the free energy of
a perturbed system (with the constraint that the configuration
w at temperature T should satisfy a prefixed overlap with J),
leading to the constrained free energy [20],

F (T ,T ′,x) =
〈

1

Z(T ′)

∑
J

e−β ′E(J) ln
∑

w

e−βE(w)+xJ·w
〉

ξ

,

(A1)
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where Z(T ′) = ∑
J e−β ′E(J) and x is the coupling field to control the overlap (or distance) between two configurations; i.e.,

p ≡ J · w/N . We are interested in the ground state, then we set both inverse temperatures equal and make them tend to infinity.
Substituting the definition of energy cost of the problem, and using e−β�(−u) = �(u) in the zero temperature limit, we have

F (x) =
〈

1

Z(T ′)

∑
J

�

(
1√
N

N∑
i=1

Jiξ
μ

i

)
ln

∑
w

�

(
1√
N

N∑
i=1

wiξ
μ

i

)
exJ·w

〉
ξ

. (A2)

To evaluate the typical value of F (x), we resort to the replica method [4], by using two mathematical identities: ln Z =
limm→0

∂Zm

∂m
and Z−1 = limn→0 Zn−1. Introducing n unconstrained replicas Ja(a = 1, . . . ,n) and m constrained replicas wγ (γ =

1, . . . ,m), we rewrite F (x) as

F (x) = lim
n → 0
m → 0

∂

∂m

〈 ∑
{Ja ,wγ }

∏
μ

[∏
a,γ

�
(
uμ

a

)
�

(
vμ

γ

)]
ex

∑
γ,i J 1

i w
γ

i

〉
ξ

, (A3)

where u
μ
a ≡ ∑

i J
a
i ξ

μ

i /
√

N and vμ
γ ≡ ∑

i w
γ

i ξ
μ

i /
√

N . To proceed, we define the overlap matrices Qab ≡ Ja · Jb/N , Paγ ≡
Ja · wγ /N , and Rγη ≡ wγ · wη/N , which characterize the disorder averages 〈uμ

a u
μ

b 〉 = Qab, 〈uμ
a vμ

γ 〉 = Paγ , and 〈vμ
γ vμ

η 〉 = Rγη,
respectively. By inserting δ functions for these definitions and using their integral representations, we obtain the disorder average
S in Eq. (3) as

S =
∏
a<b

∏
γ<η

∏
a,γ

∫
dQabdQ̂ab

2π

∫
dRγηdR̂γ η

2π

∫
dPaγ dP̂aγ

2π
e−i(

∑
a<b QabQ̂ab+

∑
γ<η RγηR̂γ η+

∑
a,γ Paγ P̂aγ )

×
∑

{Ja ,wγ }
e

i
N

(
∑

a<b Q̂ab

∑
i J a

i J b
i +∑

γ<η R̂γ η

∑
i w

γ

i w
η

i +∑
a,γ P̂aγ

∑
i J a

i w
γ

i )

〈∏
μ

[∏
a,γ

�
(
uμ

a

)
�

(
vμ

γ

)]〉
ξ

ex
∑

i,γ J 1
i w

γ

i . (A4)

Now we rescale the variable iQ̂ab/N → Q̂ab (this also applies for other conjugated variables). We apply the RS
approximation [4], which assumes the permutation symmetry of the overlap matrix. To be more precise, Qab = q(1 −
δab) + δab, Paγ = pδa1 + p′(1 − δa1), and Rγη = r(1 − δγη) + δγη, where δab = 1 if a = b and 0 otherwise. We first simplify∑

a,γ P̂aγ J awγ as∑
a,γ

P̂aγ J awγ = p̂′
∑
a,γ

J awγ + (p̂ − p̂′)
∑

γ

J 1wγ

= p̂′

2

⎡⎣(∑
a

J a +
∑

γ

wγ

)2

−
(∑

a

J a

)2

−
(∑

γ

wγ

)2
⎤⎦ + (p̂ − p̂′)

∑
γ

J 1wγ , (A5)

where the site index i is dropped off since each i shares the same formula. Then we compute the disorder average as〈∏
μ

[∏
a,γ

�
(
uμ

a

)
�

(
vμ

γ

)]〉
ξ

=
[∫

Dω

∫
Dt

∫ ∞

t̃

DyHm(h(ω,t,y))Hn−1(t̃)

]αN

, (A6)

where t̃ ≡ −
√

q

1−q
t and H (x) ≡ ∫ ∞

x
Dz with the Gaussian measure Dz ≡ G(z)dz in which G(z) = exp(−z2/2)/

√
2π .

h(ω,t,y) ≡ −[(p − p′)y/
√

1 − q + √
vωω + p′t/

√
q]/

√
1 − r , where vω ≡ r − p′2/q − (p − p′)2/(1 − q). In deriving

Eq. (A6), we have parametrized ua = √
1 − qya + √

qt and vγ = √
1 − ry ′

γ + (p − p′)y1/
√

1 − q + √
vωω + p′t/

√
q by using

independent standard Gaussian random variables {ya,t,y
′
γ ,ω} of zero mean and unit variance. The parametrization retains the

covariance structure of {ua,vγ }. The pattern index (μ) is also dropped off for the same reason. After a few algebraic manipulations,
we obtain

S = exp

[
−N (n − 1)n

2
qq̂ − N (m − 1)m

2
rr̂ − mNpp̂ − N (n − 1)mp′p̂′ + Nxpm − Nn

2
q̂ − Nm

2
r̂

]
× exp

[
N ln

∫
Dz1

∫
Dz2

∫
Dz3A(q̂,r̂,p̂,p̂′,m,n)

]
× exp

[
αN ln

∫
Dω

∫
Dt

∫ ∞

t̃

DyHm(h(ω,t,y))Hn−1(t̃)

]
, (A7)

after approximating the integral in Eq. (A4) by its dominant part (a saddle-point analysis in the large N limit). To derive Eq. (A7),
the Hubbard-Stratonovich transformation was used. In Eq. (A7), A(q̂,r̂,p̂,p̂′,m,n) ≡ (2 cosh â)n−1{eâ[2 cosh(â′ + p̂ − p̂′)]m +
e−â[2 cosh(â′ − p̂ + p̂′)]m}, in which â ≡

√
q̂ − p̂′z1 +

√
p̂′z3 and â′ ≡

√
r̂ − p̂′z2 +

√
p̂′z3.
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The saddle-point analysis (also called Laplace method) implies that S should take its maximal value so that L ≡ lnS should
be extremized with respect to the order parameters {q,q̂,r,r̂,p,p̂,p′,p̂′}. Keeping up to the first order in n, the extremization with
respect to q and q̂ gives the self-consistent equations for q and q̂ [see Eqs. (A9a) and (A9b)]. As expected, their values do not
rely on other order parameters characterizing the property of the constrained replicas. These two equations describe the J system
at equilibrium, and it should not be affected by the w system which follows a perturbed distribution depending on the reference
solution J. Finally, one can readily get the constrained free energy density following the definition given in Eq. (3),

f (x) = lim
N→∞

F (x)/N = r̂

2
(r − 1) − pp̂ + p′p̂′ + xp + α

∫
Dω

∫
DtH−1(t̃)

∫ ∞

t̃

Dy ln H (h(ω,t,y))

+
∫

Dz(2 cosh â)−1[eâ ln 2 cosh(â′ + p̂ − p̂′) + e−â ln 2 cosh(â′ − p̂ + p̂′)], (A8)

together with the associated saddle-point equations,

q =
∫

Dz tanh2(
√

q̂z), (A9a)

q̂ = α

1 − q

∫
DtR2(t̃), (A9b)

p =
∫

Dz(2 cosh â)−1[eâ tanh(â′ + p̂ − p̂′) − e−â tanh(â′ − p̂ + p̂′)], (A9c)

p̂ = x + α√
(1 − q)(1 − r)

∫
Dω

∫
DtR(t̃)R(h(ω,t,y = t̃)), (A9d)

r =
∫

Dz(2 cosh â)−1[eâ tanh2(â′ + p̂ − p̂′) + e−â tanh2(â′ − p̂ + p̂′)], (A9e)

r̂ = α

1 − r

∫
Dω

∫
DtH−1(t̃)

∫ ∞

t̃

DyR2(h(ω,t,y)), (A9f)

p′ =
∫

Dz(2 cosh â)−1
[
eâ tanh â tanh(â′ + p̂ − p̂′) + e−â tanh â tanh(â′ − p̂ + p̂′)

]
, (A9g)

p̂′ = α√
(1 − q)(1 − r)

∫
Dω

∫
DtH−1(t̃)R(t̃)

∫ ∞

t̃

DyR(h(ω,t,y)), (A9h)

where
∫

Dz ≡ ∫
Dz1Dz2Dz3 and R(x) ≡ G(x)/H (x). In deriving these equations, we have used a useful property of the

Gaussian measure
∫

DzzF(z) = ∫
DzF ′(z), where F ′(z) is the derivative of the function F(z) with respect to z.

To solve these saddle-point equations, for example, Eq. (A9f), one efficient way is to generate a random number y according

to the conditional distribution Pr(y|t) = G(y)�(
√

1−qy+√
qt)

H (−√
q

1−q
t)

each time when using Monte Carlo method to perform the integral. In

some cases, one may reexpress â and â′ to retain their covariances 〈ââ′〉 = p̂′ (their means are both zero, and variances 〈â2〉 = q̂,
〈â′2〉 = r̂) according to their definition, this is because, q̂ − p̂′ or r̂ − p̂′ may get negative.

APPENDIX B: DERIVATION OF dV( p)
d p | p→1

The Franz-Parisi potential V(p) is obtained through a Legendre transform of f (x), i.e., V(p) = f (x) − xp. The overlap
p ≡ J · w/N is related to the coupling field by df (x)

dx
= p. Since the potential curve may lose its concavity, one has to solve

numerically the saddle-point equations by fixing p and searching for compatible coupling field x (by using the secant method).
If a solution of x is found for a given p, then we have x = − dV

dp
at this value of p. Because d = (1 − p)/2, x is also equal to

1
2

dV
dd

.
The derivative of the Franz-Parisi potential with respect to the overlap p is given by

dV(p)

dp
= −p̂ + α

∂

∂p

∫
Dω

∫
DtH−1(t̃)

∫ ∞

t̃

Dy ln H (h(ω,t,y))

= −p̂ + α√
(1 − q)(1 − r)

∫
Dω

∫
DtR(t̃)R(h(ω,t,y = t̃)). (B1)

Note that when p → 1, r will get close to p but smaller than p, and p′ � q, which is observed in numerical simulations and
can be understood from the definition of these order parameters. Therefore, in the limit p = 1 − ε → 1, the second term on the
right-hand side of Eq. (B1) is αCpε−1/2 with Cp = 1√

π(1−q)

∫
DtR(t̃). The expression of p̂ as a function of ε can be deduced

from Eq. (A9c). Using the fact that p → 1 implies that p̂ → ∞, and the identity tanh(x) = 1 − 2e−2x (x 
 0), one finally gets
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p̂ = r̂ − 1
2 ln ε

2 + 1
2 ln

∫
Dz1

∫
Dz3

e

√
q̂−p̂′z1−

√
p̂′z3

cosh(
√

q̂−p̂′z1+
√

p̂′z3)
. In the above derivations, we have used the fact that 1−p

1−r
= 1/2 in the

limit p → 1 based on Eqs. (A9c) and (A9e). Taken together, one arrives at the slope of V(p) at p = 1:

dV(p)

dp

∣∣∣∣
p→1

= 1

2
ln

ε

2
+ C + αCpε−1/2. (B2)

APPENDIX C: PROOF OF V( p → 1) = 0

At p = 1, the Franz-Parisi potential can be expressed as

V(p) = −pp̂ + p′p̂′ + α

∫
Dω

∫
DtH−1(t̃)

∫ ∞

t̃

Dy ln H (h(ω,t,y))

+
∫

Dz(2 cosh â)−1[eâ ln 2 cosh(â′ + p̂ − p̂′) + e−â ln 2 cosh(â′ − p̂ + p̂′)]. (C1)

Note that h(ω,t,y) = − 1√
1−r

(
√

1 − qy + √
qt) → −∞ when y > −

√
q

1−q
t . Hence, the α-dependent term disappears. The last

term becomes ∫
Dz(2 cosh â)−1[eâ ln 2 cosh(â′ + p̂ − p̂′) + e−â ln 2 cosh(â′ − p̂ + p̂′)]

=
∫

Dz1

∫
Dz3(2 cosh â)−1[eâ(

√
p̂′z3 + p̂ − p̂′) + e−â(−

√
p̂′z3 + p̂ − p̂′)]

= p̂ − p̂′ + p̂′
[

1 −
∫

Dz1

∫
Dz3 tanh2(

√
q̂ − p̂′z1 +

√
p̂′z3)

]
= p̂ − qp̂′. (C2)

Collecting the above results, one arrives at V(p → 1) = 0.
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[28] L. Zdeborová and M. Mézard, J. Stat. Mech. (2008) P12004.
[29] S. Franz and G. Parisi, J. Stat. Mech. (2013) P11012.
[30] D. Achlioptas, A. Naor, and Y. Peres, Nature (London) 435, 759

(2005).
[31] R. Gütig and H. Sompolinsky, Nat. Neurosci. 9, 420 (2006).
[32] R. Rubin, R. Monasson, and H. Sompolinsky, Phys. Rev. Lett.

105, 218102 (2010).
[33] C. Baldassi, A. Braunstein, and R. Zecchina, J. Stat. Mech.

(2013) P12013.

052813-7

http://dx.doi.org/10.1073/pnas.0703685104
http://dx.doi.org/10.1073/pnas.0703685104
http://dx.doi.org/10.1073/pnas.0703685104
http://dx.doi.org/10.1073/pnas.0703685104
http://dx.doi.org/10.1051/jphys:0198900500200305700
http://dx.doi.org/10.1051/jphys:0198900500200305700
http://dx.doi.org/10.1051/jphys:0198900500200305700
http://dx.doi.org/10.1051/jphys:0198900500200305700
http://dx.doi.org/10.1103/PhysRevE.66.066126
http://dx.doi.org/10.1103/PhysRevE.66.066126
http://dx.doi.org/10.1103/PhysRevE.66.066126
http://dx.doi.org/10.1103/PhysRevE.66.066126
http://dx.doi.org/10.1088/1742-5468/2009/10/P10009
http://dx.doi.org/10.1088/1742-5468/2009/10/P10009
http://dx.doi.org/10.1088/1742-5468/2009/10/P10009
http://dx.doi.org/10.1016/S0893-6080(05)80010-3
http://dx.doi.org/10.1016/S0893-6080(05)80010-3
http://dx.doi.org/10.1016/S0893-6080(05)80010-3
http://dx.doi.org/10.1016/S0893-6080(05)80010-3
http://dx.doi.org/10.1088/0305-4470/23/23/014
http://dx.doi.org/10.1088/0305-4470/23/23/014
http://dx.doi.org/10.1088/0305-4470/23/23/014
http://dx.doi.org/10.1088/0305-4470/23/23/014
http://dx.doi.org/10.1007/BF01315244
http://dx.doi.org/10.1007/BF01315244
http://dx.doi.org/10.1007/BF01315244
http://dx.doi.org/10.1007/BF01315244
http://dx.doi.org/10.1103/PhysRevE.58.2378
http://dx.doi.org/10.1103/PhysRevE.58.2378
http://dx.doi.org/10.1103/PhysRevE.58.2378
http://dx.doi.org/10.1103/PhysRevE.58.2378
http://dx.doi.org/10.1103/PhysRevLett.96.030201
http://dx.doi.org/10.1103/PhysRevLett.96.030201
http://dx.doi.org/10.1103/PhysRevLett.96.030201
http://dx.doi.org/10.1103/PhysRevLett.96.030201
http://dx.doi.org/10.1088/1751-8113/41/32/324013
http://dx.doi.org/10.1088/1751-8113/41/32/324013
http://dx.doi.org/10.1088/1751-8113/41/32/324013
http://dx.doi.org/10.1088/1751-8113/41/32/324013
http://dx.doi.org/10.1088/1742-5468/2010/08/P08014
http://dx.doi.org/10.1088/1742-5468/2010/08/P08014
http://dx.doi.org/10.1088/1742-5468/2010/08/P08014
http://dx.doi.org/10.1209/0295-5075/96/58003
http://dx.doi.org/10.1209/0295-5075/96/58003
http://dx.doi.org/10.1209/0295-5075/96/58003
http://dx.doi.org/10.1209/0295-5075/96/58003
http://dx.doi.org/10.1103/PhysRevE.88.013313
http://dx.doi.org/10.1103/PhysRevE.88.013313
http://dx.doi.org/10.1103/PhysRevE.88.013313
http://dx.doi.org/10.1103/PhysRevE.88.013313
http://dx.doi.org/10.1007/BF01313839
http://dx.doi.org/10.1007/BF01313839
http://dx.doi.org/10.1007/BF01313839
http://dx.doi.org/10.1007/BF01313839
http://dx.doi.org/10.1088/1742-5468/2009/12/P12014
http://dx.doi.org/10.1088/1742-5468/2009/12/P12014
http://dx.doi.org/10.1088/1742-5468/2009/12/P12014
http://dx.doi.org/10.1088/1751-8113/46/37/375002
http://dx.doi.org/10.1088/1751-8113/46/37/375002
http://dx.doi.org/10.1088/1751-8113/46/37/375002
http://dx.doi.org/10.1088/1751-8113/46/37/375002
http://dx.doi.org/10.1088/0305-4470/21/1/031
http://dx.doi.org/10.1088/0305-4470/21/1/031
http://dx.doi.org/10.1088/0305-4470/21/1/031
http://dx.doi.org/10.1088/0305-4470/21/1/031
http://dx.doi.org/10.1051/jp1:1995201
http://dx.doi.org/10.1051/jp1:1995201
http://dx.doi.org/10.1051/jp1:1995201
http://dx.doi.org/10.1051/jp1:1995201
http://dx.doi.org/10.1103/PhysRevLett.79.2486
http://dx.doi.org/10.1103/PhysRevLett.79.2486
http://dx.doi.org/10.1103/PhysRevLett.79.2486
http://dx.doi.org/10.1103/PhysRevLett.79.2486
http://dx.doi.org/10.1016/S0378-4371(98)00315-X
http://dx.doi.org/10.1016/S0378-4371(98)00315-X
http://dx.doi.org/10.1016/S0378-4371(98)00315-X
http://dx.doi.org/10.1016/S0378-4371(98)00315-X
http://dx.doi.org/10.1103/PhysRevLett.101.078702
http://dx.doi.org/10.1103/PhysRevLett.101.078702
http://dx.doi.org/10.1103/PhysRevLett.101.078702
http://dx.doi.org/10.1103/PhysRevLett.101.078702
http://dx.doi.org/10.1103/PhysRevB.81.224205
http://dx.doi.org/10.1103/PhysRevB.81.224205
http://dx.doi.org/10.1103/PhysRevB.81.224205
http://dx.doi.org/10.1103/PhysRevB.81.224205
http://dx.doi.org/10.1143/PTP.95.273
http://dx.doi.org/10.1143/PTP.95.273
http://dx.doi.org/10.1143/PTP.95.273
http://dx.doi.org/10.1143/PTP.95.273
http://dx.doi.org/10.1088/1742-5468/2008/12/P12004
http://dx.doi.org/10.1088/1742-5468/2008/12/P12004
http://dx.doi.org/10.1088/1742-5468/2008/12/P12004
http://dx.doi.org/10.1088/1742-5468/2013/11/P11012
http://dx.doi.org/10.1088/1742-5468/2013/11/P11012
http://dx.doi.org/10.1088/1742-5468/2013/11/P11012
http://dx.doi.org/10.1038/nature03602
http://dx.doi.org/10.1038/nature03602
http://dx.doi.org/10.1038/nature03602
http://dx.doi.org/10.1038/nature03602
http://dx.doi.org/10.1038/nn1643
http://dx.doi.org/10.1038/nn1643
http://dx.doi.org/10.1038/nn1643
http://dx.doi.org/10.1038/nn1643
http://dx.doi.org/10.1103/PhysRevLett.105.218102
http://dx.doi.org/10.1103/PhysRevLett.105.218102
http://dx.doi.org/10.1103/PhysRevLett.105.218102
http://dx.doi.org/10.1103/PhysRevLett.105.218102
http://dx.doi.org/10.1088/1742-5468/2013/12/P12013
http://dx.doi.org/10.1088/1742-5468/2013/12/P12013
http://dx.doi.org/10.1088/1742-5468/2013/12/P12013



