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Recent empirical studies using large-scale data sets have validated the Granovetter hypothesis on the structure of
the society in that there are strongly wired communities connected by weak ties. However, as interaction between
individuals takes place in diverse contexts, these communities turn out to be overlapping. This implies that the
society has a multilayered structure, where the layers represent the different contexts. To model this structure
we begin with a single-layer weighted social network (WSN) model showing the Granovetterian structure. We
find that when merging such WSN models, a sufficient amount of interlayer correlation is needed to maintain
the relationship between topology and link weights, while these correlations destroy the enhancement in the
community overlap due to multiple layers. To resolve this, we devise a geographic multilayer WSN model, where
the indirect interlayer correlations due to the geographic constraints of individuals enhance the overlaps between
the communities and, at the same time, the Granovetterian structure is preserved.
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I. INTRODUCTION

The abundance of data due to the rapid development of
the information and communication technology (ICT) has
generated entirely new, multidisciplinary approaches in social
sciences [1,2], in which physics plays a considerable role both
in terms of data analysis and modeling. One of the major
challenges in this context is the understanding of the structure
of the society, which is crucial for many applications ranging
from epidemiology to urban planning. While traditional
techniques based mainly on questionnaires focused on small
scale organization of the society [3] the new tools enable one
to uncover the structure on many scales up to the societal level.
A broad range of ICT data has been used to study empirically
these questions. Examples include email [4], mobile phone call
(MPC) [5–8], short-message communication, social network
services (SNS) [9], and scientific collaborations [10,11].

Mobile phone data have a special role in this endeavor as the
coverage in the adult population approaches 100% and much
of the interpersonal communication runs today over mobile
phones. Therefore the records of the calls can be used to map
out the network of social interactions [5,6,12]. In this mobile
call network the famous Granovetter hypothesis about the
“strength of weak ties” [13] turned out to be correct. According
to this hypothesis links between individuals have different
strengths corresponding to the intensity of the relationship, the
time spent together, mutual confiding, etc., and the stronger is
a tie, the larger is the overlap between the further contacts
of those who form the tie. This local property has severe
consequences on the entire structure: The society consists of
communities, which are strongly wired and these communities
are then connected by weak ties, thus playing an important
role to hold society together. The duration or the frequency
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of calls serves as a natural measure of the strength of ties for
mobile phone calls and in this way it was possible to prove the
Granovetter hypothesis on this data set [5,6].

In order to demonstrate the global consequences a link
percolation analysis was carried out. Provided that links are
sorted according to their weights, removing the weakest links
first one by one results in a sharp transition at a relatively
early stage, indicating the fragmentation of the society. In the
opposite case, when links were eliminated in the descending
order of their weights, the percolation threshold set in at a much
higher portion of removed links because strong links are within
the communities, where a large number of paths between
nodes exist. In this sense, the difference �fc between the two
percolation thresholds can be considered as the measure of the
Granovetterian character of the network.

After this empirical verification of the Granovetter hypoth-
esis, the next step was to understand the mechanisms leading
to the formation of these structures in a social network by
constructing a model, which incorporates basic link-formation
processes between individuals. Two main mechanisms were
taken into account, namely local and global attachment rules
together with tie strength reinforcement [14,15]. Here the local
and global attachment rule correspond to cyclic and focal
closure mechanisms [4], with the former referring to the link
formation with one’s network neighbors, or with friends of
friends and the latter to the attribute-related link formation
which is independent of the local network topology. The
reinforcement step corresponds to the general observation that
social ties get strengthened by using them. With these simple
processes, the complex Granovetterian weight-topology rela-
tion of social networks could be successfully reproduced as
demonstrated for the large value of �fc [14].

The community structure of complex networks is an exten-
sively studied topic [16]. The identification of communities
or structural modules, i.e., groups of nodes having more
connections among themselves than outside the group is a
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highly nontrivial task and much effort has been devoted to
its solution (see, e.g., [17–19].) Most of the methods produce
a partition of the network, meaning that a node can belong
to only one community. However, as pointed out in [20] this
cannot lead to an appropriate description of many complex
networks, especially of social ones, where there is usually
considerable overlap between the communities due to the fact
that nodes can belong simultaneously to several of them.
A number of algorithms have been suggested to uncover
overlapping communities [20–22].

The community detection method of Ahn et al. [22] was
based on the identification of link communities; at the same
time they suggested a remarkable mechanism as the origin
of overlapping communities. Using the language of social
networks (what we are interested in here), they propose that a
person can be in different types of relationships, like kinship,
collaboration, friendship, etc. Moreover, people are switching
their social contexts and communication channels depending
on the occasions, and the social network should strongly
depend on the context [23,24]. To handle these aspects, it
is necessary to represent the social networks as a multilayer
or multiplex network [25–27], where each layer corresponds
to a different type of relationship. Since these contexts are
hardly distinguishable from the available data, the networks
observed in this way are usually considered as projections or
an aggregate of multiple layers. Such a projection of multilayer
networks should be in line with the observed stylized facts
faithfully with empirical data, such as the Granovetter-type
structure. An important aspect of the multilayer structure is
missing both from the original Granovetter paper [13] and the
above described model [14]. The aim of the present paper is
to investigate the possibilities to model the combination of
the multilayer structure of the society with the Granovetterian
relationship between tie strengths and topology. In order to do
so, we start from the simple, single-layer model by Kumpula
et al. [14] and introduce the multilayer structure in different
ways.

This paper is organized as follows. In the next section,
a naive multilayer network is investigated and it is shown
that it leads to a breakdown of the Granovetter-type structure
as correlations are suppressed. We therefore introduce the
copy-and-shuffle model, where a parameter tunes the cor-
relations. We find a regime with �fc significantly different
from zero, however, there the average number of overlapping
communities, a node participates in, is low. To overcome this
difficulty, we formulate a model in Sec. III, where correlations
are caused by the dependence on the geographic distance. This
model has a parameter region where both the Granovetterian
structure and a considerable enhancement of the average
overlap are observed. The last section is devoted to a summary
and discussion.

II. MULTILAYER WEIGHTED SOCIAL
NETWORK (WSN) MODEL

A. Single-layer WSN Model

Let us first summarize the original WSN model by Kumpula
et al. [14]. It considers an undirected weighted network of N

nodes. The links in the networks are updated by the following

three rules. The first rule is called local attachment (LA). Node
i chooses one of its neighbors j with probability proportional
to wij , which stands for the weight of the link between nodes
i and j .

Then, node j chooses one of its neighbors except i, say k,
randomly with probability proportional to wjk . If node i and k

are not connected, they are connected with probability p� with
a link of weight w0, but if they are already connected this link
weight and the other two link weights wij and wjk in a triangle
are increased by δ. The second rule is global attachment (GA),
where if a node has no links or otherwise with probability
pr , it is connected to a randomly chosen node with weight
w0. Finally, the third rule node deletion (ND) is introduced
to the model, where with probability pd , a node loses all its
links. At each time step, LA, GA, and ND are applied to all
nodes. Starting from a network without any links, the network
reaches a statistically stationary state after a sufficient number
of updates. As a function of the reinforcement parameter δ this
model shows a gradual transition from a module free topology
to a Granovetterian structure with strongly wired communities
connected by weak ties.

B. Generalization to the multilayer case

In order to study multilayer effects we generalize the
single-layer WSN model in the following naive way. We
consider L layers of the same set of nodes and we assume
that each layer corresponds to a different type of relationship
or communication context. For each layer, we independently
construct a network in the same way as in the original
single-layer WSN model. For simplicity, the same parameters
are used for all the layers. After the stationary networks are
constructed in each layer, the aggregate network is constructed
by summing up the edge weights: wij = ∑L

k=1 wk
ij , where wk

ij

is the weight of the link between nodes i and j in the kth
layer [28]. It is this aggregate network for which we expect the
Granovetterian structure.

In the following, N = 50 000, pr = 0.0005, p� = 0.05,
pd = 0.001, δ = 1, and w0 = 1 are used. The results are
obtained after 25 × 103 time steps and averaged over 50
realizations. To see whether the multilayer model reproduces
a realistic social network of the kind the mobile phone call
(MPC) graph is a proxy [5,6], a link percolation analysis
is carried out for the model. We removed fraction f of the
links from the generated networks in both ascending and
descending orders, and measured the relative size RLCC of the
largest connected component and the normalized susceptibility
χ = ∑

nss
2/N , where ns is the number of components of size

s and the sum is taken over all but the largest component. At
the percolation threshold the order parameter RLCC vanishes
and χ diverges in the thermodynamic limit. For finite systems
the former quantity shows a fast decay and the latter one a
sharp peak at the threshold value fc. The significant difference
�fc in the thresholds for the two sequences of link removal is
characteristic by the Granovetter structure; �fc = f d

c − f a
c ,

where the upper index d (a) stands for descending (ascending)
sequences of removed links.

Figure 1 shows RLCC and χ as a function of f for a single-
layer network (L = 1) and a double-layer network (L = 2).
The two plots in each figure show the results for ascending
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FIG. 1. (Color online) Link percolation analysis for L = 1 (left)
and L = 2 (right). The upper figures show the relative size of the
largest connected component, RLCC, as a function of the fraction of
the removed links f . The lower figures show the susceptibility χ .
Red solid (green dashed) lines correspond to the case when links are
removed in ascending (descending) order of the link weights. The
error bars show standard errors.

and descending orders. For L = 1 we get �fc ≈ 0.35, while
for L = 2 the figure shows that the percolation threshold for
ascending order f a

c is not significantly different from that for
descending order f d

c (i.e., �fc ≈ 0).
The percolation thresholds for L = 2 are approximately the

same, fc ≈ 0.95, indicating that the introduction of a second
layer destroys the Granovetterian structure. The percolation
threshold agrees well with that of an Erdős-Rényi (ER) random
network having the same average degree 〈k〉 as the simulated
model: fc = 1 − 1/〈k〉 with the measured 〈k〉 = 21.9. (Note
that this is twice the average degree of a single layer.) This
observation shows that combining already two independent
layers from the original single-layer WSN model leads to a
high level of randomization in the aggregate [29]. One may
think that the observed effect is due to the increasing total
degree when two layers are merged. However, we carried out
simulations, where the total degree was controlled by p� and
found that for L = 2 the thresholds are always very close to
each other; �fc ≈ 0.

C. Copy-and-shuffle WSN model

Due to the fact that merging two layers of WSN models
destroys the Granovetterian structure, we investigated how
the correlation between layers affects the properties of the
network. We created the second layer by copying the first
layer and then shuffled the fraction p of the nodes in the
second layer. Shuffling nodes i and j means that all original
links (i,k) become (j,k) and vice versa. This is just a relabeling
of the nodes in that layer, meaning that the topology remains
the same, i.e., both layers correspond to single-layer WSN
models but with increasing p the correlations between them
decrease. This is called the “copy-and-shuffle” model (see
Fig. 2).

(b) p=0.01

(c) p=0.1 (d) p=1

(a) p=0

FIG. 2. (Color) Snapshots of the copy-and-shuffle model with
different p shuffling parameter values and N = 300. Red (blue) links
are in the first (second) layer, and green links are in both layers.

When p = 0, the aggregate network is equivalent to the
single-layer network whose link weights are doubled. For
p = 1, it is the same as the double-layer model; the Granovet-
terian structure gets entirely destroyed by randomization. By
controlling p between 0 and 1, a transient behavior is observed.
Figure 3 shows how the threshold values f a

c get closer to f d
c as

p is increased and for p → 1 we get �fc → 0. The reason is
that strong links in the second layer connect the communities
more randomly since the correlation between the first and the
second layer diminishes.

The randomization has the consequence that the percolation
threshold f a

c gets closer to that of the corresponding Erdős-
Rényi random network. However, for a reasonably large range

 0.5
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FIG. 3. (Color online) Percolation thresholds for various shuffle
fraction values p for the copy-and-shuffle model. The green upper
and red lower lines denote the critical points f d

c and f a
c , respectively.

The critical points are determined by the peak of the susceptibility.
The points are calculated for 50 independent runs. The blue dashed
line is calculated using Eq. (3).
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of p, we can clearly differentiate f a
c and f d

c thus the similarity
between the layer assures the Granovetterian structure.

The gradual transition can be understood in the following
way. Let us make the assumptions that the original network
(first layer) is composed of strongly connected groups inter-
connected by weak links [see Fig. 2(a)] and the average size
of these groups is s which is small and independent of the
total number of agents N . Eventually the number of groups is
Ng = N/s. In the link percolation analysis starting from the
weak links (ascending order) we can consider the groups as
“supernodes” and we have to solve the percolation problem
for the links connecting them.

Not only the intergroup links turn out to be weak but also
some intragroup ones. Let us denote the number of links by
M , the total number of weak links by Mw, and the intergroup
weak links by Mg which are a subset of Mw. Let us remove
the f a fraction of the total links in ascending order. In this
case the number of weak links gets Mw(f a) = Mw − Mf a

since we only removed weak links. Thus it is clear that this
approximation will not work for f a > Mw/M . The intergroup
links are removed by the same rate as weak links, so the number
of intergroup links after removing the f a part of the total links
in ascending order is

Mg(f a) = Mg

(
1 − f a M

Mw

)
. (1)

In order to have quantitative results we need the number
of strong links. This can be estimated if we assume that
Mw = M(〈k〉 − 2)/〈k〉. This means that each node has two
strong links while the rest are weak. This can be justified by
considering the effect of cyclic closure: The cyclic closure is
the most frequent interaction which strengthens two links of a
focal node with positive feedback of their weights. Assuming
a random network for the groups at the percolation threshold,
one should get Mg(f a

c ) = Ng/2. This gives 〈kg〉 ≡ 2Mg/Ng =
3.26 for the single-layer model, where 〈kg〉 is the average
degree of the connections between the groups, i.e., that of the
supernodes. Snapshots of the single-layer model as in Fig. 2(a)
justify the low contact number for the groups.

The shuffling of agents creates new connections from one
group to another. These connections increase the intergroup
connection degree by

〈kg〉(p) ≈ 〈kg〉(p = 0) + ps〈k〉. (2)

Thus there is a linear increase of the average degree of the
groups with p.

Now we can use Eq. (1) to go in the reverse direction,
namely that knowing Mg/Ng we can get the percolation
threshold (note that Mw and M also depend on p in a trivial
way):

f a
c = Mw(p)

M(p)

(
1 − Ng

2(Mg + pN〈k〉)
)

= 〈k〉 − 2

〈k〉
(

1 − 1

〈kg〉(p = 0) + 2s〈k〉p
)

. (3)

The average size of the groups for the single layer can be
obtained by an infomap analysis [19] and was found to be
s = 15.1. The resulting curve is shown in Fig. 3 as a dashed
line and is compared to the empirical threshold values. The
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FIG. 4. (Color online) Characteristic quantities for the copy-and-
shuffle multilayer WSN model. The difference �fc between the
percolation thresholds decreases with the shuffling probability p,
while c/c0, the ratio of the average number of communities a node
belongs to at parameter value p and p = 0, decreases. There is
no regime, where �fc is significantly larger than zero and c/c0

is considerably larger than one. The results are averaged by 50
independent samples and the errors are smaller than the symbol size.

calculated line fits the initial part very well, where the above
picture is expected to work.

The copy-and-shuffle model produces a region of p, where
a multilayer Granovetterian structure exists. Now we have to
check whether our construction has led to enhancement of
the overlapping of the communities, too. We have analyzed
the aggregate networks by the method of Ahn et al. [22]
and calculated c/c0, the ratio of the average numbers of
communities a node belongs to at parameter value p and
p = 0 [30]. We expect that c/c0 should increase as shuffling
goes on. Figure 4 shows the dependence of this quantity on p.
The overlap starts to increase only when the Granovetterian
correlation between link weight and topology is already wiped
away. In the next section we make another attempt to produce
a model, where the Granovetterian structure and overlapping
communities coexist.

III. GEOGRAPHIC MULTILAYER WSN MODEL

The above results show that some correlations are needed
between layers in order to have �fc significantly different
from zero for a multilayer model. Previous studies have
reported that there are strong geographic constraints on social
network groups even in the era of the Internet [31] and this is
reflected in the MPC data [12,32,33]. For example, intercity
communication intensity is inversely proportional to the square
of their Euclidean distance, which is reminiscent of the gravity
law [12,32].

Motivated by these observations, we consider now a model
embedded into a two-dimensional geographic space. At the
beginning of the simulation nodes are distributed randomly
in the unit square with periodic boundary condition. These
geographic positions are fixed and shared by all the layers. We
assume that the probability for making a new connection in
the global attachment (GA) step in the WSN model is higher
if the two nodes are geographically close. The probability
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FIG. 5. (Color online) Link percolation analysis for (a) α = 0
and (b) α = 6. The upper figures show the relative size of the largest
connected component, RLCC, as a function of the fraction of the
removed links f . The lower figures show the susceptibility χ . Note
that the scale of the horizontal axis is different from Fig. 1. Red solid
(green dashed) lines correspond to the case when links are removed
in ascending (descending) order of the link weight. The results are
obtained by 50 independent samples. The error bars show standard
errors.

that node i makes a new connection to node j by GA is
proportional to r−α

ij , where rij is a distance between nodes i

and j , and α is a new parameter controlling the dependence
on geographic distance as in [34,35]. When α = 0, this
probability is independent of the geographic distance, thus the
model is equivalent to the uncorrelated multilayer model we
presented in the previous section. When α is larger, the nodes
tend to be connected with geographically closer nodes yielding
the correlation between the networks in different layers. Since
only nonconnected pairs are considered, the probability for
node i to make connection with a node j which is not yet
connected to i is given by

pij = r−α
ij∑

k∈Si
r−α
ik

, (4)

where Si is the set of the nodes not connected to the node i.
The other rules such as LA or ND are kept the same as in the
original WSN model.

Figure 5 shows the results for link percolation analysis for
the geographic model with α = 0 and 6. Because the network
for larger α has a smaller average degree, we used a larger value
of pr (0.002) in order to keep the average degree comparable
to the results for the nongeographic model (〈k〉 = 18.0 for
α = 6 and 〈k〉 = 27.6 for α = 0). As shown in the figure, the
network for α = 6 exhibits a Granovetterian structure as f a

c

and f d
c are significantly different with �fc ≈ 0.1.

Small samples of networks (N = 300) for different α are
shown in Fig. 6. While the network for α = 0 and 2 look similar
to the uncorrelated double-layer nongeographic network in
Fig. 2(d), the networks for larger α clearly show a nice
community structure. About 19% of the links are shared by
two layers for α = 6, while less than 0.1% percent of the total

(a) =0 (b) =2

(c) =4 (d) =6

FIG. 6. (Color) Sample of double-layer networks of the geo-
graphic model for N = 300. Links only in the first and the second
layers are shown in blue and red, respectively, and links shared by
both layers are depicted in green.

links are shared for α = 0; see also the inset of Fig. 7. This
already indicates the possibility of overlapping communities.

The dependence of fc on α is shown in Fig. 8, which
summarizes the main results for the geographic model. �fc

becomes larger with increasing α and seems to get saturated
around 0.15. The ratio c/c0 decreases rather rapidly and
reaches the limit value of 2. This means that for sufficiently
large α we have both Granovetterian properties and the
enhancement of the number of overlapping communities due
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FIG. 7. (Color online) Percolation thresholds f a
c and f d

c for the
geographic model as a function of α. The percolation thresholds are
determined as the point where maximum susceptibility is observed
and then averaged over 50 independent samples. (Inset) Average
degrees divided by L as a function of α for L = 1 and L = 2.
The values for L = 2 are smaller than those for L = 1 when α is
sufficiently large because there are links appearing in both layers.
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FIG. 8. (Color online) This figure is a similar plot in Fig. 4 for
the geographic multilayer WSN model. Here �fc and c/c0 are shown
as a function of α. Note that for this model c0 also depends on α. For
α � 6 we have �fc significantly larger than 0 and c/c0 close to 2.
The results are obtained by 50 independent samples.

to the multilayer structure. We note that for α > 4 both the
average degree in one layer 〈k(L = 1)〉 � 11 and c0(α > 4) �
3 is the same as in the nongeographic case indicating similar
structure.

We note that neither the percolation thresholds nor the
average degree show significant dependence on α for α < 2.
We speculate that this is because the network dimension
becomes infinite for α < 2 even when it is embedded in a
two-dimensional space [35]. Since the dimensionality of the
network is finite, the clustering coefficient for the network is
higher compared to the network with smaller α. (For α = 0,
2, and 6, clustering coefficients are 0.23, 0.24, and 0.55,
respectively.) This also explains the change in the average
degree. If a link and its neighboring link are selected by LA,
the probability that the third link closing the triangle is already
there will be higher for higher α thus the number of links newly
created by LA is smaller leading to the decrease in the average
degree.

IV. SUMMARY AND DISCUSSION

Our aim in this paper has been to model two important
properties of the social network: Its Granovetterian structure
and the large amount of overlapping communities due to its
multilayer character. We introduced the difference �fc of
the percolation thresholds f d

c and f a
c as a single variable

characterizing the weight-topology relation and c/c0, the ratio
of the average number of communities a node participates in
for the multilayer and the single-layer networks. We expect
from a model satisfying our goal simultaneously a �fc

considerably different from zero and c/c0 significantly larger
than one.

The naive introduction of multiple layers of single-layer
WSN models breaks the Granovetter-type weight-topology
relation since the communities in one layer get connected
by strong ties in another layer. If we control the amount
of randomness by the shuffling probability p and start from
replicas of single-layer models then we arrive at a multilayer
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FIG. 9. (Color online) These figures show the same quantities as
Fig. 4 for several values of p� (a), pr (b), and pd (c). The results
are obtained by simulation of N = 10 000 and averaged over 20
independent samples.

model, which, however, has no region of the control parameter
p, where both required properties can simultaneously be
observed.

In order to maintain both requirements, we introduced an
extension of the single-layer model such that each node has
a geographic position and that geographically close nodes
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have more chance to form a link via GA. The multilayer
model consists then of a combination of such single layers.
Controlling the distance dependence by the exponent α [as
defined in Eq. (4)] we conclude that for α � 6 we have
a multilayer weighted social network, which has both the
Granovetterian structure and the enhanced community overlap.

We note here that previous studies on MPC data have
revealed that intercity communication density is inversely
proportional to the square of the distance [12,32]. Regarding
the geographic model, the relation between α and the exponent
characterizing intercity communication density is not trivial
because the links created by LA are not affected by the geo-
graphic position. Furthermore, we assumed that the position
of the nodes are uniformly distributed, which is clearly an
idealized aspect of the model since we know that population
usually aggregates around city areas.

Our results have several implications. First, they show that
geographic correlations play a key role to change the picture
drastically in a multilayer weighted network similarly to what
was observed for interdependent networks [36]. Moreover,
although the models we studied are strong simplifications of
the society, we believe that they have their role in the inves-
tigation of social structures. In particular, such models enable
one to study the special effects of the Granovetterian and the
overlapping community structure on dynamic phenomena like
spreading.

Communities organize themselves along common at-
tributes like sharing working places, classes at universities,
joint interest, e.g., in sport, residential districts, etc. [34].
Geographic proximity is just one of the possibilities and
other attributes can play an important role in the formation of
network as well. Future work is needed to find out how to treat
explicitly these attributes and their impact on the formation of
the network.

Our models have also implications for further empirical
studies. Unfortunately, most data sets contain only information
about one channel of communication, which substantially
restricts sampling of relationships even in the case of mobile
call networks. An alternative approach is “reality mining,”
where a limited number of volunteers (of the order of one
hundred) carry devices, which record several channels of
communication, including face-to-face encounters [37]. This
methodology could pave the way for studies of the effects of
the multilayer character of human society, especially from the
points of view presented in this paper.
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APPENDIX: TRIAL WITH OTHER PARAMETERS

We tested other parameters for the copy-and-shuffle model
in order to verify the results are robust against the change of
parameters. Figure 9 shows the results when the parameters
p�, pr , and pd are modified from the ones used in Sec. II B.
All the tested results are qualitatively similar to Fig. 4: �fc

decreases to zero more quickly than the increase in c/c0 when
p is increased.
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