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Localization and centrality in networks
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Eigenvector centrality is a common measure of the importance of nodes in a network. Here we show that
under common conditions the eigenvector centrality displays a localization transition that causes most of the
weight of the centrality to concentrate on a small number of nodes in the network. In this regime the measure is
no longer useful for distinguishing among the remaining nodes and its efficacy as a network metric is impaired.
As a remedy, we propose an alternative centrality measure based on the nonbacktracking matrix, which gives
results closely similar to the standard eigenvector centrality in dense networks where the latter is well behaved
but avoids localization and gives useful results in regimes where the standard centrality fails.
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I. INTRODUCTION

In the study of networked systems such as social, biological,
and technological networks, centrality is one of the most
fundamental of metrics. Centrality quantifies how important
or influential a node is within a network. The simplest of
centrality measures, the degree centrality, or simply degree, is
the number of connections a node has to other nodes. In a social
network of acquaintances, for example, someone who knows
many people is likely to be more influential than someone
who knows few or none. Eigenvector centrality [1] is a more
sophisticated variant of the same idea which recognizes that
not all acquaintances are equal. You are more influential if
the people you know are themselves influential. Eigenvector
centrality defines a centrality score vi for each node i in an
undirected network, which is proportional to the sum of the
scores of the node’s network neighbors vi = λ−1 ∑

j Aij vj ,
where λ is a constant and the sum is over all nodes. Here Aij

is an element of the adjacency matrix A of the network having
value 1 if there is an edge between nodes i and j and zero
otherwise. Defining a vector v whose elements are the vi , we
then have Av = λv, meaning that the vector of centralities is
an eigenvector of the adjacency matrix. If we further stipulate
that the centralities should all be non-negative, it follows by
the Perron-Frobenius theorem [2] that v must be the leading
eigenvector (the vector corresponding to the most positive
eigenvalue λ). Eigenvector centrality and its variants are some
of the most widely used of all centrality measures. They
are commonly used in social network analysis [3] and form the
basis for ranking algorithms such as the HITS algorithm [4]
and the eigenfactor metric [5].

As we argue in this paper, however, eigenvector centrality
also has serious flaws. In particular, we show that, depending
on the details of the network structure, the leading eigenvector
of the adjacency matrix can undergo a localization transition in
which most of the weight of the vector concentrates around one
or a few nodes in the network. While there may be situations,
such as the solution of certain physical models on networks,
in which localization of this kind is useful or at least has
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some scientific interest, in the present case it is undesirable,
significantly diminishing the effectiveness of the centrality as a
tool for quantifying the importance of nodes. Moreover, as we
will show, localization can happen under common real-world
conditions, for instance, in networks with power-law degree
distributions.

As a solution to these problems, we propose a new centrality
measure based on the leading eigenvector of the Hashimoto or
nonbacktracking matrix [6,7]. This measure has the desirable
properties of (1) being closely equal to the standard eigenvector
centrality in dense networks, where the latter is well behaved,
while also (2) avoiding localization, and hence giving useful
results, in cases where the standard centrality fails.

II. LOCALIZATION OF EIGENVECTOR CENTRALITY

A number of numerical studies of real-world networks
have shown evidence of localization phenomena in the past
[8–12]. In this paper we formally demonstrate the existence
of a localization phase transition in the eigenvector centrality
and calculate its properties using techniques of random matrix
theory.

The fundamental cause of the localization phenomenon
we study is the presence of “hubs” within networks, nodes
of unusually high degree, which are a common occurrence
in many real-world networks [13]. Consider the following
simple undirected network model consisting of a random
graph plus a single hub node, which is a special case of a
model introduced previously in Ref. [14]. In a network of
n nodes, n − 1 of them form a random graph in which every
distinct pair of nodes is connected by an undirected edge
with independent probability c/(n − 2), where c is the mean
degree. The nth node is the hub and is connected to every
other node with independent probability d/(n − 1), so the
expected degree of the hub is d. In the regime where c � 1 it is
known that (with high probability) the spectrum of the random
graph alone has the classic Wigner semicircle form, centered
around zero, plus a single leading eigenvalue with value c + 1
and corresponding leading eigenvector equal to the uniform
vector (1,1,1, . . .)/

√
n plus random Gaussian noise of width

O(1/
√

n) [15]. Thus the eigenvector centralities of all vertices
are O(1/

√
n) with only modest fluctuations. No single node
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dominates the picture and the eigenvector centrality is well
behaved.

If we add the hub to the picture, however, things change. The
addition of an extra vertex naturally adds one more eigenvalue
and eigenvector to the spectrum, whose values we can calculate
as follows. Let X denote the (n − 1)×(n − 1) adjacency matrix
of the random graph alone and let the vector a be the first n − 1
elements of the final row and column, representing the hub.
(The last element is zero.) Thus the full adjacency matrix has
the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X a

aT 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

Let z be an eigenvalue of A and let v = (v1|vn) be the
corresponding eigenvector, where v1 represents the first n − 1
elements and vn is the last element. Then, multiplying out the
eigenvector equation Av = zv, we find

Xv1 + vna = zv1, aT v1 = zvn. (2)

Rearranging the first of these, we get

v1 = vn(zI − X)−1a, (3)

and substituting into the second we get

aT (zI − X)−1a = z, (4)

where I is the identity. Writing the matrix inverse in terms of its
eigendecomposition (zI − X)−1 = ∑

i xi(z − χi)−1xT
i , where

xi is the ith eigenvector of X and χi is the corresponding
eigenvalue, Eq. (4) becomes

(aT x1)2

z − (c + 1)
+

n−1∑
i=2

(aT xi)2

z − χi

= z, (5)

where we have explicitly separated the largest eigenvalue
χ1 = c + 1 and the remaining n − 2 eigenvalues, which follow
the semicircle law.

Although we do not know the values of the quantities aT xi

appearing in Eq. (5), the left-hand side as a function of z

clearly has poles at each of the eigenvalues χi and a tail that
goes as 1/z for large z. Moreover, for properly normalized x1

the numerator of the first term in the equation is O(1/n) and
hence this term diverges significantly only when z − (c + 1)
is also O(1/n), i.e., when z is very close to the leading
eigenvalue c + 1. Hence the qualitative form of the function
must be as depicted in Fig. 1 and solutions to the full equation
correspond to the points where this form crosses the diagonal
line representing the right-hand side of the equation. These
points are marked with dots in the figure.

As the geometry of the figure makes clear, the solutions for
z, which are the eigenvalues of the full adjacency matrix of
our model including the hub vertex, must fall in between the
eigenvalues χi of the matrix X and hence satisfy an interlacing
condition of the form z1 > χ1 > z2 > χ2 > · · · > χn−1 > zn,

Spectral band

z

FIG. 1. (Color online) Graphical representation of the solution of
Eq. (5). The curves represent the left-hand side of the equation, which
has poles at the positions of the eigenvalues χi (marked by the vertical
dashed lines). The diagonal line represents the right-hand side and
the points where the two cross, marked by dots, are the solutions of
the equation for z.

where we have numbered both sets of eigenvalues in order from
largest to smallest. In the limit where the network becomes
large and the eigenvalues χ2 . . . χn−1 form a continuous
semicircular band, this interlacing imposes tight bounds on
the solutions z3 to zn−1, such that they must follow the same
semicircle distribution. Moreover, the leading eigenvalue z1

has to fall within O(1/n) of χ1 = c + 1, and hence z1 → c + 1
in the large size limit.

This leaves just two unknown eigenvalues, z2 lying above
the semicircular band and zn lying below it. In the context of
the eigenvector centrality it is the one at the top that we care
about. In Fig. 1 this eigenvalue is depicted as lying below the
leading eigenvalue z1, but it turns out that this is not always
the case, as we now show.

Consider Eq. (5) for any value of z well away from c + 1,
so the first term on the left can be neglected [meaning that
z is not within O(1/n) of c + 1]. The vector xi for i � 2 is
uncorrelated with a and hence the product aT xi is a Gaussian
random variable with variance d/n and, averaging over the
randomness, the equation then simplifies to

d

n
Tr(zI − X)−1 = z. (6)

The quantity g(z) = n−1 Tr(zI − X)−1 is a standard one in
the theory of random matrices—it is the so-called Stieltjes
transform of X, whose value for a symmetric matrix with
independent and identically distributed elements such as this
one is known to be [15]

g(z) = z − √
z2 − 4c

2c
. (7)

Combining Eqs. (6) and (7) and solving for z we find the
eigenvalue we are looking for as follows:

z2 = d√
d − c

. (8)

Depending on the degree d of the hub, this eigenvalue may
be either smaller or larger than the other high-lying eigenvalue
z1 = c + 1. Writing d/

√
d − c > c + 1 and rearranging, we
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see that the hub eigenvalue becomes the leading eigenvalue
when

d > c(c + 1), (9)

i.e., when the hub degree is roughly the square of the mean
degree. Below this point, the leading eigenvalue is the same as
that of the random graph without the hub and the eigenvector
centrality is given by the corresponding eigenvector, which is
well behaved, so the centrality has no problems. Above this
point, however, the leading eigenvector is the one introduced
by the hub, and this eigenvector, as we now show, has severe
problems.

If the eigenvector v = (v1|vn) is normalized to unity then
Eq. (3) implies that

1 = |v1|2 + v2
n = v2

n[aT (zI − X)−2a + 1], (10)

and hence

v2
n = 1

aT (zI − X)−2a + 1
= 1

(d/n) Tr(zI − X)−2 + 1

= 1

−dg′(z) + 1
,

where g(z) is again the Stieltjes transform, Eq. (7), and g′(z)
is its derivative. Performing the derivative and setting z = d/√

d − c, we find that

v2
n = d − 2c

2d − 2c
, (11)

which is constant and does not vanish as n → ∞. In other
words, a finite fraction of the weight of the vector is
concentrated on the hub vertex.

The neighbors of the hub also receive significant weight:
the average of their values is given by

aT v1

d
= vn

d
aT (zI − X)−1a = vng(z) = vn√

d − c
. (12)

Thus they are smaller than the hub centrality vn but still
constant for large n. Finally, defining the (n − 1)-element
uniform vector 1 = (1,1,1, . . .), the average of all n − 1
nonhub vector elements is

〈vi〉 = 1T v1

n − 1
= vn

n − 1
1T (zI − X)−1a, (13)

where we have used Eq. (3) again. Averaging over the
randomness and noting that X and a are independent and that
the average of a is d1/(n − 1), we then get

〈vi〉 = dvn

n − 1
g(z) = 1

n − 1

dvn√
d − c

, (14)

which falls off as 1/n for large n.
Thus, in the regime above the transition defined by (9),

where the eigenvector generated by adding the hub is the
leading eigenvector, a nonvanishing fraction of the eigenvector
centrality falls on the hub vertex and its neighbors, while the
average vertex in the network gets only an O(1/n) vanishing
fraction in the limit of large n, much less than the O(1/

√
n)

fraction received by the average vertex below the transition.
This is the phenomenon we refer to as localization: the abrupt
focusing of essentially all of the centrality on just a few vertices
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FIG. 2. (Color online) Bar charts of centralities for three cate-
gories of node for four examples of the model network studied here,
as described in the text. All plots share the same scale. Error bars are
small enough to be invisible on this scale.

as the degree of the hub passes above the critical value c(c + 1).
In the localized regime the eigenvector centrality picks out the
hub and its neighbors clearly but assigns vanishing weight
to the average node. If our goal is to determine the relative
importance of nonhub nodes, the eigenvector centrality will
fail in the localized regime.

A. Numerical results

As a demonstration of the localization phenomenon, we
show in Fig. 2 plots of the centralities of nodes in networks
generated using our model. Each plot shows the average
centrality of the hub, its neighbors, and all other nodes for
a one-million-node network with c = 10. The top two plots
show the situation for the standard eigenvector centrality for
two different values of the hub degree: d = 70 and d = 120.
The former lies well within the regime where there is no
localization, while the latter is in the localized regime. The
difference between the two is striking: In the first the hub and
its neighbors get higher centrality, as they should, but only
modestly so, while in the second the centrality of the hub
vertex becomes so large as to dominate the figure.

The extent of the localization can be quantified by calculat-
ing an inverse participation ratio S = ∑n

i=1 v4
i . In the regime

below the transition where there is no localization and all
elements vi are O(1/

√
n) we have S = O(1/n). But if one or

more elements are O(1), then S = O(1) also. Hence if there
is a localization transition in the network, then, in the limit of
large n, S will go from being zero to nonzero at the transition
in the classic manner of an order parameter. Figure 3 shows a
set of such transitions in our model, each falling precisely at
the expected position of the localization transition.

B. Power-law networks

So far we have looked only at the localization process in a
simple model network, but localization occurs in more realistic
networks as well. In general, we expect it to be a problem in
networks with high-degree hubs or in very sparse networks,
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FIG. 3. (Color online) Numerical results for the inverse partici-
pation ratio S as a function of hub degree d for networks generated
using the model described in the text with n = 1 000 000 vertices
and average degree c ranging from 4 to 11. The solid curves
are eigenvector centrality; the horizontal dashed curves are the
nonbacktracking centrality. The vertical dashed lines are the expected
positions of the localization transition for each curve, from Eq. (9).

those with low average degree c, where it is relatively easy
for the degree of a typical vertex to exceed the localization
threshold. Many real-world networks fall into these categories.
Consider, for example, the common case of a network with a
power-law degree distribution, such that the fraction pk of
nodes with degree k goes as k−α for some constant exponent
α [13]. We can mimic such a network using the so-called
configuration model [16,17], a random graph with specified
degree distribution. There are again two different ways a
leading eigenvalue can be generated, one due to the average
behavior of the entire network and one due to hub vertices of
particularly high degree. In the first case the highest eigenvalue
for the configuration model is known to be equal to the ratio
of the second and first moments of the degree distribution
〈k2〉/〈k〉 in the limit of large network size and large average
degree [14,18]. At the same time, the leading eigenvalue must
satisfy the Rayleigh bound z � xT Ax/xT x for any real vector
x, with better bounds achieved when x better approximates the
true leading eigenvector. If d denotes the highest degree of any
hub in the network and we choose an approximate eigenvector
of form similar to the one in our earlier model network, having
elements xi = 1 for the hub, 1/

√
d for neighbors of the hub,

and zero otherwise, then the Rayleigh bound implies z �
√

d.
Thus the eigenvector generated by the hub will be the leading
eigenvector whenever

√
d > 〈k2〉/〈k〉 (possibly sooner, but not

later).
In a power-law network with n vertices and exponent α, the

highest degree goes as d ∼ n1/(α−1) [19] and hence increases
with increasing n, while 〈k2〉 ∼ d3−α and 〈k〉 ∼ constant for
the common case of α < 3. Thus we will have

√
d > 〈k2〉/〈k〉

for large n provided 1
2 > 3 − α. So we expect the hub

eigenvector to dominate and the eigenvector centrality to fail
due to localization when α > 5

2 , something that happens in
many real-world networks. (Similar arguments have also been
made by Chung et al. [18] and by Goltsev et al. [12].) We
give empirical measurements of localization in a number of
real-world networks in Table I below.

TABLE I. Inverse participation ratio for a variety of networks
calculated for traditional eigenvector centrality and the nonback-
tracking version. The first four networks are computer generated,
as described in the text. The remainder are, in order, as follows: a
network of coauthorships of papers in high-energy physics [20], word
associations from the Free Online Dictionary of Computing [21],
friendships between users of the YouTube online video service [22],
a network of which companies own which others [23], academic
advisors and advisees in computer science [24], electronic circuit 838
from the ISCAS 89 benchmark set [25], and a product copurchasing
network from the online retailer Amazon.com [20].

Non-
Network Nodes Eigenvector backtracking

Synthetic
Planted hub, d = 70 1 000 001 2.6×10−6 1.4×10−6

Planted hub, d = 120 1 000 001 0.2567 1.4×10−6

Power law, α = 2.1 1 000 000 0.0089 0.0040
Power law, α = 2.9 1 000 000 0.2548 0.0011

Empirical
Physics collaboration 12 008 0.0039 0.0039
Word associations 13 356 0.0305 0.0075
YouTube friendships 1 138 499 0.0479 0.0047
Company ownership 7 253 0.2504 0.0161
Ph.D. advising 1 882 0.2511 0.0386
Electronic circuit 512 0.1792 0.0056
Amazon 334 863 0.0510 0.0339

III. NONBACKTRACKING CENTRALITY

So if eigenvector centrality fails to do its job, what can we
do to fix it? Qualitatively, the localization effect arises because
a hub with high eigenvector centrality gives high centrality to
its neighbors, which in turn reflect it back again and inflate
the hub’s centrality. We can make the centrality well behaved
again by preventing this reflection. To achieve this we propose
a modified eigenvector centrality that is similar in many ways
to the standard one but with an important change. We define
the centrality of node j to be the sum of the centralities
of its neighbors as before, but the neighbor centralities are
now calculated in the absence of node j . This is a natural
definition in many ways: When I ask my neighbors what their
centralities are in order to calculate my own, I want to know
their centrality due to their other neighbors, not myself. This
modified eigenvector centrality has the desirable property that
when typical degrees are large, so the exclusion or not of any
one node makes little difference, its value will tend to that of
the standard eigenvector centrality. But in sparser networks of
the kind that can give problems, it will differ from the standard
measure and, as we will see, better behaved.

Our centrality measure can be calculated using the
Hashimoto or nonbacktracking matrix [6,7], which is defined
as follows. Starting with an undirected network with m edges,
one first converts it to a directed one with 2m edges by
replacing each undirected edge with two directed ones pointing
in opposite directions. The nonbacktracking matrix B is then
the 2m×2m nonsymmetric matrix with one row and one
column for each directed edge i → j and elements

Bk→l,i→j = δjk(1 − δil), (15)
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where δij is the Kronecker delta. Thus a matrix element is
equal to one if edge i → j points into the same vertex that edge
k → l points out of and edges i → j and k → l are not pointing
in opposite directions between the same pair of vertices and
zero otherwise. Note that since the nonbacktracking matrix
is not symmetric, its eigenvalues are in general complex, but
the largest eigenvalue is always real, as is the corresponding
eigenvector.

The element vi→j of the leading eigenvector of the
nonbacktracking matrix now gives us the centrality of vertex i

ignoring any contribution from j , and the full nonbacktracking
centrality xj of vertex j is defined to be the sum of these
centralities over the neighbors of j as follows:

xj =
∑

i

Aij vi→j . (16)

In principle one can calculate this centrality directly by
calculating the leading eigenvector of B and then applying
Eq. (16). In practice, however, one can perform the calculation
faster by making use of the so-called Ihara (or Ihara-Bass)
determinant formula, from which it can be shown [7] that the
vector x of centralities is equal to the first n elements of the
leading eigenvector of the 2n×2n matrix,

M =
(

A I − D
I 0

)
, (17)

where A is the adjacency matrix as previously, I is the
n×n identity matrix, and D is the diagonal matrix with the
degrees of the vertices along the diagonal. Since M only
has marginally more nonzero elements than the adjacency
matrix itself (2m + 2n for a network with m edges and n

vertices versus 2m for the adjacency matrix), finding its leading
eigenvector takes only slightly longer than the calculation of
the ordinary eigenvector centrality.

To see that the nonbacktracking centrality can indeed elim-
inate the localization transition, consider again our random-
graph-plus-hub model and, as before, let us first consider the
random graph on its own, without the hub. Our goal will be
to calculate the leading eigenvalue of the nonbacktracking
matrix for this random graph and then demonstrate that no
other eigenvalue ever surpasses it even when the hub is added
into the picture and hence that there is no transition of the kind
that occurs with the standard eigenvector centrality.

Since all elements of the nonbacktracking matrix are real
and non-negative, the leading eigenvalue and eigenvector
satisfy the Perron-Frobenius theorem, meaning the eigenvalue
is itself real and non-negative as are all elements of the eigen-
vector for the appropriate choice of normalization. Note
moreover that at least one element of the eigenvector must
be nonzero, so the average of the elements is strictly positive.

Making use of the definition of the nonbacktracking matrix
in Eq. (15), the eigenvector equation zv = Bv takes the form

zvk→l =
∑
i→j

Bk→l,i→j vi→j =
∑
i→j

δjk(1 − δil)vi→j

=
∑
ij

Aij δjk(1 − δil)vi→j =
∑

i

Aik(1 − δil)vi→k

(18)

or

zvj→l =
∑
i(
=l)

Aijvi→j , (19)

where we have changed variables from k to j for future
convenience. Expressed in words, this equation says that
z times the centrality of an edge emerging from vertex j is
equal to the sum of the centralities of the other edges feeding
into j . For an uncorrelated, locally treelike random graph of the
kind we are considering here, i.e., a network where the source
and target of a directed edge are chosen independently and
there is a vanishing density of short loops, the centralities on
the incoming edges are drawn at random from the distribution
over all edges; the fact that they all point to vertex j has
no influence on their values in the limit of large graph size.
Bearing this in mind, let us calculate the average 〈v〉 of the
centralities vj→l over all edges in the network, which we do
in two stages. First, making use of Eq. (19), we calculate the
sum over all edges originating at vertices j whose degree kj

takes a particular value k as follows:

z
∑

j → l :
kj = k

vj→l = z
∑

j l:kj =k

Ajlvj→l =
∑

j l:kj =k

Ajl

∑
i(
=l)

Aijvi→j

=
∑

ij :kj =k

Aij vi→j

∑
l(
=i)

Ajl = (k−1)
∑

ij :kj =k

Aij vi→j

= 〈v〉(k − 1)
∑

ij :kj =k

Aij = 〈v〉(k − 1)knk, (20)

where nk is the number of vertices with degree k and we
have in the third line made use of the fact that vi→j has
the same distribution as values in the graph as whole to
make the replacement vi→j → 〈v〉 in the limit of large graph
size.

Now we sum this expression over all values of k and divide
by the total number of edges 2m to get the value of the average
vector element 〈v〉,

z〈v〉 = 〈v〉
2m

∞∑
k=0

(k − 1)knk = 〈v〉 〈k
2〉 − 〈k〉
〈k〉 . (21)

Thus for any vector v we must either have 〈v〉 = 0, which as
we have said cannot happen for the leading eigenvector, or

z = 〈k2〉 − 〈k〉
〈k〉 . (22)

For the particular case of the Poisson random graph under
consideration here, this gives a leading eigenvalue of z = c,
the average degree.

This result has been derived previously by other means [7]
but the derivation given here has the advantage that it is easy
to adapt to the case where we add a hub vertex to the network.
Doing so adds just a single term to Eq. (21), thus

z〈v〉 = 〈v〉
2m

[ ∞∑
k=0

(k − 1)knk + (d − 1)d

]
, (23)
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(a) Eigenvector centrality (b) Nonbacktracking centrality

FIG. 4. (Color online) Eigenvector and nonbacktracking centralities for the electronic circuit network from Table I. Node sizes are
proportional to centrality (and color also varies with centrality).

where d is the degree of the hub, as previously. Hence the
leading eigenvalue is

z = (n − 1)(〈k2〉 − 〈k〉) + (d − 1)d

2m
. (24)

For constant d and constant (or growing) average degree,
however, the term in d becomes negligible in the limit of
large n and we recover the same result as before z = c.

Thus no new leading eigenvalue is introduced by the hub in
the case of the nonbacktracking matrix, and there is no phase
transition as eigenvalues cross for any value of d.

It is worth noting, however, that there are other mechanisms
by which high-lying eigenvalues can be generated. For
instance, if a network contains a large clique (a complete
subgraph in which every node is connected to every other)
it can generate an outlying eigenvalue of arbitrary size, as
we can see by making use of the so-called Collatz-Wielandt
formula, a corollary of the Perron-Frobenius theorem that says
that for any vector v the leading eigenvalue satisfies

z � min
i:vi 
=0

[Bv]i
vi

. (25)

Choosing a v whose elements are one for edges within the
clique and zero elsewhere, we find that a clique of size k implies
z � k − 2, which can supersede any other leading eigenvalue
for sufficiently large k. The corresponding eigenvector is
localized on the clique vertices, potentially causing trouble
once again for the eigenvector centrality. This localization on
cliques would be an interesting topic for further investigation.

Numerical results

As a test of our nonbacktracking centrality, we show in the
lower two panels of Fig. 2 results for the same networks as the
top two panels. As the figure makes clear, the measure now
remains well behaved in the regime beyond the former position
of the localization transition—there is no longer a large jump

in the value of the centrality on the hub or its neighbors as
we pass the transition. Similarly, the dashed curves in Fig. 3
show the inverse participation ratio for the nonbacktracking
centrality and again all evidence of localization has vanished.

The inverse participation ratio also provides a convenient
way to test for localization in other networks, both syn-
thetic and real. Table I summarizes results for 11 networks
for both the traditional eigenvector centrality and the non-
backtracking version. The synthetic networks are generated
using the random-graph-plus-hub model of this paper and
the configuration model with power-law degree distribution,
and in each case there is evidence of localization in the
eigenvector centrality in the regimes where it is expected
and not otherwise, but no localization at all, in any case, for
the nonbacktracking centrality. A similar picture is seen in
the real-world networks—typically either localization in the
eigenvector centrality but not the nonbacktracking version or
localization in neither case. Figure 4 illustrates the situation for
one of the smaller real-world networks, where the values on the
highest-degree vertex and its neighbors are overwhelmingly
large for the eigenvector centrality (left panel) but not for the
nonbacktracking centrality (right panel).

IV. CONCLUSIONS

In this paper we have shown that the widely used network
measure known as eigenvector centrality fails under commonly
occurring conditions because of a localization transition in
which most of the weight of the centrality concentrates on
a small number of vertices. The phenomenon is particularly
visible in networks with high-degree hubs or power-law degree
distributions, which includes many important real-world ex-
amples. We propose a new spectral centrality measure based
on the nonbacktracking matrix which rectifies the problem,
giving values similar to the standard eigenvector centrality in
cases where the latter is well behaved but avoiding localization
in cases where the standard measure fails. The new measure
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is found to give significant decreases in localization on both
synthetic and real-world networks. Moreover, the new measure
can be calculated almost as quickly as the standard one and
hence is practical for the analysis of very large networks of the
kind common in recent studies.

The nonbacktracking centrality is not the only possible
solution to the problem of localization. For example, in studies
of other forms of localization in networks it has been found
effective to introduce a regularizing “teleportation” term into
the adjacency and similar matrices, i.e., to add a small amount
to every matrix element as if there were a weak edge between
every pair of vertices [26,27]. This strategy is reminiscent of
Google’s PageRank centrality measure [28], a popular variant
of eigenvector centrality that includes such a teleportation
term, and recent empirical studies suggest that PageRank

may be relatively immune to localization [29]. It would be
a worthwhile topic for future research to develop a theory
similar to that presented here to describe localization (or lack
of it) in PageRank and related measures.
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