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Simple model for multiple-choice collective decision making
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We describe a simple model of heterogeneous, interacting agents making decisions between n � 2 discrete
choices. For a special class of interactions, our model is the mean field description of random field Potts-like
models and is effectively solved by finding the extrema of the average energy E per agent. In these cases,
by studying the propagation of decision changes via avalanches, we argue that macroscopic dynamics is well
captured by a gradient flow along E. We focus on the permutation symmetric case, where all n choices are (on
average) the same, and spontaneous symmetry breaking (SSB) arises purely from cooperative social interactions.
As examples, we show that bimodal heterogeneity naturally provides a mechanism for the spontaneous formation
of hierarchies between decisions and that SSB is a preferred instability to discontinuous phase transitions between
two symmetric points. Beyond the mean field limit, exponentially many stable equilibria emerge when we place
this model on a graph of finite mean degree. We conclude with speculation on decision making with persistent
collective oscillations. Throughout the paper, we emphasize analogies between methods of solution to our model
and common intuition from diverse areas of physics, including statistical physics and electromagnetism.
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I. INTRODUCTION

People have long imagined connections between social
decision making problems and disordered spin systems in
physics [1–4]. Many models [4–13] have showed that the most
basic binary decision making problems exhibit a variety of
interesting behaviors, such as phase transitions and “glassy”
behavior, with emphasis often placed on the random field Ising
model [4,6] for its simplicity. One of the long-term goals of
these works is to provide toy models for a variety of social
phenomena that are notoriously challenging to explain using
the traditional language of economics. The most basic example
is the interpretation of market crashes as discontinuous phase
transitions, which naturally arise in spin models placed under
external magnetic fields; the spins represent the agents in
the market, and the external magnetic field represents some
external “market forces” that drive these agents towards a
specific decision.

However, one aspect of decision making which has been
mostly taken for granted is the possibility that there are more
than two choices to make. With few exceptions [14–18],
in general, this possibility has been assumed to be well
approximated by the binary decision making case. Even in
these papers, there is very little analytic development of
a theory of n-ary decision making, as there has been in
the binary decision literature. A first step towards analytic
development of a theory was taken in [19] in a very simple toy
model describing the dynamics of a ranking system, although
only at the macroscopic level; a case with only ranking
preferences considered is given in [18]. There, an interesting
alternative multiple-decision making approach was presented
in a rigorous statistical framework.

In this paper, we write a simple model for decision making
between interacting heterogeneous agents choosing between
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n possible options. The agents are forced to pick exactly
one option, in contrast, e.g., with [14]. We show that for a
wide variety of social interactions, the mean field limit of the
model is equivalent to a generalized class of random field
Potts models. In this case, we argue that essentially all static
and dynamic aspects of the model, at mean field level, can
be understood by determining a mean field energy functional.
This allows us to make strong statements about the resulting
phase diagram and dynamics of the model, under a wide variety
of random fields and initial conditions.

Our paper is organized as follows. In Sec. II, we introduce
our decision model from the viewpoint of local utility maxi-
mization, under the assumption that the utilities are dependent
on both an “intrinsic” component and a “social” component
dependent on the actions of others. From that we describe a
generic framework for understanding equilibria in terms of
an energy function E. Section III rederives a large class of
these models from the microscopic Hamiltonian approach of
statistical physics. To make our results more concrete, we
present some simple solutions of our model in Sec. IV. In
Sec. V we argue that the dynamics of our model is captured
by a gradient flow on this energy function E, and in Sec. VI
we discuss patterns of spontaneous symmetry breaking (SSB).
In Sec. VII we discuss the emergence of many solutions to
the equations of state beyond the mean field limit and discuss
finite size effects in Sec. VIII. We conclude with a speculative
discussion of a scenario without a globally defined energy that
exhibits persistent oscillations in Sec. IX.

II. THE MODEL

Suppose that we have a collection of N agents, each
represented by nodes α = 1, . . . ,N on a graph. Each agent
has to make a choice between n possible options, and we
call that choice xα ∈ {1, . . . ,n}. For instance, the agents may
represent voters in an election or consumers deciding between
different social media platforms, smart phones, or other sets
of goods belonging to the same niche.
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The key premise in our model is that each agent always
selects the choice he deems to have the highest total utility.
The total utility is the sum of two components: the intrinsic
utility and the social utility. For agent α and choice i, we write

Vα,i = Uα,i + fi

(
qα

1 , . . . ,qα
n

)
, (1)

where Vα,i, Uα,i , and fi respectively represent the total,
intrinsic, and social utilities, and qα

i is the fraction of neighbors
of node α that subscribe to choice i. As in previously proposed
decision making models like [7], the social utility depends only
on the relative number of agents who prefer some choices over
others. For most of this paper, we focus on the mean field limit
where the graph is complete, i.e., where qα

i is independent of
α. Henceforth, we use the vector notation �q = (q1, . . . ,qn),
without the α index.

Of course,

n∑
i=1

qi = 1. (2)

Along with the constraint that qi � 0 for each i, this defines
a space commonly called the (n − 1)-dimensional simplex.1 It
enjoys a large discrete symmetry group called the permutation
group Sn: The space looks identical if we permute the labels i.

The intrinsic utility Uα,i encompasses all heterogeneity
considerations among agents that do not depend on the choices
of other agents, such as price or software reliability. It is
a quenched random variable with cumulative distribution
function (CDF),

Fi(u) ≡ P (Uα,i < u). (3)

We assume that the agents α always choose the option with
the highest total utility:

xα = i if Vα,i > Vα,j for all i �= j. (4)

Since we assume that Vα,i are continuous parameters, almost
surely we never have Vα,i = Vα,j for i �= j , and we neglect
this possibility from here on out. We also assume for this
paper that Vα,i and Vα,j are uncorrelated for each i �= j . In
practice, this may be a bad assumption, but it will allow us
to take advantage of more powerful analytic tools. There are
many other threshold models where agents only change after
pushed past some critical threshold, dependent on the action
of others [7,8,20–22]; see also the fiber bundle model [23,24].
Most of the above works emphasize the possibility that social
interaction can alter the phase diagram, with phase transitions
characterized by avalanches of macroscopically many state
changes; the model we describe exhibits such features, too, as
we rigorously derive.

So far, we have made no assumptions on the forms of the
intrinsic utility CDFs Fi(u), nor those of the social utility
functions fi . Indeed, our model is valid for the most generic
case where these utility functions are nonlinear and different

1This can be thought of as the generalization of the triangle n = 2,
or tetrahedron n = 3.

for each choice. For instance, we can model a situation where
the market consists of both normal goods and luxury goods,
the latter whose utility increases the more expensive and
uncommon it becomes.

We have not included any noise in the model at this point.
As such, we expect this class of models to be a poor description
of, say, stock trades, which can occur on rapid time scales and
are characterized by noisy dynamics. Instead, we expect this
class of models to be better suited for studying decision making
which occurs on longer time scales, say, in the market between
two different types of cars or different neighborhoods to live
in.

In the limit where interactions are negligible, this model
can be used as a “microscopic justification” for classical
economics, as follows. Suppose that a good in a marketplace
is being sold at price p. For simplicity, let us assume that there
are only two choices, and that choice 2 provides no utility:
F2(u) = �(u). We are free to choose2 Uα1 = Uα0 − p, where
Uα0 is the intrinsic utility of the good at price p = 0. If F1(u)
is the CDF of Uα0, then we conclude that the fraction of buyers
(agents in state 1) at price p, the demand curve q1(p), is given
by q1(p) = F0(p). The existence of a single-valued demand
curve is equivalent to the statement that there is an (effective)
description of agents who are noninteracting.

However, as we emphasize repeatedly in this paper,
the presence of social interactions generically destroys this
picture: Demand becomes a multivalued function [10]. In
general, we can obtain the mean field (MF) equilibria �q by
self-consistently solving the equations above. Since Fi(u) ≡
P (Uα,i < u), we have

P (Vα,i < u) = P (Uα,i < u − fi) = Fi(u − fi). (5)

Hence, the MF equilibria can be obtained by integrating over
all possible values u that the most desirable choice could be,
multiplied by the probability that that choice is i and the value
of all other choices is smaller:

qi = P (xα = i)

=
∫

P (u < Vα,i < u + du)
∏
j �=i

P (Vα,j < u)

=
∫

du F ′
i [u − fi(�q)]

∏
j �=i

Fj [u − fj (�q)]

= − ∂

∂fi

∫ ∞

−∞
du

n∏
i=1

Fi[u − fi(�q)]. (6)

The MF approximation becomes exact as N → ∞.
Note that an overall uniform shift in the value of each fi ,

fi → fi + a, does not change our model; only relative social
utilities matter. The MF equilibrium �q can be written in terms

2This is because utility is not well defined: Utility functions u are
equivalent to f (u) if f is monotonically increasing (f ′ > 0).
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of a potential,3

G(�q) ≡
∫ ∞

−∞
du

n∏
i=1

Fi[u − fi(�q)], (7)

via

qi = −∂G

∂fi

. (8)

For generic nonlinear functions �f (�q), the derivative ∂/∂fi may
not be globally defined; see Appendix C.

III. THE HAMILTONIAN APPROACH

Now we (a priori) start from a very different perspective,
motivated from statistical physics. Let us imagine that there
is some global function: the Hamiltonian H , which must be
a local extremum at a stationary point of the dynamics. For a
social system, this is an unjustified assumption. Nonetheless,
we show that we can recover a large class of �f (�q) from this
approach.

A microscopic Hamiltonian that can describe social deci-
sion making is

H = −
∑

i

Uiαziα −
∑

n�2,i1,...,in

A
(n)
i1,...,in

nNn−1
zi1α1 . . . zinαn

, (9)

where the indices α and i refer to the nodes and their internal
states, respectively. ziα = 0 or 1 and satisfies the constraint

n∑
i=1

ziα = 1. (10)

We interpret ziα = 1 as the state where node α is in state i.
The Uiα’s, which are “single particle” energies associated with
node α being in state i, are random variables which are drawn
from the CDF Fi(u), as in the previous section. The notation
has been chosen identically with the previous section because
we shortly show that the Uiα’s are playing an identical role.
For the thermodynamic limit to be well defined, we require
that A(n) are independent of N .

In the case where the only nonvanishing A(n) is A(2), and
A

(2)
ij = Aδij , the Hamiltonian we have written is simply the

random field Potts model [25] on a complete graph. The
statement that our model lives on a complete graph is, for
introductory purposes, simply a complicated way of saying
that there is a contribution to H from every single pair
of agents. Later in the paper we discuss physics on more
complicated graphs, where not all agents interacts with each
other.

We can find local extrema of H by demanding that we find
a solution where there is no single agent α who can lower H

by changing the i for which ziα = 1. A sufficient condition for

3The integral given by Eq. (7) is formally infinite, as
∏

i Fi → 1
for large u, but this infinity can be trivially regulated by replacing the
upper bound in the integral above by R and taking the limit R → ∞.
As only derivatives of G enter the equation for �q, the overall linear
coefficient R in G will be irrelevant for physical calculations.

this is that

ziα = 1 ⇐⇒ − ∂H

∂zjα

maximal for j = i. (11)

If we define, employing a summation convention on the i’s,

H ≡ −
∑
n�2

A
(n)
i1,...,in

n
qi1 . . . qin , (12)

fi ≡ −∂H
∂qi

=
∑
n�2

A
(n)
ij2,...,jn

qj2 . . . qjn
, (13)

then noting that the sum over ziα/N over all agents α tends
to qi in the thermodynamic limit, we obtain that Eq. (11) is
equivalent to

ziα = 1 ⇐⇒ Ujα + fj maximal for j = i. (14)

This precisely corresponds to our defining equation for the
model in the previous section.

From the above equations, it is clear that a positive
(negative) A

(n)
i1,...,in

determines whether the system prefers (does
not prefer) the choices represented by qi1 . . . qin to be realized
simultaneously. For instance, a negative A

(2)
i1i2

implies that a
higher market share for one choice discourages the other
choice from being taken up. In the case of equal i1 and i2,
the sign of A(2) simply determines whether the social utility of
the choice is positive or negative.

We essentially restrict our analysis to the case where all
A

(n)
i1,...,in

> 0 and comment on the opposite case in Appendix C.

A. An energy function

There is a remarkably easy and intuitive way to find the
solutions to the MF equation Eq. (14), given that �f = −∇qH.
To see this, let us recall Eq. (8), which states that �q = −∇f G,
for a scalar function G. Assuming that the matrix ∂fi/∂qj is
invertible everywhere, we can rewrite Eq. (8) as

0 = qi

∂fi

∂qj

+ ∂G

∂qj

= ∂

∂qj

(G + qifi) − δijfi . (15)

Since �f itself is a gradient, we see that the solutions to our MF
equations precisely correspond to the extrema of

E ≡ G + H + qifi = G + H − qi

∂H
∂qi

. (16)

In the subsequent section, we see that E can be physically
interpreted as the microscopic Hamiltonian H averaged over
disorder,

E = 〈H 〉
N

, (17)

up to a possible constant shift, with the averages taken over
the random intrinsic utilities Uiα .

It is tempting to identify the maxima of E with unstable MF
solutions, and the minima of E with stable solutions. We show
later that, up to a subtlety associated with cooperative (fer-
romagnetic) vs antagonistic (antiferromagnetic) interactions,
this is indeed the case. Furthermore, the dynamics will always
drive the system towards stable fixed points.

052804-3



CHING HUA LEE AND ANDREW LUCAS PHYSICAL REVIEW E 90, 052804 (2014)

B. Noise

Noise is an unavoidable feature of any realistic social
decision making process. Noise can take on a variety of forms:
individual uncertainty, noisy stock market dynamics, etc. It is
important to stress, however, that noise is qualitatively different
than the random field disorder Uiα; unlike Uiα , the presence
of noise will tend to drive people between different states over
time.

Since we have a Hamiltonian framework for our model,
there is a natural way that we can state our ignorance about
the true state of the system, and of the noise driving it, by
solving our model at finite temperature T . Mathematically,
this is a statement that we wish to find the maximal entropy
distribution consistent with knowledge of the typical value of
H and thus remain “as uncertain as possible” [26].

As usual, at finite temperature T , the probability of being
in any given state is proportional to e−H/T . Since the change
in the energy due to the change of agent α into state i is given
by Uiα + fi , the probability that a node with given Ui will be
in state i is given at MF level by

P (ziα = 1|Ujα) = e(Ui+fi )/T∑
e(Uj +fj )/T

. (18)

Thus, qi is given by simply averaging the above equation over
disorder. In particular, we write

qi = −∂GT

∂fi

, (19)

where

GT ≡ −T
〈
ln
(∑

e(Ui+fi )/T
)〉

U
, (20)

with 〈· · · 〉U denoting disorder (but not thermal) averages.
The analogy with the function G defined previously is not

accidental:

lim
T →0

GT = −〈max
i

[Ui + fi]
〉
U
. (21)

Taking the derivative of this with respect to fi , we find that
this is simply equal to the probability that Ui + fi is maximal,
which is precisely the fi derivative of our previous G function.
Therefore, up to a (infinite) constant, G = G0. It is now easy
to derive Eq. (17):

〈H 〉
N

= H −
〈∑

Uiα

ziα

N

〉
= H −

∑
qi〈Ui |Ui + fi maximal〉

= H + qifi − 〈max(Ui + fi)〉
= H + G0 + qifi . (22)

We conclude that G0 + qifi can be interpreted as the random-
field-induced potential energy in the effective, disorder-
averaged Hamiltonian (at MF level).

By replacing G with GT , we obtain the free energy per
spin, which should be an extremum in equilibrium at finite
temperature.

IV. SIMPLE EXAMPLES

A. Binary decision models (n = 2)

We first consider the case where each agent decides between
n = 2 options, i.e., between two difficult products, or whether
to buy or not to buy a single product. For simplicity, we use
the latter interpretation below. These models are extensively
studied [4–13].

This potential description also leads to a simpler under-
standing of a similar binary decision model discussed in [11].
It enables one to graphically read off the stability of a fixed
point and, more importantly, generalizes very easily to the case
n > 2, as we discuss in the next section.

1. Homogeneous intrinsic utility

In this simplest scenario, each agent has exactly the same,
i.e., homogeneous intrinsic opinion on the value of the product.
Each buyer will be rewarded with an intrinsic utility of U0, and
each nonbuyer with zero utility. This corresponds to CDFs

F1(u) = �(u − U0), F2(u) = �(u), (23)

where �(u) is the Heaviside function,

�(u) ≡
{

1 u � 0,

0 u < 0.
(24)

Now also suppose that �f = �q, i.e., each agent ascribes a social
utility to each choice proportionally to the fraction of friends
already subscribed to it. With �q = (q1,q2) = (q,1 − q), the
options of buying or not buying will have total utilities of

V1 = U0 + q, V2 = 1 − q. (25)

We are now ready to calculate the potential G(q). Substi-
tuting Eqs. (23) into Eq. (6), we obtain

G(q) =
∫

du F1(u − q)F2[u − (1 − q)]

=
∫

du �[u − (q + U0)]�[u − (1 − q)]

= − max(q + U0,1 − q) + const. (26)

The energy is

E(q) = G(q) + H(q) −
2∑

i=1

qi

∂H(q)

∂qi

= − max(q − U0,1 − q) + q2 + (1 − q)2

2
. (27)

By inspection (or from Fig. 1), the local minima of E(q) lie
at q = 0 for U0 < −1, at q = 1 for U0 > 1, and at both q = 0
and q = 1 for |U0| < 1.

This all-or-none behavior is easy to explain: Since every
agent has exactly the same intrinsic preferences and are
exposed to the same q, the fraction of friends buying, they
will definitely gravitate towards the same optimal choice.
For sufficiently small |U0|, the social utility dominates and
both q = 0 and q = 1 states are actually local optima. This
bistability implies that if U0 is time dependent, we can obtain
hysteresis; which of the two equilibria we are at depends on
the previous behavior of U0.
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FIG. 1. (Color online) Plots of E(q) against q for relative intrin-
sic utilities U0 corresponding to (a)–(d) 0, 0.3, 0.7, 1.2 (cases with
negative U0 are related by mirror symmetry). Here a1 − a2 = U0

and b1 = b2 = 1. In each plot are the graphs with T ′ = 1
β ′ =

0, 0.025, 0.08, and 0.2 (blue, brown, purple, green, respectively),
appearing from top to bottom. The red balls indicate local minima in
the physically allowed white region. As U0 is increased, the minima
with larger q (towards the right) become more favored, until only one
minimum eventually remains. In general, a larger T ′ ∝ σ smooths
out potential barriers, thereby undermining social effects. Only when
T ′ < 1

6 does bistability become a possibility. The curves for T = 0
reduce to those describing the homogeneous case in previous section,
where an all-or-none situation prevails.

2. Variable social and intrinsic utilities

Here, we consider a more general scenario with n = 2
choices by introducing a spread to the intrinsic utility distribu-
tion. We assume that the utility distribution is unimodal; i.e.,
F ′(u) has a single maximum. Intuitively, we imagine that all
agents have an identical utility U0 (as before) for choice 1, up
to random noise which is equally likely to increase or decrease
utility. For qualitative purposes, it suffices to replace the �

function in Eq. (23) with a logistic (Fermi-Dirac) distribution:

F ′(u) = β

4
sech2 βu

2
. (28)

This distribution has a variance of (π/3β)2; its CDF is

F (u) = 1

1 + e−βu
(29)

and is useful for analytical studies because an exact expression
exists for its corresponding potential G(�q) for any n (see
Appendix A). Its “effective temperature” T ≡ β−1 plays the
role of heterogeneity in intrinsic utilities, but we stress that
the disorder is not thermal in nature despite the suggestive
notation; disorder is quenched, and all agents have the same
utility for all time.

Also, we stress that while we use intrinsic utilities of the
form Eq. (29) extensively in this work, our model is applicable
to all possible forms of the utility function, including those
with an arbitrary number of peaks or asymmetrical ones.

We may also generalize the social utilities fi to the linear
form

fi = biqi + ai, (30)

where bi represents the strength of the social influence of
choice i and ai a mean offset which can also be absorbed into
the intrinsic utility.

The potential G( �f (q)) can be obtained,

G = −f1e
βf1 − f2e

βf2

eβf1 − eβf2
, (31)

as derived in Appendix A. The energy E(q) has a remarkably
simple expression,

E(q) = G(q) + b1q
2 + b2(1 − q)2

2

= B

(
q2

2
+ q − C

eβ ′(q−C) − 1

)
, (32)

where C = A/B and β ′ = βB, with B = b1 + b2 being the
total marginal social utility and A = b2 + a2 − a1 the effective
intrinsic utility of choice 2 (perhaps representing the cost
of choice 1). Evidently, the fixed points at ∇qE = 0 only
depends on the two external degrees of freedom C and
β ′, representing intrinsic imbalances and effective market
homogeneity, respectively. The positions of market equilibria
depend only on the combination βB.

Since E ∼ q2 for large4 q, there exists either one unique
minimum or two minima and one (unstable) maximum in
between them. In the former case, the market will simply
gravitate towards the potential minimum. In the latter case, the
market will choose the minimum that exists in the same basin
of attraction.

In Fig. 1, we observe how the potential landscape changes
for different T ′ = 1

β ′ as U0 is increased from 0 to 1.2. As
U0 increases, choice 1 becomes intrinsically more favorable,
and the energy landscape tilts in its favor accordingly. The
onset of bistability and hysteresis is set by the competition
between quenched disorder T and social forces B via β ′ =
B/T . While market heterogeneity (quenched disorder) tends
to smooth out the potential landscape, social forces encourage
“market crashes,” where one local minimum disappears and
the state is forced to “roll down” to another nearest one. The
time it takes for the crash to occur decreases as E(q) becomes
steeper and is examined in detail in Sec. V and Appendix C.

It is particularly important to pay attention to the permuta-
tion symmetric case where a2 = a1 and b2 = b1. In this case,
any deviation from the point q = 1/2 represents SSB, where
the agents collectively pick out one choice over the other, even
though both choices have the same intrinsic and social utility
functions. The phenomenon of SSB is further elaborated in
Sec. IV B 1 on permutation symmetric models.

4Note, however, that physically relevant solutions lie within q ∈
[0,1].

052804-5



CHING HUA LEE AND ANDREW LUCAS PHYSICAL REVIEW E 90, 052804 (2014)

0.5 1.0
q

0.4
0.2

0.2
0.4
0.6
0.8
E q

0.5 1.0
q

1

1
2
3

E q

FIG. 2. (Color online) The potential E(q) for the case of a single
logarithmic utility with δ = 10−4, with stable MF solutions indicated
by red balls. (Left) g1 = 1, β = 3, and U0 = 0, − 0.5, − 1, − 1.5
from top to bottom; (right) g1 = 2.5, β = 30, and U0 = 0, − 1,

− 2, − 3 from top to bottom. In both scenarios, we see that the
q → 0 limit is always a local minimum; moreover, it is robust against
the tunings of parameters. This is a consequence of the extreme
cost of having q = 0 market share. Also, there is a local maximum
when f1 = f2, i.e., g1 ln q = U0, although it can smoothed out when
T −1 = β is small. It demarcates two basins of attraction, where either
choice becomes more attractive. For large g1 or β, the social utility
dominates, and we have an all-or-none (q = 0 or 1) scenario.

3. Nonlinear logarithmic utility function

Here we briefly consider the case of a nonlinear utility
function,

f1 = g1 ln(q + δ), f2 = U0, (33)

with g1 a constant. Logarithmic utility functions are commonly
used to represent situations where having a deficiency costs
much more than it pays to have a surplus. In particular,
they are frequently used in economics because they exhibit
“diminishing returns” [27]: df1/dq > 0, but d2f1/dq2 < 0.
U0 represents the fixed utility offset of not buying the product.
Let us suppose that δ � 1. As detailed in Appendix C 2 b, the
contribution from δ can be neglected for small δ, and we have

E(q) ≈ g1q + g1 ln q − U0

(qg1e−U0 )β − 1
, (34)

which is graphically analyzed in Fig. 2.

B. Ternary (n = 3) decision making

In this section we consider examples of our model with
n = 3. Unlike the binary case, this case has not received much
attention in the literature. For simplicity, we assume the social
utilities �f = �q for the remainder of this section. Details on the
case with more general �f (�q) may be found in Appendix D.

Since the configuration simplex is now two-dimensional,
nice analogs from electrostatics can be evoked for more vivid
physical interpretation. This is further explored in Appendix
D2 of the arXiv preprint version.

1. Permutation symmetric case

In the permutation symmetric case,

F1(u) = F2(u) = F3(u) = F (u), (35)

so that the intrinsic and social utilities for all choices
are identically equal. Any deviation from the permutation
symmetric point q = 1/3 will thus represent SSB, where the
agents collectively pick out one choice over the others. SSB
is an extremely important aspect of any model of the decision
making process between interacting agents, especially with an
eye towards financial or economic applications. This is because
this represents a phenomenon entirely beyond the classical
theory of supply and demand. In particular, SSB implies that a
market with identical sellers selling identical goods could still
lead to a distorted marketplace where sellers do not receive
revenues in accordance with the quality of their product, one of
the most foundational principles of competitive market theory.
This point has also been emphasized, e.g., in [4,17].

We show the results in Fig. 3. For easy plotting of our results
in a manifestly permutation symmetric manner, we have used
barycentric coordinates for the simplex, defined by (x,y):

x + iy = q1 + q2e
2πi/3 + q3e

4πi/3. (36)

The simplex 1 = q1 + q2 + q3 corresponds to the region
between the three lines x = −1/2 and (x − 1) = ±√

3y.
If F (u) is given by a logistic distribution, by plotting E on

the simplex, we numerically find a transition between three
different regimes. From Appendix D, for β > 4, the only
minima of E correspond to permutation symmetry broken
points. However, for β just smaller than 4, we find that although
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FIG. 3. (Color online) We show the energy landscape E(x,y) for permutation symmetric ternary logistic F (u) with (a) β = 4.1, (b) β = 3.9,
and (c) β = 3.6. Inset regions in the bottom right correspond to zooming in very close to the permutation symmetric point. Darker shading
corresponds to E smaller and lighter shading to E larger. As β decreases below 4, the three minima merge to form one permutation symmetric
minimum at the center.
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FIG. 4. (Color online) The energy landscape E(x,y) when the average intrinsic utility of choice 1, in the SSB phase, differs by an amount
p. We use β = 4.1 and (a), p = 0.03, (b) p = −0.01, and (c) p = −0.052. Darker shading corresponds to E smaller and lighter shading to E

larger. When there is a small positive “price” p attached to choice 1 in (a), a plateau develops near the q1 corner of the simplex, hence heavily
favoring the other two choices. As the price of choice 1 becomes more negative in (b) and (c), the minimum of E tilts rapidly towards the
choice 1 corner. Note that the requisite value of p to completely shift the phase diagram is extremely tiny when compared to β−1 ≈ 0.25, the
typical spread in intrinsic utilities.

the permutation symmetric point is stable, new minima arise in
E which break permutation symmetry. In particular, we find
(for example) that q1 > q2 = q3; there are three equivalent
points corresponding to which of the three choices is most
popular. Analogously to the ferromagnetic phase of the Ising
model, these should be thought of as the same phase; all
physical properties of these states are identical under the
appropriate exchange of labels 1, 2, and 3. In summary, as
β decreases through 4, there will be a discontinuous phase
transition to a permutation symmetric point. For 4 − β � 0.3,
we find that the only minimum of E on the simplex is the
permutation symmetric point, qi = 1/3.

In Sec. VI B we argue that the SSB transition for n > 2 is
generically discontinuous.

2. More general cases

Let us briefly discuss some cases where permutation
symmetry is broken by the intrinsic utilities Fi’s. One simple
example of this is that we take F1 and shift its argument by

a value p, so that F1(u) = F (u + p). This p may correspond
to some sort of “price,” as we discuss in a later section. In
particular, as p gets larger, then choice 1 becomes less and
less attractive to the agents. As a concrete example, we take
F (u) to be given by the logistic distribution. What we find, as
shown in Fig. 4, is that the agents are rather sensitive to small
changes in p.

Another example is to take all Fi(u) given by the logistic
distribution, but to take β1 �= β2 = β3. In this case, we
numerically find that the most stable fixed points correspond
to the choices i with the smallest value of βi , as shown in
Fig. 5. This can heuristically be explained as follows. Let us
consider the limit where β1 is finite, but β2 = · · · = βn = ∞
(the argument is general for any n � 3). Then we can exactly
compute

G = −Q − ln(1 + eβ(q1−Q))

β
, (37)

where Q ≡ max(q2, . . . ,qn). Assuming permutation sym-
metry among i = 2, . . . ,n, and using that (after taking q
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FIG. 5. (Color online) The energy landscape E(x,y) for logistic decision making with permutation symmetry broken by distinct values
of β for different choices. We take β2 = β3 for simplicity. (a) β1 = 6, β2 = 3.5; (b) β1 = 6, β2 = 2; and (c) β1 = 2, β2 = 5. Darker shading
corresponds to E smaller and lighter shading to E larger. In cases (a) and (b), choice 1 is much less heterogeneous, and we see that the minima
shift towards favoring q2 and q3; the difference between (a) and (b) stems from the fact that the permutation symmetric fixed point for the
binary decision problem between q2 and q3 is unstable in (a) and stable in (b). Plot (c) shows a strong skew of the minimum towards favoring
q1 when choice 1 has more heterogeneity.
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derivatives of G) (n − 1)Q + q1 = 1, we conclude q1 satisfies
the equation

q1 = 1

1 + eβ(1−nq1)/(n−1)
. (38)

The left-hand side of this equation is an increasing function
of q1, but the right-hand side is decreasing; there is a unique
solution. It is easy to check—e.g., by trying q1 = 1/n—that
the solution to this equation has q1 > 1/n. In this simple limit,
we see that heterogeneity in choice 1 has broken permutation
symmetry towards choice 1. This heuristically explains how
a choice with a wide variety of intrinsic utilities may end up
obtaining a larger share of agents, even if the average utility
gained from that choice is no better.

A less rigorous, nonmathematical explanation of this is
that for a choice with a wider variety of intrinsic utilities,
most agents who are “pinned” by their strong opinion to their
favorite choice are in the state with more heterogeneity. This
pinning then encourages more of the remaining agents to also
adopt this choice.

V. STABILITY OF A FIXED POINT

We have seen repeatedly in our plots of the energy E

the disappearance and emergence of new local minima and
maxima as parameters are tuned. This is readily interpreted
as the emergence of new phases. One of the most important
questions is therefore as follows: If we are in a given phase,
can this phase become unstable as we tune a given parameter?
If so, what is the end point of the instability? Where will the
dynamics of opinion changes drive the system? We tackle these
questions in this section, first with macroscopic and then with
microscopic arguments.

For the next two sections, we assume that5 �f = �q. This
simplifies the presentation, although the logic carries through
to the general case.

A. Macroscopic analysis

First, we discuss the properties of fixed points at the
macroscopic level of the effective energy. Consider some fixed
point �q∗. We subsequently show that this fixed point is only
stable if it is a local minimum of the energy E. For now, let
us explore macroscopic consequences. Taylor expanding the
energy around �q∗: �q = �q∗ + δ�q,

E ≈ E(�q∗) + 1

2

∑
i

δq2
i −

∑
i,j

1

2
αij δqiδqj + O(δq3), (39)

where we have defined

αij ≡ − ∂2G

∂qi∂qj

. (40)

Using the definition of G, we find that αij < 0 if i �= j .6 If
we evaluate the matrix αij at an extremum of the energy, then

5This is equivalent to assuming that we are studying the ferromag-
netic random field Potts model.

6This follows from the positivity of Fi and F ′
i .

the constraint that dynamics are constrained to the simplex
implies that

n∑
i=1

αij = 0, (41)

which also gives us αii > 0. Note that αij is a symmetric matrix
whose eigenvalues are, therefore, all real.

If we consider the dynamics of our system in real time, the
simplest possible guess is that the dynamics are governed by
relaxation to the “ideal” value of �q, −∂G/∂fi [see Eq. (8)];7

denoting q̇i ≡ dqi/dt ,

q̇i = −∂G

∂fi

− qi. (42)

This differential equation is more carefully justified in
Sec. V C. With �f = �q here, we can also rewrite this as

q̇i = − ∂E

∂qi

. (43)

In this special case of interactions, we see that the dynamics can
be written as a gradient flow, whereby the system relaxes to a
local minimum of the energy. This is analogous to Allen-Cahn
relaxational dynamics [28].

We argue in the next section that the gradient flow behavior
is indeed sensible from a microscopic perspective; in Appendix
C, we also show that gradient flow dynamics also holds for
more general �f (�q), but in a different “coordinate system” �q →
�γ (�q), with Eq. (43) replaced with Eq. (C3).

Assuming Eq. (43) and �f = �q, if we linearize the energy
near a fixed point, we find that

δq̇i = αij δqj − δqi . (44)

Evidently, if the eigenvalues of αij are all smaller than 1, the
fixed point is stable, and if any eigenvalue is larger than 1,
the fixed point is unstable. Near a phase transition, when an
eigenvalue of αij tends to 1, the dynamics will experience
critical slowing down, as per usual.

We can also view the gradient flow in Eq. (43) as analogous
to the motion of a massless, positively charged particle in a
viscous medium due to the “electric potential” E. This electric
potential can be visualized as arising from a background charge
density ρ, obtained via Poisson’s equation,

− ρ = ∇2E = n +
∫

du

n∑
i=1

F ′′
i (u − qi)

∏
j �=i

Fj (u − qj )

= n −
∑

i

αii . (45)

We see there is a uniform, constant contribution to ρ, arising
from the contribution H + �q · �f , and a variable contribution
to G. In particular, it is readily seen from Eq. (45) that the
contribution to ρ from G can be interpreted as a weighted
density of the likelihood that agents are about to switch their
state.

7Note that the appropriate units of time are undetermined. We have
chosen to scale the units of time so that the overall coefficient on the
right-hand side is 1.
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Since αii � 0 for any i, the contribution to the charge
density from G is always opposite to the constant negative
background charge. The competition between positive and
negative charge densities therefore leads to the shape of E.
One implication of this is that as β → ∞, G( �f (�q)) becomes
sharper [Eq. (A4)] and pushes the minima of E away from the
center of the simplex. In other words, a more homogeneous
intrinsic utility favors more strongly distorted outcomes, in
agreement with the intuition that more homogeneous agents
are more susceptible to social influence.

B. Avalanches and a microscopic perspective on stability

In order to justify the assertions above, we now discuss the
dynamics of avalanches. By avalanche, we mean the following.
Suppose that a single agent changes his state. Subsequently,
the values of Ui + fi change for the other nodes, and therefore
other nodes may also change their state. This leads to a cascade
of state changes, which we call an avalanche. We stress that
the calculation below requires the assumption that, before the
first agent changed his state, the system was at a fixed point.
This calculation is a generalization of similar results in the
n = 2 case in [11] (see Appendix E) and is quite similar to
work done on the fiber bundle model [24].

Let us compute the probability that any given agent switches
from state i to state j , given that we alter the probability
distribution from qi to qi + δi :

P (i→j ) =
∫ n∏

i=1

duiF
′
i (ui)

∏
k �=i

�(ui + qi − uk − qk)

×
∏
l �=j

�(uj + qj + δj − ul − ql − δl)

=
∫ ∞

−∞
duiF

′
i (ui)

∫ ui+qi−qj

ui+qi−qj −max(0,δj −δi )
dujF

′
j (uj )

×
∏
k �=i,j

Fk[min(ui + qi,uj + qj + δj − δk) − qk].

(46)

The first line in this expression is simply the statement that
Ui + qi is maximal before the change in the probability
distribution, and Uj + qj + δqj is maximal after the change. In
the second line, we combined pairs of Heaviside � functions
involving uk and integrated over uk; we also noted that the
presence of a pair of � functions involving ui − uj allows us
to perform the uj integral as well. Note that P (i → j ) > 0 if
and only if δj > δi .

Suppose further that only a finite number of agents change
their state during the entire avalanche. In this case, we can
do a Taylor expansion of Eq. (46). In particular, if we are
doing a Taylor expansion around �δ = �0, then the only possible
contribution at first order comes from the Taylor expansion
of the lower integrand on uj ; at leading order, the upper and
lower bound are equal:

P (i → j ) ≈
∫ ∞

−∞
duiF

′
i (ui)( − max(0,δj − δi))

×
⎡
⎣F ′

j (u)
∏
k �=i,j

Fk(u)

⎤
⎦

u=ui+qi−qj

. (47)

Using the definition of αij we conclude

P (i → j ) ≈ (−αij ) max(0,δj − δi), (48)

where we have used the definition of αij as a second derivative
of G and the fact that the integrand may be evaluated at �δ = �0
to obtain this answer. Pleasingly, we see that αij admits a
microscopic interpretation as the likelihood of state changes
during an avalanche.

Given this linearized approximation near a fixed point, let
us study the dynamics of avalanches. This is similar to the
theory of multitype branching processes [29], though with
some important differences beyond first moments. We work at
a series of discrete time steps t = 0,1,2, . . . and denote with
Zt

i the change in the number of agents who are in state i during
time step t . Note that

n∑
i=1

Zt
i = 0, (49)

and so Zt
i can be negative. We can write

Zt
i =

∑
j �=i

(
Wt

ji − Wt
ij

)
, (50)

where Wt
ij is the number of nodes which will flip from i to j

during time step t . Based on the independence of the utilities
of each node, we find that, defining

Y t
ij ≡ max

(
0,Zt

j − Zt
i

)
, (51)

P (Wt+1
ij = k) ≈

(
N

k

)(
|αij |

Y t
ij

N

)k(
1 − |αij |

Y t
ij

N

)N−k

≈ (|αij |Y t
ij )k

k!
e−|αij |Y t

ij . (52)

The distribution of Wt+1
ij is thus Poisson with mean |αij |Y t

ij .
Suppose that −Z0

i = Z0
j = 1 (i.e., the avalanche begins by

a single node flipping from i to j ). We obtain that〈
Zt+1

i

∣∣t 〉 = ∑
j �=i

〈
Wt+1

ji − Wt+1
ij

∣∣t 〉

= −
∑
j �=i

αij

(
Zt

i − Zt
j

) =
n∑

j=1

αijZ
t
j , (53)

where 〈· · · |t〉 means expectation values conditioned on the
information of all state changes up to time t . We only have to
consider state changes that occurred at time step t to compute
Zt+1

i because of the linearity of Eq. (48); only events that
happen in the previous time step can lead to a change that would
not have occurred previously. In the last step, we employed
Eq. (41). We arrive at the nice result〈

Zt
i

〉 = (αt )ikZ
0
k , (54)

where αt is the t th power of the matrix α. In retrospect, we
do not really need to know the Poisson statistics of Wt

ij to
determine Eqs. (53) and (54). They also follow from the fact
that this stochastic process is Markovian (the statistics at time
t + 1 only depend on the value at time t).

If the largest eigenvalue of α is smaller than 1, the avalanche
almost surely has finite size. The total change Xi in the number
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of agents in state i, given by

Xi =
∞∑
t=0

Zt
i , (55)

has expected value

〈Xi〉 = (1 − α)−1
ik Z0

k . (56)

This expression will be divergent as soon as the first eigenvalue
of 1 − α tends to 0. Such a divergence corresponds to the onset
of instability.

C. Real time dynamics

There is a natural alteration of the microscopic dynamics
described above which possesses a simple continuum limit.
Let us consider a given agent α. Suppose that α’s preferred
state is j , but xα(t) = i. Then we assume that in a discrete
time step of size �τ , the probability of α transferring from i

to j is given by �τ . If �τ = 1, then we recover the dynamical
rules of the previous section. If �τ < 1, then

P [xα(t + �τ ) = j ] =
{

1 xα(t) = j,

�τ xα(t) �= j,
(57a)

P [xα(t + �τ ) = i �= j ] =
{

1 − �τ xα(t) = i,

0 xα(t) �= i.
(57b)

In the limit �τ → 0, we may treat t as a continuous
variable, and these update rules reduce to the differential
equation

d

dt
P (xα = i) = δij − P (xα = i). (58)

Averaging over all nodes α, Eq. (58) becomes

q̇i = P (i optimal) − qi, (59)

which is simply Eq. (42).

VI. PERMUTATION SYMMETRIC MODELS

In this section, we perform a more detailed study on
permutation symmetric models, which correspond to

Fi(u) ≡ F (u) (60)

for each i. These are the simplest models to analyze, and they
turn out to be interesting in their own right. It is straightforward
to see that the permutation group Sn, whose action interchanges
the labels on qi , is a symmetry of the energy E. The most
obvious question then becomes the following: Under what
conditions (and to what subgroups) does the permutation
symmetry spontaneously break. Correspondingly, when will
interacting agents spontaneously begin to prefer certain
choices over others, despite the fact that they are all inherently
the same?8 This is the main theme of this section. Although a

8Reference [17] referred to this phenomenon as “unpredictability.”
Although the state which the system spontaneously picks cannot be
predicted, “physical properties” of the resulting state can be. As an
analogy, the Ising model on the square lattice undergoes a phase
transition at low temperatures: The magnetization is spontaneously

real world market may not have permutation symmetry, these
models serve as solvable toy models where we may disentangle
the effects of intrinsic heterogeneity between choices and the
effects of social interactions. Given that experiments [17]
suggest the latter is relevant in real world decision making,
this is a natural question to study.

A. Stability of the permutation symmetric fixed point

Directly analyzing the stability of the permutation symmet-
ric fixed point is straightforward, and so we begin here. By
permutation symmetry, αij must be of the form

αij = a + bδij (61)

for constants a and b. Using Eq. (41) we find that

an + b = 0. (62)

We also know that the dynamics is constrained to the simplex,
which means that we only need to consider eigenvectors δ�q
for which δq1 + · · · + δqn = 0. Since the n − 1 eigenvectors
which satisfy this constraint have eigenvalue b, we conclude
that the stability of the fixed point is controlled entirely by this
one eigenvalue. We can compute b by computing a diagonal
element of α:

α11 = a + b = n − 1

n
b. (63)

If b < 1, the permutation symmetric point is stable; if b > 1, it
is unstable, and if b = 1, higher order corrections are required.

B. Landau theory

Given an understanding of the stability of a permutation
symmetric point, let us now return to a statement we claimed
earlier; it is nongeneric for a permutation symmetry breaking
phase transition to be continuous. We now sketch out why this
is so, leaving details to Appendix F.

Near a permutation symmetric point, if we had a continuous
phase transition, then we can expand out the energy E as a
Taylor series in δqi = qi − 1/n:

E ≈ −ζ

n∑
i=1

δq2
i − ξ

n∑
i=1

δq3
i + ω

n∑
i=1

δq4
i + ψ

(
n∑

i=1

δq2
i

)2

+μ

n∑
i=1

δqi . (64)

As we explain in Appendix F, this is the most general form
of E(δ�q) consistent with permutation symmetry. The final μ

term serves as a Lagrange multiplier, enforcing that we are on
the simplex. When ζ < 0, the permutation symmetric phase is
stable; when ζ > 0, it is unstable. For the �f = �q model, we
prove ξ > 0 in Appendix F. A thorough analysis there reveals
that for |ξ | > 0 and ζ → 0, the minima of E occur when
δq1 = · · · δqp �= δqp+1 = · · · = δqn (up to the action of Sn)
and that δq1 is finite even as ζ → 0. This demonstrates that
within Landau theory, the phase transition is discontinuous

either up or down. Nonetheless, the physical properties of the magnet
are identical for each phase. Decision making where the phase
diagram is unpredictable is described in [12].
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as long as ξ �= 0 (setting ξ = 0 requires fine tuning one
parameter). This result is not particularly strange; it is well
known that the ferromagnetic (nonrandom field) Potts model
[30,31] has a discontinuous phase transition for n > 2 at MF
level; here we see that it holds at zero temperature with random
fields, and with a very general class of interactions. Thus,
we see from simple symmetry-based arguments that nearly
every symmetry-breaking phase transition in the n > 2 models
should be discontinuous. This has important consequences
for economics; for example, without a large amount of
heterogeneity in intrinsic utilities (relative to social utilities),
nearly every phase transition will be discontinuous, suggesting
the prevalence of market crashes.

C. Unimodal distributions

It is of interest to us to analyze the symmetry of the global
minima of E when the permutation symmetric fixed point is
unstable. Consider the simple case where F (u) describes a
“unimodal” distribution which is (roughly speaking) clustered
around a single point. Prototypical examples are the uniform
distribution, the logistic distribution Eq. (A2), or a Gaussian
distribution F (u) = [1 + erf(u/σ )]/2.

We have already described in detail the energy landscape
of the logistic ternary decision model in a previous section.
In this model, we found that the permutation symmetry group
was broken from S3 to S2; i.e., we picked a preferred choice
(e.g., q∗

1 > q∗
2 = q∗

3 ).
It is qualitatively easy to understand why this should be the

case with the following simple argument: suppose that there is
no heterogeneity in the quenched disorder (intrinsic utility):

F (u) = �(u) =
{

1 u � 0,

0 u < 0.
(65)

This corresponds to the limit β → ∞, in our logistic model.
Then, using δqi ≡ qi − 1/n, let us evaluate the energy E

constrained to the space

n∑
i=1

δq2
i = const. (66)

Remember that the constraint δq1 + · · · + δqn = 0 still ap-
plies. The quadratic term in E is clearly a constant on the
sphere, and so the only quantity of interest is G, which can be
easily evaluated:

G(δq1, . . . ,δqn) = − max(δq1, . . . ,δqn). (67)

We see, therefore, that for any fixed distance from the
permutation symmetric fixed point, the minima of G (and thus
of E) are at points where (without loss of generality)

ε1 = −(n − 1)εi, (i = 2, . . . ,n). (68)

This corresponds to SSB to the subgroup Sn−1 ⊂ Sn, where
exactly one choice becomes preferential over the others. In this
deterministic model, one can, in fact, check that the minima
of E occur precisely when q1 = 1.

The role of disorder in F (u) is to push (in many cases) q1

to a slightly smaller value. Of course, in some cases, we have
seen that disorder is strong enough that q1 is pushed all the
way to the permutation symmetric point: q1 = 1/n. However,

if all choices are drawn from unimodal distributions, then our
numerical analyses suggest, though, that no further symmetry
breakings are possible; only one choice becomes more favored
over the others. For a rigorous analysis in the large β limit of
logistic models, see Appendix G.

D. Bimodal distributions

A more interesting case to consider is a bimodal distribu-
tion, where there are two sharp peaks in F (u). Curious phase
diagrams are known to arise in “O(n)” spin models (which do
not have discrete choices) subject to bimodal random fields
in certain directions [32]. We see that rich behavior can arise
here as well.

The simplest example of this is to take

F (u) = p�(u) + (1 − p)�(u − u0). (69)

We can think about this intuitively as follows: For each choice,
one dislikes it with probability p and likes it with probability
1 − p.

Without loss of generality, we set q1 > q2 > · · · � qn. Then
we can compute G very straightforwardly:

G =
∫ R

−R

du
∏

F (u − qi) =
∫ R

q1

du
∏

F (u − qi). (70)

The coefficient R here is a regulator and will not affect the
answer. Let us suppose that qm+1 = 0, but q1 > q2 > · · · >

qm > 0. Note that this requires u0 < q1 � 1. Then the integral
is easy to compute:

G = pm(qm + u0 − q1) + pm−1(qm−1 − qm)

+ · · · + p(q1 − q2) + R − q1. (71)

From this equation and Eq. (8) we can straightforwardly
deduce that

q1 = 1 − p + pm, (72a)

qi = pi−1(1 − p) for 1 < i � m. (72b)

Note that for this solution to be allowed we require that
qm + u0 � q1 or

pm � u0 − 1 + p � 2pm − pm−1. (73)

There is a very simple way of understanding Eq. (72). If we
like the most popular choice (probability 1 − p), we certainly
go with that; if we do not, we ask if we prefer the next one
[probability p(1 − p)], etc. Finally, if we dislike all of the m

choices which are represented at MF level, we simply go with
the most popular choice, as we dislike them all.

Let us suppose that this condition is obeyed. Then, using
that, within a local patch, anywhere on the simplex the energy
function E is a quadratic polynomial of the qi’s, the value of
the total energy E on a solution with symmetry breaking as
above is

Em = pmu0 − 1

2

[
(1 − p + pm)2 + (1 − p)2

m−1∑
k=1

p2k

]

= pmu0 − 1

2

[
(1 − p + pm)2 + p2(1−p2m−2)(1 − p)

1+p

]
.

(74)
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FIG. 6. (Color online) An example of SSB and hierarchy formation using F (u) given by Eq. (76), with p = 0.5, u0 = 0.73, and (a) β = 3
and S3 symmetry at the global minimum, (b) β = 8 and S2 symmetry at the global minima, and (c) β = 50 with no symmetry at the global
minima. Decreasing heterogeneity leads to further breaking of permutation symmetry. We show contour plots of E(x,y), with (x,y) a barycentric
representation of the simplex; darker shades correspond to smaller values of E, and lighter shades to larger values of E.

We then note that

Em−1 − Em = (u0 − 1 + p)pm−1(1 − p) − p2m−1(1 − p)

= pm−1(1 − p)(u0 − q1,m) < 0. (75)

We conclude that Em−1 > Em, and thus higher levels of SSB
are always “more stable.” We have to be slightly careful
about discussing global stability based solely on energetic
considerations, as generically in a social model there is no
reason that dynamics have to favor lower energy minima
over others [12], but this is certainly suggestive that strongly
permutation symmetry broken states are the end point of
dynamics. A more thorough analysis would compute the αij

matrix at each permutation symmetry broken point, but this is
cumbersome and we do not do it here.

Finally, we note that Eq. (73) requires increasingly fine-
tuned u0 and p to break to smaller subgroups of Sn. However,
the formation of a hierarchy with Sn broken at least twice does
not require particularly strong tuning. One can also smooth
out the bimodal distribution, e.g., by replacing step functions
with logistic functions:

F (u) = p

1 + e−β(u−u0)
+ 1 − p

1 + e−βu
. (76)

Repeated SSB and the formation of hierarchies is still possible,
as we show in Fig. 6. In fact, by increasing the parameter β, we
find a series of transitions at which the permutation symmetry
breaks further and further (at the global minimum of E).
We expect that a similar phenomenon of repeated symmetry
breaking as β increases will happen for n > 3.

E. An opt-out option

In this section, we suggest a way of using our decision
model to model the behavior of markets where a “no buy”
option is allowed. Since we still have a Sn−1 symmetry,
we can do this by letting choices 1, . . . ,n − 1 refer to
undifferentiated sellers which an individual is buying a product
from. Alternatively, these choices could be n − 1 identical (on
average) products, but which are distinguishable to individual
consumers. We let the final “choice” n correspond to the
possibility that a buyer has opted out.

We assume that the no buy choice has a fixed utility,

Fn(u) = �(u) (77)

and

fn = 0. (78)

For notational ease, let m = n − 1. Note that we have used our
freedom to shift the overall additive constant in social utility
fi to set the utility of not buying to be 0.

Of course, we want to include some aspect of “pricing” in
our model. We achieve this by heuristically defining �f as (for
the remainder of this section, the vector index is only over
indices 1 to m − 1)

�f = �q − �p, (79)

where �p is a “price” vector. Formally, at this point it only
corresponds to some external “driving” of the system, which
we associate with changes in the prices of various sellers.

The energy to be minimized is

E = 1

2

m∑
i=1

q2
i + G(�q − �p), (80)

where the form of the G function is

G =
∫

du�(u)
m∏

i=1

F (u − qi + pi)

=
∫ ∞

0
du

m∏
i=1

F (u − qi + pi), (81)

where, again, a simple regularization of G is required. Note
that G is independent of qn. We define αij similarly as before,
but we usually neglect αin (this drops the constraint Eq. (41),
when the sum is restricted to i = 1, . . . ,m).

As a simple example, we look at permutation sym-
metric fixed points with Sm symmetry, so that all
qi = q and all pi = p for i = 1, . . . ,m. This corresponds to
solutions which satisfy

q =
∫ ∞

0
du

1

m

d

du
[F (u − q + p)]m = 1 − F (p − q)m

m
.

(82)
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Symmetry strongly constrains the form of α at such a
fixed point: Just as before, we have αij = a + bδij , but now
neglecting the n index there is no constraint relating a to b.
There are two eigenvalues of this matrix on the simplex now:
The eigenvalue a corresponds to the scenario where buyers
simply shuffle between choices, but none enter or leave the
market, and corresponds to perturbations with ε1 + · · · + εm =
0. The eigenvalue b + na corresponds to retaining permutation
symmetry (ε1 = · · · = εm) but having agents leave or enter the
marketplace. Since

a = −
∫ ∞

0
duF ′(u − q + p)2F (u − q + p)m−2 < 0, (83)

we conclude that SSB is always the dominant instability of a
permutation symmetric fixed point.

If we use the logistic distribution for F (u), equilibria are
found by solving

q = 1

m

[
1 − 1

(1 + e−β(p−q))m

]
. (84)

Bistability is only possible if the q derivative on the right-hand
side takes values larger than 1, which occurs if there is a q

such that

1 < F ′(p − q)F (p − q)m−1. (85)

We show an explicit example with m = 2 and SSB in Fig. 7.
Let us briefly discuss an empirical application of the above

observation. Suppose one has a market with distinct products
(or sellers), but with strong regulation, so that the price of the
market is fixed. This model predicts that if the permutation
symmetric point ever becomes unstable, as the regulator lowers
the price in the market, interactions will drive the system to
a symmetry broken point. Although, in principle, this should
be readily observable, in practice the permutation symmetric
assumption is likely too strong. It may be the case, however,
that this heuristic observation of regulated markets being more
unstable to herding than symmetry-preserving crashes may be
observable given aggregated economic data.

VII. COMPLEXITY ON GRAPHS

In this section, we discuss the emergence of complexity—an
exponential number of solutions to the equations of state—
when this decision model describes agents interacting via a
graph. Statistical physics on random graphs has played an
important role in the development of interdisciplinary physics,
due to (reasonable) hope that the physics of models on random
graphs captures key insight into the behavior of realistic
social systems on realistic social networks [33,34]. References
[11,12] discussed aspects of complexity for binary decision
models on graphs, so we conclude with a brief, analogous
discussion for n > 2.

It is straightforward to extend our model to allow for
decision making on graphs. Let us consider a graph G =
(V,E), with V the vertex set (we label vertices u,v, . . .) and
E the edge set, consisting of undirected, unweighted edges
between two nodes. The edge between nodes u and v is
denoted with (uv). The degree of node v, or the number of
edges connecting to node v, is a positive integer kv; we denote
with 〈k〉 the average number of edges per node. As usual, we
consider a “random graph” limit where the number of nodes
tends to ∞, but the degree distribution (and thus 〈k〉) is fixed,
and we assume that there are no correlations in the likelihoods
of edges between nodes of different degree. Denote with N

the total number of nodes.
The only change required to our model is as follows: For

each node v, we define �qv to be the probability that a neighbor
of node v is in a given state:

qv,i ≡ P [xu,i = 1 | (uv) ∈ E]. (86)

We then replace Eq. (1) with

Vv,i = Uv,i + fi(�qv). (87)

The MF limit of these equations reduces to the formalism
described above and corresponds to the limit where kv → ∞.
We assume that we are expanding around a stable fixed point of
the MF equations. For the remainder of this section, we work
in the limit where n/kv is small. This allows us to reliably
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FIG. 7. (Color online) An example of “opt out” multiple-choice decision making with m = 2 choices of sellers or products. Note that the
upper right corner has q1 + q2 > 1, which is forbidden by the simplex constraint. We used a logistic distribution for F with β = 4. Displayed are
contour plots of E(q1,q2) with prices p1 = p2 = p [defined in Eq. (79)] for (a) p = 0.4, (b) p = 0.44, (c) p = 0.5; darker shades correspond to
smaller values of E, and lighter shades to larger values of E. As p increases, we can see the phase transition from a SSB phase to a permutation
symmetric phase. This can be understood heuristically: At large p, only the agents with strong preferences for products are in the market, and
there are not enough remaining agents to have comparably large social utilities.
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u vu v

FIG. 8. (Color online) A connected pair of nodes u and v, for
which there is one solution to the equations of state where they are
both in state i and a second solution where they are both in state j .
Colored circles or squares denote nodes in the graph; different colors
or shapes are different states. All other nodes have identical states in
each of these two solutions. In the thermodynamic limit, the presence
of these clusters leads to an exponential number of solutions to the
equations.

do perturbation theory around a MF state, where node v sees
≈kvqi � 1 of its neighbors in state i.9

It is simplest to understand the emergence of complexity
with a simple “thought experiment” [11]. Let us ask for the
probability that there is a pair of nodes u and v, which
are connected, and for which there are two solutions to the
equations of state: one where u and v are both in state i (and
w �= u,v are in some irrelevant states xw) and one where u and
v are both in state j ; but for w �= u,v, the states are unchanged;
see Fig. 8. Using Eq. (48), so long as ku,v � 1, we find that
the probability for this occurring is 4|αij |2/kukv . When n = 2,
that is the end of the story, but for n > 2 it is a bit more subtle.
There is also a possibility that node u or v starts in state k

instead of i or that node u or v starts in state i but ends in state
l. Accounting for these two possibilities as well, one finds the
total probability that there are two solutions to the equations
of state where nodes u and v take on different values in each
solution, but all other nodes take on the same values in both
solutions, is10

P (uv) = 4|αij |2
kukv

+
∑
l �=i,j

2|αij |(|αlj | + |αil|)
kukv

= 2|αij |(|αii | + |αjj |)
kukv

. (88)

Next, let us pick a node v, chosen uniformly at random in the
graph. What is the probability that there exists one solution
to the equations of state where zv,i = 1 and another solution
where zv,j = 1? The answer is given by

P (i,j ) = 2|αij |(αii + αjj )

〈k〉 . (89)

In the macroscopic limit such a change in �q is not noticeable for
a single pair of nodes, but because there is a finite probability
for any given pair of nodes that multiple solutions exist,
there are an exponential number of possible solutions to the

9If this number can be small compared to 1, then random fluctuations
in the states of neighbors become important; see [11].

10The second line follows from the first, using the identities that the
sum of the entries of any row of αij vanishes.

equations of state, and there is a macroscopic spectrum of
allowed values for �q.

Note that when 〈k〉 → ∞, the complexity phenomenon is
not present. This has to happen, because there is no complexity
on a complete graph.

There is a simple mathematical framework called the
Thouless-Anderson-Palmer (TAP) equation [35,36] (related
to a mathematical technique called belief propagation [37])
which allows us to make the simple calculation above
more formal and to include the possibility of clusters with
more than two nodes. In particular, we can consider the
possibility of clusters of arbitrary size. These equations can,
in principle, be exactly treated nonperturbatively when the
graph is approximated to be a tree, as was done in the simple
case n = 2 earlier [11]. Exact solvability is related to a nested
structure of probability measures, which in turn follows from
the fact that there is a unique path between any two nodes on
a tree.

Our strategy for computing the generalization of Eq. (89),
accounting for the possibility of arbitrary sized clusters on
a locally treelike graph, is as follows. Let us define with ξij

the probability, accounting for the possible behavior of other
nodes, that a given node v’s neighbors will flip from i to j ,
given that either one of its neighbors flipped from i to any other
state, or from any other state to j . (In particular, ξij �= αij ,
because it may be possible that a node will only flip when two
of its neighbors have flipped.) Then, by definition,

P (i,j ) = 2|αij |
〈k〉 〈δqv,j−δqv,i〉 = 2|αij |

〈k〉

⎛
⎝∑

l �=i

ξli +
∑
l �=j

ξlj

⎞
⎠ .

(90)

This is our effective belief propagation equation or TAP
equation. The factor of 2 in front accounts for the fact that
we can either start from i and end in state j , or vice versa, just
as before. |αij |/〈k〉 is the coefficient of proportionality in the
probability that node v would flip from i to j , given the value
of δqv,j − δqv,i , calculated under the assumption that node v

flipped from i to j . By definition of ξlm, the expectation value
of δqv,j − δqv,i can be easily written down.

So we have to simply find an expression for ξij .11 To do
this, we use the following recursive equation:

ξij = |αij |
⎛
⎝1 +

∑
l �=i

ξli +
∑
l �=j

ξlj

⎞
⎠ . (91)

The factor of |αij | comes as usual from Eq. (48); the factors
of 1 +∑ ξ come from both the neighbor we engineered to
flip and then the response of all other neighbors.12 It is now

11We cannot directly use Eq. (56), because we must be careful to
count the number of nodes correctly. The subtlety is as follows: In
the computation of Zi

t before, we noted that it was twice as likely as
|αij | for a node to flip aligned with its neighbor i → j .

12Recall the following minor subtlety; this equation relies on the
factorization of the probability measure. This does not happen if
there are any cycles in the graph, because two neighbors of a node
v may feel each other’s influence even if v does not change. The
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straightforward to solve for ξij . Denote the matrix

Mij,kl =
⎧⎨
⎩

(|α|ij )−1 − 2 ij = kl,

−1 ij,kl have one letter in common,
0 otherwise,

(92)
where we consider ij,j i to be the same index. Then it is easy
to see that we simply have to solve the linear algebra problem∑

kl

Mij,klξkl = 1 (93)

to determine ξij , and thus determine P (i,j ). It is not guaranteed
that this equation has a physical solution; this absence may
correspond, e.g., to the fact that the original fixed point was
not stable (and thus clusters trivially percolate through a
finite fraction of the entire graph). In general, the resulting
expression will be quite complicated; in the limit where
|αij | � 1/n, we can approximate that ξij ≈ |αij |, and P (i,j )
is simply given by Eq. (89).

It is particularly simple to solve Eq. (93) in the binary
(n = 2) case; see Appendix E.

VIII. FINITE SIZE EFFECTS

Let us briefly discuss the consequences of finite size effects;
namely, if we only have a finite number of N agents, to what
extent is the phenomenology discussed above altered? This is
important: Any real experiment has finite N . A more detailed
analysis of finite-size effects in the n = 2 case is present in
[11]; here we briefly discuss the extension to n > 2. We now
return to the assumption that the graph is fully connected for
all remaining computations in this paper.

Finite size effects come from fluctuations in the realiza-
tion of the probability distribution P (V1 > u1, . . . ,Vn > un).
These lead to fluctuations in effective free energy G: i.e.,
G → G + �G, with �G the small fluctuations dependent
on the realization of disorder. These fluctuations then induce
fluctuations in �q∗: �q∗ → �q∗ + ��q, with �q∗ the MF result. We
have

�q∗ + ��q = −∂(G + �G)

∂ �q
∣∣∣∣
�q=�q∗+��q

. (94)

At leading (first) order in fluctuations we find

�qi = (1 − α)−1
ij

(
− ∂�G

∂qj

)
�q=�q∗

. (95)

Recall that the function G is chosen so that by construction,
−∂G/∂qi is equal to the probability that any agent prefers
choice i, given the choices �q of all others. Since the intrinsic
utilities Vi,α are independent, identically distributed (i.i.d.)
random variables, we find(

−∂�G

∂qi

)
�q=�q∗

= 1

N

∑
α

xi,α − q∗
i . (96)

with xi,α i.i.d. (in α) random variables, such that P (xi,α = 1) =
q∗

i . This fixes the probability distribution of �qi . From it, we

assumption that our graph is locally treelike allows for factorization
of the measure and thus makes this equation exact.

see that finite size effects are suppressed by a 1
N

factor. For
instance, the covariance matrix is

cov(�qi,�qj ) = 1

N
(1 − α)−1

ik (1 − α)−1
j l Ckl, (97)

where

Ckl = q∗
k δkl − q∗

k q∗
l . (98)

As long as N � 100, it is therefore unlikely that this type
of finite size effect alters our results in any appreciable way,
unless we are close to a phase transition (where an eigenvalue
of α tends to 1).

In addition to finite size effects, there are also finite
network effects (which persist even when N → ∞); these are
consequences of finite 〈k〉. In particular, not every node sees
enough neighbors to effectively be described by MF effects.
The most important change this induces is that the fraction of
nodes in state i that a node with k edges sees—denoted with
qi,k—fluctuates from node to node. In the n = 2 case, these
fluctuations smooth out the energy landscape and suppress
discontinuous phase transitions [11]. We expect this smoothing
phenomenon to carry over to the n > 2 case.

IX. OSCILLATIONS IN COLLECTIVE TERNARY
DECISION MAKING

So far in this paper, we have only discussed the case where
the decision model settles to a stable fixed point. This assumes
that Eq. (8) has a stable solution. However, there are functions
�f (�q) for which there are no stable fixed points. Thus, it may be

the case (as can happen in evolutionary game theory [38]) that
our model describes persistent dynamics. In these cases, we
conclude that an energy E cannot be (globally) well defined, as
otherwise the dynamical evolution of the system Eq. (42) ( �̇q =
−∇f G − �q) necessarily tends towards a (local) minimum of
E. As first order dynamics on the real line must always tend
to a fixed point, we study a model with n = 3, the first case
where persistent dynamics can arise.

A simple example of this is as follows. Let us consider the
logistic distribution Fi(u) = [1 + e−βu]−1. We then choose

f1 = cq2 − q3, (99a)

f2 = cq3 − q1, (99b)

f3 = cq1 − q2, (99c)

with c > 0.13 Numerically, we find that the only fixed point
of Eq. (42) (where q̇i = 0) is qi = 1/3 for all i. We determine
the stability of this fixed point by standard methods [39] and
find that it is unstable as long as

β(1 − c) > 8. (100)

As the dynamics is constrained to the simplex, we conclude
by the Poincaré-Bendixson theorem that the dynamics tends
to a limit cycle if Eq. (100) is satisfied [39]. Note that c < 1 is
required for a limit cycle to exist; this is consistent with similar
results from [38].

13Note that det(∂fi/∂qj ) = 0 at all points for this model, and we
can no longer define any potential E(�q), even locally.
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X. CONCLUSION

In conclusion, we have argued that the random field Potts
model (and a wide variety of generalizations) is a reason-
able model for collective decision making with interacting,
heterogeneous agents. At the level of individual agents, the
decision making process can be interpreted as a maximization
of the sum of intrinsic and social utilities. Unlike in previous
works, our MF analysis has allowed for a thorough analytic
discussion of the phase diagram of the model under a variety
of types of heterogeneity. We have argued that with multiple
choices, the presence of discontinuous phase transitions—
analogous to jumps and market crashes—is an incredibly
generic phenomenon.

Let us briefly discuss extensions of this work. One in-
teresting thing to do would be to consider the model on a
graph where n � 〈k〉. In this case, we expect more interesting
phases to emerge, where the clusters of nodes α whose states
i are undetermined percolate through the entire graph. This
should correspond with interesting dynamical phenomena and
a possible emergence of glasslike physics. The antiferromag-
netic Potts model (without random fields) is equivalent to the
NP-hard graph coloring problem; the rich phase diagram of this
model [40] may have interesting implications for antagonistic
social decision making. It will also be interesting to consider
adding “supply-side” behavior to this model, as in [10], which
leads to the study of a “competitive” market with interacting
agents. In particular, crucial questions to ask become whether
profit-maximizing suppliers can stabilize markets against
phase transitions or market crashes, the consequences of
interactions on oligopolies, etc. Finally, to the extent to which
it is reasonable to consider social networks as approximately
living in a two-dimensional space [41–43], a natural extension
of our energy function—valid over length scales much larger
than the “lattice spacing” of the graph—to

E =
∫

d2x

[
E(�q(x)) + Dij

2
∇qi(x) · ∇qj (x)

]
(101)

would allow us to study the relaxational dynamics of spatial
patterns using an Allen-Cahn equation [28]. In a SSB phase,
an initial condition where different regions of space are in
different minima of the energy will relax very slowly to the
global minimum [where �q(x) is x independent] due to the slow
dynamics of boundaries between different regions [44–46]; see
[13] for similar ideas.

We are reaching an era where direct experiments [17,47–49]
may be used to probe social behavior or existing data can be
analyzed from the framework of testing statistical mechanics
models [41–43,50–53]. It is thus important to understand what
are reasonable empirical tests for these models. Signatures of
the collective decision making in this paper certainly include
discontinuous jumps and phase transitions and “glassy”
physics associated with a large number of equilibria. These are
both phenomena beyond the classical paradigm of economics;
an observation of the latter in particular would be strongly
suggestive that this type of model is capturing qualitative be-
haviors of social systems. Extending the analysis of avalanches
in this paper and comparing the statistics of avalanches on
random graphs with the distribution of avalanche sizes in

empirical data may also be a fruitful direction.14 However,
these phenomena are generic to disordered spin models and
thus may not be helpful for ruling out any over any others.
Two phenomena which may be more specific to this model are
the relationship between spontaneous “hierarchy” formation
and bimodal “utility” distributions and the fact that markets
always spontaneously break permutation symmetry instead
of jumping between two permutation symmetric points. We
hope that some of these phenomena may be experimentally
confirmed in the near future.
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APPENDIX A: RESULTS FOR THE
LOGISTIC DISTRIBUTION

As introduced in Sec. IV A 2, there exists an ansatz for
single-peaked intrinsic utility functions such that G(�q) and
hence E(�q) have an analytic closed form.

Suppose the peak for choice i is centered around Ui = ai

and that each peak has a spread (variance) of σ 2 that is the
same for all choices. A convenient distribution is

F ′
i (u) = β

4
sech2 β(u − ai)

2
, (A1)

where σ 2 = π2/3β2, with the CDF Fi(u) taking the simple
logistic (or Fermi-Dirac) form

Fi(u) = 1

1 + e−β(u−ai )
, (A2)

G is obtained by substituting Eq. (A2) into Eq. (7),

G = lim
R→∞

∫ R

−∞
du
∏
j

1

1 + eβ(fi+ai−u)

= lim
R→∞

1

β

∫ ∞

e−βR

dz

z

∏
j

1

1 + αjz

= R − 1

β

n∑
i=1

αn−1
i ln αi

n∏
j �=i

1

αi − αj

→ − 1

n − 1

n∑
i=1

∂

∂β

(
αn−1

i

) n∏
j �=i

1

αi − αj

, (A3)

14Anomalous heavy tails in the distribution of avalanche sizes are
possible on graphs with a very heterogeneous degree distribution [11].
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where αi = eβ(fi+ai ). One can interpret eβai as some kind
of market “fugacity” where the offset ai takes the role of
the chemical potential of choice i. In the last line, we have
dropped an irrelevant additive constant R resulting from the
regularization of the divergent integral. Care has to be taken in
handling the upper limit R, since the integral diverges linearly
with R. The third line can be obtained from the second line by
contour integration or partial fraction expansion.

In the large β limit, there is no market heterogeneity and G

reduces to the very simple expression

lim
β→∞

= −max(f1 + a1, . . . ,fn + an). (A4)

A finite β hence simply corresponds to a smoothening of G in
Eq. (A4), despite the seemingly complicated Eq. (A3).

An analytic solution will still exist even if β = βi are not
the same for all Fi . That, however, calls for more than simple
partial fraction expansions and the resultant expression looks
less elegant.

The MF equilibrium values for qk’s are given by

qk = −∂G

∂fk

= − ∂

∂fk

[
−1

β

n∑
i=1

αn−1
i ln αi

n∏
j �= i

1

αi − αj

]

= αk

∂

∂αk

[
n∑

i=1

αn−1
i ln αi

n∏
j �= i

1

αi − αj

]
. (A5)

We can explicitly check that conservation of probability
holds:

n∑
k

qk = �α · ∂G(�α)

∂ �α = ∂G(t �α)

∂t
|t=1

= ∂

∂t

[
G(�α) + ln t

n∑
i

n∏
j �= i

αn−1
i

αi − αj

]
t=1

=
N∑
i

n∏
j �=i

αn−1
i

αi − αj

= 1. (A6)

Also from Eq. (A3),

G(f1 + a,f2 + a, . . .) = G(f1,f2, . . .) + a, (A7)

so that an overall shift in the utility functions has no physical
effect. Also, scalar rescalings of the social utility �f → A �f
can be absorbed in the inverse temperature β. To see how,
denote Gβ and Eβ as the potentials corresponding to inverse
temperature β. Then

Gβ(A �f ) = AGβA( �f ) (A8)

and, if �f = −∇qH (this implies that H → AH under a
rescaling),

Eβ(A �f ) = Gβ(A �f ) +
(
H − �q · ∂H

∂ �q
)

= Gβ(A �f ) + A

(
HA=1 − �q · ∂HA=1

∂ �q
)

= AEβA( �f ). (A9)

Note that Eq. (A9) holds only if β is the same for all
choices.

APPENDIX B: A DETAILED STUDY OF
THE BINARY (n = 2) CASE

We explore the model introduced in Sec. IV A 2. With
the effective intrinsic utilities given by Fi(u) = 1

1+e−β(u−ai ) ,
Eq. (A3) with n = 2 reduces to

G = −f1e
βf1 − f2e

βf2

eβf1 − eβf2

= −f2 + f1 − f2

eβ(f2−f1) − 1
. (B1)

Plugging in the explicit expressions fi = aiqi + bi , where
q1 = q and q2 = 1 − q, we obtain f2 − f1 = A − Bq, where
A = b2 + a2 − a1 and B = b1 + b2. Hence,

E(q) = G(q) + H(q) −
∑
qi

qi

∂H(q)

∂qi

|q1+q2=1

= G(q) + b1q
2 + b2(1 − q)2

2

= Bq − A

eβ(A−Bq) − 1
+ b1 + b2

2
q2 + const.

= B

(
q2

2
+ q − C

eβ ′(q−C) − 1

)
+ const., (B2)

where C = A
B

and β ′ = Bβ.

1. High and low β ′ limit

In the large β ′ limit,

lim
β ′→∞

E(q) = (C − q)θ (q − C) + q2

2
, (B3)

which reduces to the homogeneous case result E(q) =
− max(q − U0,1 − q) + [q2 + (1 − q)2]/2 upon the identifi-
cation C = (1 − U0)/2 and β → +∞.

In the opposite limit of small β ′,

lim
β ′→0

E(q) = B
q2

2
+ 1

β

[
1 − β ′

2
(q − C)

]
+ O(β ′)

= B

2

(
q − 1

2

)2

+ const., (B4)

which suggests that at high levels of disorder or social forces
the system assumes the maximal entropic state q1 = q2 = 1

2 ,
independently of any intrinsic utility.

2. Conditions for bistability

One can obtain necessary conditions for bistability, i.e.,
having two minima by expanding the potential about q = C

to quadratic order: E ≈ ( 1
2 − β ′

12 )(q − 3−β ′C
6−β ′ )2 + const. Since

we require an unstable equilibrium in the middle, 1
2 − β ′

12 < 0
or β ′ = βB > 6. Also, the unstable equilibrium must occur at
0 < q < 1, so β ′C = βA > 3. Both conditions require that
β is sufficiently large, i.e., that the agents are sufficiently
homogeneous in their intrinsic utilities. This is a sensible
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precondition for any sudden market transition (crash). Fur-
thermore, βA must also be large enough, or there will not
be sufficient utility differential between the choices to drive
the crash. Ultimately, the social effect β ′ = βB must also be
large enough to create two basins in the potential so that
a bifurcation can occur. In fact, there must be two basins
of attraction in the limit of large positive social effect, as
evidenced from the discontinuity in the large β ′ limit of E:
(C − q)�(q − C) + q2/2.

Alternatively, one can obtain the conditions for bistability
to arbitrary accuracy through the graphical solution described
in this appendix of the arXiv preprint version.

APPENDIX C: MORE GENERAL GRADIENT FLOW

Gradient flow dynamics exist in the general case where
where �f = −∇qH, i.e., where the MF social utility is
derivable from a microscopic Hamiltonian and ∂fi/∂qj is
either positive definite or negative definite. Intuitively, the
requirement for positive or negative definiteness avoids de-
generate points where ∂fi

∂qj
= 0, which generically imply a

noninjective utility function �f (�q). A unique energy surface
can only be defined if there is a one to one correspondence
between configurations �q and their utilities �f .

For the gradient flow, we consider a change of variables
to �γ (�q), with ∂γi/∂qj positive definite. Multiplying Eq. (42)
with ∂γk/∂qi ,

−∂γk

∂qi

(
∂G

∂fi

− qi

)
= ∂γk

∂qi

q̇i = γ̇k. (C1)

If we choose

∂γk

∂qi

∂γk

∂qj

= ± ∂fi

∂qj

, (C2)

where the ± sign is chosen if ∂fi/∂qj is positive (negative)
definite, some matrix manipulations similar to Eq. (15) reveal
that

γ̇k = ∓ ∂

∂γk

(G + H + qifi) = ∓ ∂E

∂γk

. (C3)

Therefore, we see that gradient flow dynamics is consistent
for rather general class of �f (�q).

1. Linear utilities

One example is the particularly simple case where

�f = A�q, (C4)

with A a matrix. In the main text, we have focused on the case
where A is the identity matrix. Here, we allow the social utility
fi of choice i to depend on the qj for all the various choices
j . Since A must be positive definite, A is symmetric. This
means that the utility functions are reciprocal: If fi depends
on the proportion of agents subscribed to choice j via fi =
λqj + · · · , then fj = λqi + · · · too.

Write

A = STDS, (C5)

with D a diagonal matrix with positive eigenvalues and S an
orthogonal matrix. We then define

�γ = D1/2S �q. (C6)

It is easy to check that this satisfies Eq. (C2). Since H − �qT ·
∂H
∂ �q = 1

2 �qT A�q, we obtain

E( �γ ) = 1

2
| �γ |2 + G( �f ), (C7)

where �f = STD1/2 �γ . We still retain the same quadratic term as
in the �f = �q case, but with a G that depends on an argument
rotated and rescaled by STD1/2. Note that the configuration
space simplex is also rotated and rescaled, but in the opposite
way D1/2S.

2. Nonlinear noncooperative utilities

Nonlinear utility functions allow for varying levels of
marginal utilities at different stages of market domination and
can thus represent real scenarios more realistically. Consider
the simplest case where each fi is an arbitrary monotonic
function of qi only; i.e., the utilities of the different choices
decouple. The matrix ∂fi/∂qj is then diagonal and we can
simply find γ :

γi =
∫ √

dfi

dqi

dqi . (C8)

a. Power-law utilities

As the simplest example, consider the case where

fi = giq
ηi

i . (C9)

Then we find that

E =
∑

i

ηi + 1

4
γ 2

i + G( �f ( �γ )), (C10)

where γi = 2
√

ηigi

ηi+1 q
(ηi+1)/2
i and fi(γi) =

gi(
ηi+1

2
√

ηigi
)2ηi/(ηi+1)γ

2ηi/(ηi+1)
i .

b. Logarithmic utilities

Now consider the logarithmic utility function

fi = gi ln(qi + δ), (C11)

with δ a small regularizing constant. Here the marginal utility
is approximately proportional to the fractional change of the
market share qi . From Eq. (C8), we obtain γi = 2

√
gi(qi + δ).

This leads us to

E =
∑

i

γ 2
i

4
+ (giδ)

(
ln

γ 2
i

4gI

− 1

)
+ G( �f ( �γ ))

=
∑

i

giqi + giδ ln(qi + δ) + G( �f )

≈
∑

i

giqi + G( �f ), (C12)

which bears superficial similarity with the above power-law
case with ηi = 0. In the last line, we have dropped the
logarithmic term, which tends towards zero as δ → 0. This
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energy potential is analyzed graphically in Fig. 2. Notice that in
all of the above cases, E always contain quadratic contributions
in γi .

APPENDIX D: MORE ON THE PERMUTATION
SYMMETRIC LOGISTIC CASE

Here we provide additional details on logistic permutation
symmetric ternary decision making. As in the main text, we
work in barycentric coordinates; we also complexify them as
in Eq. (36) and set z̄ = x − iy. By a brute-force expansion of
Eq. (A3), the energy E is

E ≈
(

1

3
− β

12

)
|z|2 − β2

180
|z|3 cos 3θ + β3

720
|z|4

+ 6 × 10−6β5|z|6 + · · · , (D1)

which is very accurate for β � 1, away from the simplex
corners. Recall that

|z|2 = 3

2

3∑
i=1

(
qi − 1

3

)2

(D2)

denotes the distance from the permutation symmetric fixed
point.

We see that the permutation symmetric point is stable for
β < 4, unstable for β > 4, and marginally unstable (a monkey
saddle) for β = 4. This makes physical sense: For small β

social interactions are suppressed by market heterogeneity
and SSB should not occur. For large β, social interactions
distort individual preferences, and we expect that once one
of three roughly equally intrinsically desirable products have
some lead, it will continue to dominate.

APPENDIX E: AVALANCHES AND
COMPLEXITY WITH n = 2

In a previous paper [11] we used a similar formalism to
derive many results for n = 2 in a simpler way. For pedagogy,
we explain how to use the formalism of this paper to derive
our old results concerning avalanches and the complexity
phenomenon, which are the trickiest to rederive. The key point
to note is that αij is a symmetric 2 × 2 matrix which has two
constraints that the sums on rows and columns vanishes. There
is a unique way to write this matrix,

α =
(

α0/2 −α0/2
−α0/2 α0/2

)
, (E1)

where α0 � 0 is a constant. This looks like a matrix describing
a permutation symmetric model, although the underlying
model needs no such symmetry. The eigenvalues of α are
0 (corresponding to δq1 = δq2) and α0 (corresponding to
δq1 = −δq2).

Let us begin by determining the expected number of agents
who will change state during an avalanche, where a node
changes state from 2 to 1. In this case, denoting with Xi the
expected number of agents who will change, we conclude that
X1 = −X2,(

X1

−X1

)
= (1 − α)−1

(
1

−1

)
= 1

1 − α0

(
1

−1

)
, (E2)

where we exploit the fact that this vector is an eigenvector of
α. Indeed, α0 corresponds to what was simply denoted α in
[11], the probability that a node will flip its binary state in an
avalanche.

It is also worth stressing that there is a dramatic simplifi-
cation in the study of avalanches (and complexity), because
all nodes in an avalanche will flip to the same state. In fact,
Eq. (93) boils down to a simple algebraic equation, as the
vector ξkl has only one component: ξ12. We find that(

2

α0
− 2

)
ξ12 = 1, (E3)

which allows us to conclude, using Eq. (90), that

P (1,2) = α0

〈k〉 × 2ξ12 = α2
0

(1 − α0)〈k〉 , (E4)

which agrees with the result derived from TAP equations in
[11].

APPENDIX F: DETAILS OF THE LANDAU
THEORY CALCULATION

1. Form of E

Our starting point is to verify that Eq. (64) is the most
general possible energy E up to O(δq4

i ) consistent with per-
mutation symmetry and the simplex constraint that

∑
δqi = 0.

A linear term cannot be included in E since the only possible
choice consistent with the symmetry is proportional to the
simplex constraint above. The only quadratic terms allowed are∑

δq2
i and

∑
i �=j δqiδqj ; again, using the simplex constraint,

these turn out to be proportional, so we simply choose the first
one as it is manifestly positive. The three cubic terms are given
by sums over

∑
i δq

3
i ,
∑

j �=i δq
2
i δqj , or

∑
i �=j �=k δqiδqj δqk .

The first two terms are proportional for a reason analogous to
the one given before; we then use the fact that(∑

i

δqi

)3

=
∑

i

δq3
i + 3

∑
j �=i

δq2
i δqj + 6

∑
i �=j �=k

δqiδqj δqk

(F1)
vanishes to conclude that there is only a unique independent
cubic term, which we take to be

∑
i δq

3
i . Arguments identical

to these lead us to conclude that at quartic order, there are two
possible terms, as they are given in Eq. (64).

2. The minima of E

The assumption that there is a continuous phase transition
requires that E be bounded from below. This is satisfied if
ψ > 0 and

ω

ψ
> −n2 − 3n + 3

(n − 1)n
(F2)

or if ψ < 0 and

ω

|ψ | >

{
n(n2 − 1)/(n2 + 3) n odd,
n n even.

(F3)

The most efficient way to find the minima of E is as
follows. Let us begin by fixing δq4, . . . ,δqn. We show that
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given arbitrary δq4, . . . ,δqn, at the local minimum of E among
δq1, . . . ,δq3, two of these must be equal. Since any global
minimum of E must also correspond to a minimum of E when
constrained to this subspace, we conclude that it is impossible
to have any three i,j,k for which δqi �= δqj �= δqk , in the
minimum of Eq. (64).

Let us now prove the claim. The simplex constraint implies
that the sum δq1 + δq2 + δq3 ≡ 3η is also fixed. Let us also
define

δq1 = η + r cos θ, (F4a)

δq2 = η + r cos

(
θ + 2π

3

)
, (F4b)

δq3 = η + r cos

(
θ + 4π

3

)
. (F4c)

Then the Landau energy is, up to a constant factor E0,

E = E0 − 3ζ

2
r2 + 9θ + 18ψ

8
r4 −

(
3ξ

4
− 3ηω

)
r3 cos(3θ ).

(F5)
The minimum of E on this two-dimensional subspace corre-
sponds to a point where two of the 3 ε’s in question equal each
other. Since any global minimum of E must also correspond
to a minimum of E when constrained to this subspace, we
conclude that it is impossible to have any three i,j,k for which
δqi �= δqj �= δqk , in the minimum of Eq. (64).

We conclude that the symmetry of the resulting minimum,
when ζ > 0, must preserve a Sp × Sn−p subgroup of Sn: i.e.,

δqi =
{
ε/p i = 1, . . . ,p,

−ε/(n − p) i = p + 1, . . . ,n.
(F6)

In fact, as the transition is discontinuous (as we see shortly),
to understand the SSB transition it will suffice to study the
location of minima at ζ = 0. In this case, plugging Eq. (F6)
into our energy ansatz, we find

E = −ξε3

[
1

p2
− 1

(n − p)2

]
+ ε4

{
ω

[
1

p3
+ 1

(n − p)3

]

+ψ

(
1

p
+ 1

n − p

)2}
, (F7)

which has a minimum at energy

Ep,n = −33ξ 4

44

[
1

p2
− 1

(n − p)2

]4{
ω

[
1

p3
+ 1

(n − p)3

]

+ψ

(
1

p
+ 1

n − p

)2}−3

. (F8)

The fact that even at ζ = 0, Ep,n < 0 guarantees that the
transition is discontinuous. By differentiating Ep,n with p, we
can find the optimal value of p. It is clear Ep,n = En−p,n; we
focus on p < n/2. We find that Ep,n is decreasing for p < p∗
and increasing for p > p∗, with

p∗ = n

2

(
1 −

√
ω + nψ

3ω + nψ

)
. (F9)

These results are universal and hold for arbitrary permutation
symmetric models which have an energy function E.

3. Cooperative decision making

So far, our discussion has been entirely based on assump-
tions of permutation symmetry alone; we have not added any
specific input about our decision model. Let us consider �f = �q.
Then all cubic and quartic contributions come from derivatives
of G. Define

κijk ≡ ∂3G

∂qi∂qj ∂qk

, κijkl ≡ ∂4G

∂qi∂qj ∂qk∂ql

. (F10)

In what follows, we denote with κ112 the value of any
coefficient of κijk with two indices equal and the third index
different; all other κ coefficients follow analogous definitions.
By positivity of F and F ′, we see that κ123 < 0 and κ1234 > 0.
Using constraints that

∑
k κijk = 0, we conclude that κ112 > 0

and κ111 ∼ −ξ < 0. Analogous to what we found for the
αij matrix, κ111 is not directly proportional to ξ , because
the way we write out G, there are terms proportional to,
e.g., δqiδqj δqk . Accounting for this properly, and using that
2κ123 = −(n − 2)κ112 and κ111 = −(n − 1)κ112, we find that,
for n > 2,

ξ = |κ111|
6

(n − 4)(n − 2) + 3

(n − 1)(n − 2)
> 0. (F11)

A similar calculation for the quartic case reveals that

ψ = κ1122

8
+ 2n − 3

12
κ1234 > 0, (F12a)

ω = n

24
κ1122 − n3 − 2n2 + 3n − 9

72
κ1234. (F12b)

Note that by construction, κ1122,κ1234 > 0. We conclude
that ψ > 0. If θ < 0, Eq. (F9) implies that the smallest SSB
phase has Sn−1 symmetry.15

In general, for unimodal F (u) distributions, we find
numerically ω < 0. We have found distributions for which
ω > 0 [e.g., Eq. (76) with n = 4,5, u0 � 100, β = 1, p = 0.5],
yet we have found in these cases p∗ < 1. In conclusion,
permutation symmetry is generically only broken from Sn to
Sp × Sn−p; we have also only ever found p = 1.

APPENDIX G: PERMUTATION SYMMETRY BREAKING
IN THE LOGISTIC MODEL

In this Appendix, we demonstrate that near the SSB phase
transition, the SSB pattern in logistic models is indeed Sn to
Sn−1. Logistic distributions are toy models of generic unimodal
distributions, as detailed in Appendix A. Since deep in the
SSB phase (β � n + 1) logistic models are well described
by Eq. (A4), this provides a rather complete justification of
our claim that this model never breaks permutation symmetry
beyond Sn−1.

15This constraint can be slightly relaxed. We simply need that p∗ <

2 and that E1,n < E2,n.
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Specifically, we study the shape of the energy E and show
that it cannot develop more than n minima. This will be true
if E has at most three minima in each angular direction when
the simplex is embedded in R2. Due to permutation symmetry,
we can just pick any angular coordinate θ and write E as

E(R,θ ) =
∞∑

k=0

a3k(R) cos(3kθ ), (G1)

where R is proportional to the distance from the axis of rotation
of θ ; see Sec. G 1 of this appendix for details on how to find
R and θ . Due to the D6 (dihedral) symmetry of each two-
dimensional simplex, only Fourier modes of order 3k exist.

Any extremum of E occurs when

∂θE =
∞∑

k=1

3ka3k(R) sin(3kθ ) = 0. (G2)

We wish to find the circumstances under which this equation
cannot have any root other than the six trivial ones at θ = πn/3
for n = 1, . . . ,6. A sufficient condition for this is

∞∑
k=2

k|a3k(R)| <
2

π
a3(R). (G3)

To prove this, observe that, e.g., for |θ | < π/6, we have
| sin(3x)| > (2/π )3|x|, and | sin(3nx)| < 3n|x|; we then split
up the sum Eq. (G2) into the n = 1 piece and the n > 1
piece and apply these bounds to each side. By symmetry, an
analogous argument holds for the other five regions of the
circle 0 � θ < 2π .

Hence, to show that the SSB pattern is Sn → Sn−1, we just
have to show that Eq. (G3) is satisfied within some finite
distance r∗ from the permutation symmetric point; it will
turn out that r∗ ∼ 10/β, which implies that the spontaneously
broken minima favor one choice until β is large [at which point
Eq. (A4) is valid].

The decay rate of ak(R), the Fourier coefficients of E(R,θ ),
is controlled by the complex analytic properties of E(R,z),
where z = eiθ . From Eq. (G17) in Sec. 2 of this appendix, the
coefficients decay like

|a3k(R)|
|a3(k−1)(R)| ∼ |z0|3, (G4)

where z0 is the closest singularity of E(R,z) from the unit circle
such that |z0| < 1. While Eq. (G4) only holds asymptotically
in the large k limit, we numerically find for the logistic models
that it is accurate to ≈15% for |a6|/|a3| and ≈2.5% for |a9|/|a6|
as shown in Fig. 9. Henceforth, we keep track of the largest
discrepancy via the parameter c = |a3||z0|3

|a6| ≈ 1.
E differs from G by a trivial quadratic factor from G,

whose functional form of is given by Eq. (A3) with αk = eβqk ,
β being the market heterogeneity. As explained previously,
singularities only occur when denominator eβqi − eβqj = 0
and qi �= qj . This occurs when

qi(R,θ ) − qj (R,θ ) = 2πip

β
(G5)

0.6 0.7 0.8 0.9 1.0
r

50
100
150
200
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FIG. 9. (Color online) Comparison between the numerically
computed |a3k|/|a3(k+1)| for k = 1 (blue, top), k = 2 (purple, middle),
and its theoretical prediction |z0|−3 (green, bottom), all at β = 4.
We see that the ratios are much greater than 1, which suggests that
higher harmonics leading to additional SSB are strongly suppressed.
The numerically computed ratio of |f3/f6| = c|z0|−3, where c differs
from unity by less than 15%. The ratio between successive harmonics
|f6/f9| (purple) is almost indistinguishable from the complex analytic
result (green).

for i �= j and p a nonzero integer. Expressions for qi and qj

may be found using Eq. (G16). Due to permutation symmetry,
we are free to choose any pair i,j . It turns out that i = n −
1,j = n gives the cleanest computation,

qn−1 − qn = 2(n − 1)

n
xn−1

n−2∏
j=1

Sj

= 2r(n − 1)

n

√
n

2(n − 1)

n−2∏
j=1

sin ϕj

= 2R(n − 1)

n

√
n

2(n − 1)
sin θ

= 2πip

β
, (G6)

where we have used S2
k = 1 − (n − k)−2 from lines 1 to 2,

and identified R sin θ with r
∏n−2

j=1 sin ϕj in line 3 (see Sec. 1
of this Appendix). Analytically continuing θ to z = eiθ , the
above reduces to

−
√

2n

n − 1

2πp

βR
=
(

z − 1

z

)
, (G7)

whose root z0 closest to the unit circle gives us the decay rate
of |ak(R)|.

Combining Eqs. (G4) and (G3), the condition for Sn →
Sn−1 is

2c

π
>

∞∑
k=1

(k + 1)|z0|3k, (G8)

which leads to

|z0|−3 > 1 + π

2c

(
1 +

√
1 + 2c

π

)
≈ 4 + 3(1 − c). (G9)
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With

|z0| =
√

1 + 2n

n − 1

(
πp

βR

)2

−
√

2n

n − 1

πp

βR
, (G10)

we obtain

R

p
= 2π

β

√
2n

n − 1

|z0|
1 − |z0|2

� 8 + 4(c − 1)

β

√
n

n − 1
, (G11)

where we have also used Eq. (G9). This inequality must hold
for all values of p and angular variables, in particular, for p = 1
and R = r when the left-hand side is maximal. As previously
mentioned, the error |c − 1| = ||a3||z0|3/|a6| − 1| ∼ 0.1, so
we conclude that E is broken as Sn → Sn−1 for

r < r∗ ≈ 8

β

√
n

n − 1
. (G12)

For β ∼ O(1), r∗ > 1 and we have Sn → Sn−1 for the entire
configuration space. However, we also know that the same SSB
pattern occurs in the β → ∞.

1. Barycentric coordinates for �q in Rn−1

As we have done before in Eq. (36), we want to find an
embedding of �q onto the (n − 1)-dimensional simplex inRn−1.
The most straightforward way to do this is to write

�x =
n∑

k=1

qk
�bk, (G13)

where �x and �bk are (n − 1)-dimensional (linearly dependent)
basis vectors, normalized so that

�bk · �bj = n

n − 1
δjk − 1

n − 1
. (G14)

Geometrically, the bk’s give the positions of the vertices
of the simplex and are at angle of arccos[−1/(n − 1)]
from one another. We wish to set the point �x = �0 to
correspond to the permutation symmetric point. Intuitively,
the bk’s should point towards the vertices of the simplex
representing the various choices and should be all ion
symmetric point. A basis consistent with all the above

requirements is

�b1 = (1,0, . . . ,0), (G15a)

�b2 = (C1,S1, . . . ,0), (G15b)

�b3 = (C1,S1C2,S1S2, . . . ,0), (G15c)

...

�bn−1 = (C1,S1C2,S1S2C3, . . . ,S1 · · · Sn−2), (G15d)

�bn = (C1,S1C2,S1S2C3, . . . , − S1 · · · Sn−2), (G15e)

with Ck = − 1
n−k

, S2
k + C2

k = 1. Note that, given the simplex
constraint Eq. (2), we can easily check that

�qk = 1

n
+ n − 1

n
�x · �bk (G16)

and that |�x|2 = n
n−1

∑n
k (qk − 1

n
)2.

2. Proof of the decay of Fourier coefficients

Here we prove that the Fourier coefficients ak of a periodic
function E(z), where z = eiθ , decay asymptotically like

|ak| ∼ λk (G17)

up to a proportionality factor, where λ = |z0| < 1, where z0 is
the closest singularity of E(z) from the unit circle with |z|0 <

1. In particular, there is a constant C such that ak < Cλk . This
result is well known [54,55], but here we provide a simpler
derivation suitable for our context. Recall the definition that

E(z) =
∑
k�0

ak

2

(
zk + 1

zk

)
. (G18)

Since E(z) is analytic for |z| > |z0| within the unit circle, the
above series must converge in that region. As Eq. (G17) must
hold for some value of λ for this series to converge at all
inside the unit circle, let us assume this holds and determine
the required value of λ. When λ < |z| < 1,

E(z) <
∑
k�0

|ak|
|z|k < C

∑
k�0

∣∣∣∣λz
∣∣∣∣
k

< ∞. (G19)

In addition, E(z) fails to be analytic at z0, so the above series
must diverge when |z| = λ. Evidently, |z0| = λ. This implies
that |ak| must asymptotically decay as |z0|k , proving Eq. (G17).
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