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Phase transitions in semisupervised clustering of sparse networks
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Predicting labels of nodes in a network, such as community memberships or demographic variables, is an
important problem with applications in social and biological networks. A recently discovered phase transition
puts fundamental limits on the accuracy of these predictions if we have access only to the network topology.
However, if we know the correct labels of some fraction α of the nodes, we can do better. We study the phase
diagram of this semisupervised learning problem for networks generated by the stochastic block model. We use
the cavity method and the associated belief propagation algorithm to study what accuracy can be achieved as a
function of α. For k = 2 groups, we find that the detectability transition disappears for any α > 0, in agreement
with previous work. For larger k where a hard but detectable regime exists, we find that the easy/hard transition
(the point at which efficient algorithms can do better than chance) becomes a line of transitions where the accuracy
jumps discontinuously at a critical value of α. This line ends in a critical point with a second-order transition,
beyond which the accuracy is a continuous function of α. We demonstrate qualitatively similar transitions in two
real-world networks.
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I. INTRODUCTION

Community or module detection, also known as node
clustering, is an important task in the study of biological,
social, and technological networks. Many methods have been
proposed to solve this problem, including spectral clustering
[1–3], modularity optimization [4–7], statistical inference
using generative models, such as the stochastic block model
[8–10], and a wide variety of other methods, e.g., [6,11,12].
See Ref. [13] for a review.

It was shown in Refs. [8,9] that for sparse networks
generated by the stochastic block model [14], there is a
phase transition in community detection. This transition was
initially established using the cavity method, or equivalently by
analyzing the behavior of belief propagation. This was recently
established rigorously in the case of two groups of equal
size [15–17]. In this case, below this transition, no algorithm
can label the nodes better than chance, or even distinguish
the network from an Erdős-Rényi random graph with high
probability. [Note that this detectability transition is distinct
from the resolution limit [18], where community detection
becomes difficult when there are O(

√
n) communities, each

of size O(
√

n); in this setting, there are O(1) groups, each
of size O(n).] In terms of belief propagation, there is a
factorized fixed point where every node is equally likely to
be in every group, and it becomes globally stable at the
transition.

For more than two groups, there is an additional regime
where the factorized fixed point is locally stable, but another,
more accurate, fixed point is locally stable as well. This regime
lies between two spinodal transitions: the easy/hard transition
where the factorized fixed point becomes locally unstable,
so that efficient algorithms can achieve a high accuracy
(also known as the Kesten-Stigum transition or the robust
reconstruction threshold) and the transition where the accurate
fixed point first appears (also known as the reconstruction
threshold). In between these two, there is a first-order phase
transition, where the Bethe free energy of these two fixed

points cross. This is the detectability transition, in the sense
that an algorithm that can search exhaustively for fixed
points—which would take exponential time—would choose
the accurate fixed point above this transition. However, below
this transition there are exponentially many competing fixed
points, each corresponding to a cluster of assignments, and
even an exponential-time algorithm has no way to tell which
is the correct one. (Note that, of these three transitions, the
detectability transition is the only true thermodynamic phase
transition; the others are dynamical.)

In between the first-order phase and easy/hard transitions,
there is a hard but detectable regime where the communities
can be identified in principle; if we could perform an
exhaustive search, we would choose the accurate fixed point
since it has lower free energy. In Bayesian terms, the correct
block model has larger total likelihood than an Erdős-Rényi
graph. However, the accurate fixed point has a very small basin
of attraction, making it exponentially hard to find—unless we
have some additional information.

Here we model this additional information as a so-called
semisupervised learning problem (e.g., Ref. [19]) where we are
given the true labels of some small fraction α of the nodes. This
information shifts the location of these transitions; in essence,
it destabilizes the factorized fixed point, and pushes us towards
the basin of attraction of the accurate one. As a result, for some
values of the block model parameters, there is a discontinuous
jump in the accuracy as a function of α. Roughly speaking,
for very small α our information is local, consisting of the
known nodes and good guesses about nodes in their vicinity,
but at a certain α belief propagation causes this information to
percolate, giving us high accuracy throughout the network. As
we vary the block model parameters, this line terminates at the
point where the two spinodals and first-order phase transitions
all meet. At that critical point there is a second-order phase
transition, and beyond that point the accuracy is a continuous
function of α.

Semisupervised learning is an important task in machine
learning, in settings where hidden variables or labels are
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expensive and time consuming to obtain. Semisupervised
community detection was studied in several previous papers
[20–22]. The conclusion of Ref. [20] was that the detectability
transition disappears for any α > 0. Later Ref. [21] suggested
that in some cases it survives for more than two groups.
However, both these works were based on an approximate
(zero-temperature replica symmetric) calculation that corre-
sponds to a far from optimal algorithm; moreover, it is known
to lead to unphysical results in many other models such as
graph coloring (which is a special case of the stochastic block
model) or random k-SAT [23,24].

In the present paper we investigate semisupervised commu-
nity detection using the cavity method and belief propagation,
which in sparse graphs is believed to be Bayes optimal in the
limit n → ∞. From a physics point of view, our results settle
the question of what exactly happens in the semisupervised
setting, including how the reconstruction, detectability, and
easy/hard transitions vary as a function of α. From the point
of view of mathematics, our calculations provide nontrivial
conjectures that we hope will be amenable to rigorous proof.

Our calculations follow the same methodology as those
carried out in two other problems:

(i) Study of the ideal glass transition by random pinning.An
important property of Bayes-optimal inference is that the true
configuration cannot be distinguished from other configura-
tions that are sampled at random from the posterior probability
measure. This is why considering a disordered system similar
to the one in this paper and fixing the value or position of
a small fraction of nodes in a randomly chosen equilibrium
configurations is formally the same problem to semisupervised
learning. The analysis of systems with pinned particles was
done in order to better understand the formation of glasses in
Refs. [25,26].

(ii) Analysis of belief propagation guided decimation.
Belief propagation with decimation is a very interesting solver
for a wide range of random constraint satisfaction problems.
Its performance was analyzed in Refs. [27,28]. If we decimate
a fraction α of the variables (i.e., fix them to particular values)
this affects the further performance of the algorithm in a way
similar to semisupervised learning.
For random k-SAT, a large part of this picture has been made
rigorous [29]. Our hope is that similar techniques will apply
to our results here. As a first step, very recent work [30]
shows that semisupervised learning does indeed allow for
partial reconstruction below the detectability threshold for
k > 4 groups.

The behavior we find for k > 4, where two spinodal
transitions merge with the coexistence line (the detectabil-
ity transition) is also qualitatively similar to that of the
Franz-Parisi model [31]. However, there are two significant
differences. In the Franz-Parisi model, each node i is given
a local external field encouraging it to align with a reference
state ti . This is similar to a model of semisupervised learning
where we are given a reference label for every node, with the
caveat that this label is only correct with some probability;
in contrast, we study the case where we are given definite
labels ti for a fraction α of the nodes. The other difference
is that the Franz-Parisi reference state {ti} is chosen from the
Gibbs distribution; in our setting the model is planted, by first
choosing {ti} and then building the graph around it.

The paper is organized as follows. Section II includes
definitions and the description of the stochastic block model. In
Sec. III we consider semisupervised learning in the networks
generated by stochastic block model. In Sec. IV we consider
semisupervised learning in two real-world networks, finding
transitions in the accuracy at a critical value of α qualitatively
similar to our analysis for the block model. We conclude in
Sec. V.

II. STOCHASTIC BLOCK MODEL, BELIEF
PROPAGATION, AND SEMISUPERVISED LEARNING

The stochastic block model is defined as follows. Nodes
are split into k groups, where each group 1 � a � k contains
an expected fraction qa of the nodes. Edge probabilities are
given by a k × k matrix p. We generate a random network G

with n nodes as follows. First, we choose a group assignment
t ∈ {1, . . . ,k}n by assigning each node i a label ti ∈ {1,...,k}
chosen independently with probability qti . Between each pair
of nodes i and j , we then add an edge between them with
probability pti ,tj . For now, we assume that the parameters k, q

(a vector denoting {qa}), and p (a matrix denoting {qab}) are
known.

The likelihood of generating G given the parameters and
the labels is

P (G,t |q,p) =
∏

i

qti

∏
〈ij〉∈E

pti ,tj

∏
〈ij〉�∈E

(1 − pti ,tj ), (1)

the Gibbs distribution of the labels t , i.e., their posterior
distribution given G, can be computed via Bayes’ rule,

P (t |G,q,p) = P (G,t |q,p)∑
s P (G,s|q,p)

. (2)

In this paper, we consider sparse networks where pab =
cab/n for some constant matrix c. In this case, the marginal
probability ψi

a that a given node i has label ti = a can be
computed using belief propagation. The idea of BP is to replace
these marginals with messages ψi→�

a from i to each of its
neighbors �, which are estimates of these marginals based on
i’s interactions with its other neighbors [32,33]. We assume
that the neighbors of each node are conditionally independent
of each other; equivalently, we ignore the effect of loops. For
the stochastic block model, we obtain the following update
equations for these messages [8,9]:

ψi→�
a = 1

Zi→�

qaeha

∏
j∈∂i\�

∑
b

cabψ
j→i

b , (3)

Here Zi→l is a normalization factor and ha is an adaptive
external field that enforces the expected group sizes,

ha = −1

n

∑
i

∑
b

cabψ
i
b, (4)

where the marginal probability that ti = a is given by

ψi
a = 1

Zi

qaeha

∏
j∈∂i

∑
b

cabψ
j→i

b . (5)

In the usual setting, we start with random messages, and
apply the BP equations (3) until we reach a fixed point. In
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order to predict the node labels, we assign each node to its
most-likely label according to its marginal:

t̂i = argmax
a

ψi
a.

Fixed points of the BP equations are stationary points of the
Bethe free energy [32], which up to a constant is

FBethe =
∑

〈ij〉∈E

log

[
k∑

a,b=1

cabψ
i→j
a ψ

j→i

b

]

−
∑

i

log

⎡⎣ k∑
a=1

qaeha

∏
j∈∂i

∑
{b}

cabψ
j→i

b

⎤⎦ . (6)

If there is more than one fixed point, the one with the
lowest FBethe gives an optimal estimate of the marginals,
since FBethe is minus the logarithm of the total likelihood
of the block model. However, as we comment above, if
the optimal fixed point has a small basin of attraction, then
finding it through exhaustive search will take exponential
time. Analyzing stability of instability of these fixed points,
including the trivial or factorized fixed point where ψi→�

a = qa ,
leads to the phase transitions in the stochastic block model
described in [8,9].

It is straightforward to adapt the above formalism to the
case of semisupervised learning. One uses exactly the same
equations except that nodes whose labels have been revealed
have fixed messages. If we know that ti = a∗, then for all � we
have

ψi→�
a = δa,a∗ .

Equivalently, we can define a local external field, replacing the
global parameter q with qi in (3). Then

qi
a = δa,a∗ .

In this paper we focus on a widely studied special case of
the stochastic block model, also well known as the planted
partition model, where the groups are of equal size, i.e., qa =

1/k, and where cab takes only two values:

cab =
{
cin if a = b

cout if a �= b.
(7)

In that case, the average degree is c = [cin + (q − 1)cout]/q.
It is common to parametrize this model with the ratio ε =
cout/cin. When ε = 0 is small, nodes are connected only to
others in the same group; at ε = 1 the network is an Erdős-
Rényi graph, where every pair of nodes is equally likely to be
connected.

We assume here that the parameters k,cin,cout are known. If
they are unknown, inferring them from the graph and partial
information about the nodes is an interesting learning problem
in its own right. One can estimate them from the set of known
edges, i.e., those where both endpoints have known labels:
in the sparse case there are O(α2n) such edges, or O(n) if
the fraction of known labels α is constant. However, for α ∼
10−2, say, there are very few such edges until n � 105 or 106.
Alternately, we can learn the parameters using the expectation-
maximization (EM) algorithm of Refs. [8,9], which minimizes
the Bethe free energy, or a hybrid method where we initialize
EM with parameters estimated from the known edges, if any.

III. RESULTS ON THE STOCHASTIC BLOCK MODEL
AND THE FATE OF THE TRANSITIONS

First we investigate semisupervised learning for assortative
networks, i.e., the case cin > cout. As shown in Ref. [8], in the
unsupervised case α = 0 there is a phase transition at

cin − cout = k
√

c,

where the factorized fixed point goes from stable to unstable.
Below this transition the overlap, i.e., the fraction of correctly
assigned nodes, is 1/k, no better than random chance. For
k � 4 this phase transition is second order: the overlap is con-
tinuous, but with discontinuous derivative at the transition. For
k > 4, it becomes an easy/hard transition, with a discontinuity
in the overlap when we jump from the factorized fixed point
to the accurate one. In both cases, the convergence time (the
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FIG. 1. (Color online) Overlap and convergence time of BP as a function of ε = cout/cin for different α, on networks generated by the
stochastic block model. On the left, k = 2, c = 3, and n = 105. For just two groups, the transition disappears for any α > 0. On the right,
k = 10, c = 10, n = 5 × 105. Here the easy/hard transition persists for small values of α, with a discontinuity in the overlap and a diverging
convergence time; this transition disappears at a critical value of α.
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FIG. 2. (Color online) Left: overlap as a function of ε = cout/cin and α for networks with same parameters as in the right of Fig. 1. The
heat map shows a line of discontinuities, ending at a second-order phase transition beyond which the overlap is a smooth function. Right: the
logarithm (base 10) of the convergence time in the same plane, showing divergence along the critical line.

number of iterations BP takes to reach a fixed point) diverges
at the transition.

In Fig. 1 we show the overlap achieved by BP for two
different values of k and various values of α. In each case, we
hold the average degree c fixed and vary ε = cout/cin. On the
left, we have k = 2. Here, analogous to the unsupervised case
α = 0, the overlap is a continuous function of ε. Moreover,
for α > 0 the detectability transition disappears: the overlap
becomes a smooth function, and the convergence time no
longer diverges. This picture agrees qualitatively with the
approximate analytical results in Refs. [20,21].

On the right-hand side of Fig. 1, we show experimental
results with k = 10. Here the easy/hard transition persists
for sufficiently small α, with a discontinuity in the overlap
and a diverging convergence time. At a critical value of α,
the transition disappears, and the overlap becomes a smooth
function of ε; beyond that point the convergence time has

a smooth peak but does not diverge. Thus there is a line of
discontinuities, ending in a second-order phase transition at a
critical point. We show this line in the (α,ε) plane in Fig. 2.
On the left, we see the discontinuity in the overlap, and on the
right we see that the convergence time diverges along this line.

Note that the authors of Ref. [21] also predicted the survival
of the easy/hard discontinuity in the assortative case. Their
approximate computation, however, overestimates the strength
of the phase transition, and misplaces its position. In particular,
it predicts the discontinuity for all k > 2, whereas it holds only
for k > 4.

The full physical picture of what happens to the hard
but detectable regime in the semisupervised case, and to the
spinodal and detectability transitions that define it, is very
interesting. To explain it in detail we focus on the disassortative
case, and specifically the case of planted graph coloring where
cin = 0. The situation for the assortative case is qualitatively
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FIG. 3. (Color online) Left: overlap and BP convergence time in the planted five-coloring problem as a function of the average degree c for
various values of α. Right: the three transitions described in the text: the easy/hard or Kesten-Stigum transition where the factorized fixed point
becomes stable (blue), the lower spinodal transition where the accurate fixed point disappears (green), and the detectability transition where
the Bethe free energies of these fixed points cross (red). The hard but detectable regime, where BP with random initial messages does no better
than chance but exhaustive search would succeed, is between the red and blue lines. All three transitions meet at a critical point, beyond which
the overlap is a smooth function of c and α. Here n = 105.
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FIG. 4. (Color online) Overlap (top and left) and convergence time (right) as a function of the average degree c and the fraction of known
labels α for the planted five-coloring problem on networks with n = 105. The height of the discontinuity decreases until we reach the critical
point. The convergence time diverges along the discontinuity. Compare Fig. 2 for the assortative case.

similar, but for graph coloring the discontinuity in the overlap
is very strong and appears for any k > 3, making these
phenomena easier to see numerically.

Figure 3, on the left, shows the overlap and convergence
time of BP for k = 5 colors. In the unsupervised case α = 0,
there are a total of three transitions as we decrease c (making
the problem of recovering the planted coloring harder). The
overlap jumps at the easy/hard spinodal transition, where
the factorized fixed point becomes stable: this occurs at c =
(k − 1)2. At the lower spinodal transition, the accurate fixed
point disappears. In between these two spinodal transitions,
both fixed points exist. Their Bethe free energies cross at
the detectability transition: below this point, even a Bayesian
algorithm with the luxury of exhaustive search would do no
better than chance. Thus the hard but detectable regime lies in
between the detectability and easy/hard transitions [23].

On the right of Fig. 3, we plot the two spinodal transitions,
and the detectability transition in between them, in the (c,α)
plane. We see that these transitions persist up to a critical value
of α ≈ 0.06. At that point, all three meet at a second-order
phase transition, beyond which the overlap is a smooth
function. The very same picture arises in the two related
problems mentioned in the introduction, namely the glass
transition with random pinning and BP-guided decimation in
random k-SAT; see, e.g., Fig. 1 in Refs. [25,26] and Fig. 3 in
Ref. [28].

Finally, in Fig. 4 we plot the overlap and convergence
time for the planted five-coloring problem in the (c,α) plane.
Analogous to the assortative case in Fig. 2, but more visibly,
there is a line of discontinuities in the overlap along which
the convergence time diverges; the height of the discontinuity
decreases until we reach the critical point.

IV. RESULTS ON REAL-WORLD NETWORKS

In this section we study semisupervised learning in real-
world networks. Real-world networks are of course not gener-
ated by the stochastic block model; however, the block model
can often achieve high accuracy for community detection, if
its parameters are fit to the network.

To explore the effect of semisupervised learning, we set
the parameters qa and cab in two different ways. In the first
way, the algorithm is given the best possible values of these
parameters in advance, as determined by the ground truth
labels: this is cheating, but it separates the effect of being given
αn node labels from the process of learning the parameters.
In the second (more realistic) way, the algorithm uses the
expectation-maximization (EM) algorithm of Refs. [8,9],
which minimizes the free energy. As discussed in Sec. II, we
initialize the EM algorithm with parameters estimated from
edges where both endpoints have known labels, if any.
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FIG. 5. (Color online) Semisupervised learning in a network of political blogs [34]. Different points correspond to independent runs with
different initial labels. On the top left, the best possible parameters qa and cab are given to the algorithm in advance. On the top right, the
algorithm learns these parameters using an EM algorithm, seeded by the known labels. The bottom panels show how the learned q1 and
cab change as α increases, moving from a core-periphery structure where nodes are divided according to high or low degree, to the correct
assortative structure where they are divided along political lines.

We test two real networks, namely a network of political
blogs [34] and Zachary’s karate club network. The blog
network is composed of 1222 blogs and links between them
that were active during the 2004 US elections; human curators
labeled each blog as liberal or conservative. In Fig. 5 we plot
the overlap between the inferred labels and the ground truth
labels, with multiple independent runs of BP with different
initial labels. This network is known not to be well modeled
by the stochastic block model, since the highest-likelihood
SBM splits the nodes into a core-periphery structure with
high-degree nodes in the core and low-degree nodes outside
it, instead of dividing the network along political lines [10].
Indeed, as the top left panel shows, even given the correct
parameters, BP often falls into a core-periphery structure
instead of the correct one. However, once α is sufficiently large,
we move into the basin of attraction of the correct division.

On the top right of Fig. 5, we see a similar transition,
but now because the EM algorithm succeeds in learning the
correct parameters. There are two fixed points of the learning
process in parameter space, corresponding to the high/low
degree division and the political one. Both of these are local
minima of the free energy [35]. As α increases, the correct
one becomes the global minimum, and its basin of attraction

gets larger, until the fraction of runs that arrive at the correct
parameters (and therefore an accurate partition) becomes large.

We show this learning process in the lower panels of Fig. 5.
Since there are just two groups, q1 determines the group sizes,
where we break symmetry by taking q1 to be the smaller
group. As α increases, we move from q1 = 0.3 to q1 = 0.47.
On the lower right, we see the parameters cab change from a
core-periphery structure with c22 > c12 > c11 to an assortative
one with c11 ≈ c22 > c12.

Our second example is Zachary’s karate club [36], which
represents friendship patterns between the 34 members of a
university karate club, which is split into two factions. As with
the blog network, it has two local optima in parameter place,
one corresponding to a high/low degree division (which in the
unsupervised case has lower free energy) and the other into
the two factions [8]. We again do two types of experiments,
one where the best parameters qa,cab are known in advance,
and the other where we learn these parameters with the EM
algorithm. Our results are shown in Fig 6 and are similar to
Fig. 5. As α increases, the overlap improves, in the first case
because the known labels push us into the basin of attraction
of the correct division, and in the second case because the EM
algorithm finds the correct parameters.
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FIG. 6. (Color online) Semisupervised learning in Zachary’s karate club [36], with experiments analogous to Fig. 5: in the upper left, the
optimal parameters are given to the algorithm in advance, while in the upper right it learns them with an EM algorithm, giving the parameters
shown in the bottom panels. As in the political blog network, the algorithm makes a transition from a core-periphery structure to the correct
assortative structure.

As discussed elsewhere [8,10], the standard stochastic
block model performs poorly on these networks in the
unsupervised case. It assumes a Poisson degree distribution
within each community, and thus tends to divide nodes into
groups according to their degree; in contrast, these networks
(and many others) have heavy-tailed degree distributions
within communities. A better model for these networks is the
degree-corrected stochastic block model [10], which achieves
a large overlap on the blog network even when no labels
are known. We emphasize that our analysis can easily be
carried out for the degree-corrected SBM as well, using the BP
equations given in Ref. [37]. On the other hand, it is interesting
to observe how, in the semisupervised case, even the standard
SBM succeeds in recognizing the network’s structure at a
moderate value of α.

V. CONCLUSION AND DISCUSSION

We have studied semisupervised learning in sparse net-
works with belief propagation and the stochastic block model,
focusing on how the detectability and easy/hard transitions
depend on the fraction α of known nodes. In agreement with
previous work based on a zero-temperature approximation
[20,21], for k = 2 groups the detectability transition disap-
pears for α > 0. However, for large k where there is a hard

but detectable phase in the unsupervised case, the easy/hard
transition persists up to a critical value of α, creating a line of
discontinuities in the overlap ending in a second-order phase
transition.

We found qualitatively similar behavior in two real net-
works, where the overlap jumps discontinuously at a critical
value of α. When the best possible parameters of the block
model are known in advance, this happens when the basin
of attraction of the correct structure becomes larger; when
we learn them with an EM algorithm as in Refs. [8,9], it
occurs because the optimal parameters become global minima
of the free energy. In particular, even though the standard
block model is not a good fit to networks such as the blog
network or the karate club, where each community has a
heavy-tailed degree distributions, we found that at a certain
value of α it switches from a core-periphery structure to the
correct assortative structure.

It would be very interesting to apply this formalism to active
learning, where rather than learning the labels of a random
set of αn nodes, the algorithm must choose which nodes to
explore. One approach to this problem [38] is to explore the
node with the largest mutual information between it and the
rest of the network, as estimated by Monte Carlo sampling
of the Gibbs distribution, or (more efficiently) using belief
propagation. We leave this for future work.
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