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Breakout character of islet amyloid polypeptide hydrophobic mutations
at the onset of type-2 diabetes
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Toxic fibrillar aggregates of islet amyloid polypeptide (IAPP) appear as the physical outcome of a peptidic
phase transition signaling the onset of type-2 diabetes mellitus in different mammalian species. In particular,
experimentally verified mutations on the amyloidogenic segment 20-29 in humans, cats, and rats are highly
correlated with the molecular aggregation propensities. Through a microcanonical analysis of the aggregation
of IAPP20-29 isoforms, we show that a minimalist one-bead hydrophobic-polar continuum model for protein
interactions properly quantifies those propensities from free-energy barriers. Our results highlight the central
role of sequence-dependent hydrophobic mutations on hot spots for stabilization, and thus for the engineering,
of such biological peptides.
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I. INTRODUCTION

Diabetes mellitus type 2 (DM-II) is a metabolic disorder
characterized by hyperglycemia, due to insufficient insulin
secretion from pancreatic β-cells in the setting of insulin
resistance. Beyond the yearly premature death of about
4 million people worldwide, diabetes also implies a high
prevalence of health complications including stroke (68%),
high blood pressure (67%), blindness (28.5%), kidney disease
(44%), neuropathies, and amputation (60%) [1]. Its outbreak
is correlated to genetic factors associated with a sedentary
modern lifestyle, which implies that an increasing global
diabetes epidemic is underway. In 2010, there were 285 million
cases in adults worldwide, with an estimated annual health
care economic burden of USD 376 billion [2]. Such a scenario
calls for deepening the pathophysiological understanding of
the DM-II onset.

In this vein, since the pioneering study by Westermark
et al. in the 1990s [3], it has become increasingly known
that amylin (or IAPP), a small 37-residue putative polypeptide
(small protein) hormone also produced by pancreatic β-cells,
constitutes most fibrillar amyloid deposits seen in the islets of
Langerhans in diabetic humans [4] and other mammals. Fur-
ther experimental studies [5] have demonstrated that fibrillar
amylin is toxic to insulin-producing β-cells, thus inducing an
enhanced loss of islet cells characteristic of type-2 diabetes.
In addition, the propensity for islet amyloid deposition is
specie-specific, a property mostly due to mutations in hot spots
such as the IAPP20-29 segments [3], which correlates positively
with the molecular toxicity of IAPP isoforms in humans
(hIAPP) and cats (cIAPP), while most rodents (rIAPP) never
develop such a syndrome. Thus, the toxicity of amylin seems
strikingly similar to the effects observed in other well-known
amyloidosis [6], such as Alzheimer’s disease and spongiform
encephalopathies.

Generally, while the ability of polypeptides to form such
amyloid structures is considered to be a common feature
of such molecular chains, the propensity to do so varies
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markedly between different sequences. Therefore, aggrega-
tion rates correlate [7] with physicochemical properties of
those molecules such as charge, secondary structure, and
hydrophobicity [8]. Hence, peptide proneness for aggregation
can be related to eventual misfoldings [6], which is explained
by the thermostatistical theory of the energy landscape of
protein folding [9]. In accordance to whom, realistic models
of proteins are minimally frustrated heteropolymers that reach
the lowest-energy (native, or folded) state through an ensemble
of intermediate self-organizing structures, guided by a rugged
funnel-like energy landscape. Although details on the native
conformation of proteins may depend on specificities of each
energetic potential, coarse-grained models for amino acid
interactions, where more or less profound simplifications are
made, have provided powerful insights into the aggregation
mechanisms underlying degenerative diseases [10].

Peptides are small proteins composed of inhomogeneous
sequences of amino acids (residues), so they constitute a
class of finite systems inherently far from the thermodynamic
limit, to whose description the thermostatistical postulate of
ensemble equivalence does not hold. Thereby, the original
microcanonical formulation of statistical mechanics [11],
designed to be rigorously valid even for systems with finite
degrees of freedom, turns to be most appropriate for studying
phase transitions on proteins such as folding [12] and aggrega-
tion [13]. In this approach, starting from the density of states
g(E), the celebrated Boltzmann entropy S(E) = kB ln g(E)
is solely responsible for yielding thermodynamic quantities,
such as the microcanonical temperature T (E) and the specific
heat CV (E). Additionally, free energies H (E) can also be
straightforwardly accessed by taking Legendre transforms.
However, in this context, it should be noted that S(E) may
become a convex function of E, such as during first-order
phase transitions, which induces peculiar thermodynamic
behaviors such as backbendings on T (E), negative values
of CV (E), and the appearance of energetic barriers on free
energies �H [11].

In this article we show how, through a microcanonical anal-
ysis from multicanonical Monte Carlo simulation data [14], the
ratios among aggregation propensities of IAPP isoforms can be
recovered from the energetic barriers emerging in the vicinity
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of the (first-order) phase transitions of a simple coarse-grained
hydrophobic-polar model for protein interactions [13,15]. Our
results depend weakly on an input scale [16], and they agree
nicely with widely accepted heuristic predictors that can
reproduce in vitro as well as in vivo experimental data [17,18].
In the spirit of [19], we conclude that even a two-letter
code can discriminate amyloidogenic characters on primary
sequences of IAPP. This corroborates with an underlying
rationale relating the thermodynamic aspects associated with
sequence-dependent hydrophobic mutations with the (kinetic)
aggregation rates of peptides [7], so that more aggregation-
prone sequences also form pathogenic aggregates faster.

The work is organized as follows: In Sec. II, an effective
one-bead hydrophobic-polar continuum model for describing
protein interaction and aggregation is introduced. Section III
is devoted to the algorithmic setup and numerical results
emerging from our multicanonical simulations of IAPP20-29

segments of several mammalian species. In Sec. IV, free
energies are exploited to connect thermodynamic and kinetic
aspects of peptide aggregation. There, we propose a method
to evaluate relative aggregation propensities of proteins, a
rationale inspired in spectral predictions by universality related
theories. Those results are validated by confrontation with
well-established heuristic online aggregation-propensity esti-
mators. Section V summarizes our results, corroborating them
with recent all-atom simulations and thus highlighting future
research perspectives. We devote an Appendix to numerical
error estimates in microcanonical data analysis.

II. AN EFFECTIVE MODEL FOR
PROTEIN AGGREGATION

Hydrophobic forces are not fundamental forces of na-
ture [8]. Nevertheless, by considering their central role in the
assembling of three dimensionally ordered tertiary structures
during protein folding, while keeping high simplicity standards
on molecular modeling, we have adopted a coarse-grained
(one-bead) hydrophobic-polar model for proteins [15,20].
There the target protein is mapped, depending on the hy-
drophobic character of the constituents lying on its primary
sequence of amino acids, on a heteropolymer made of
hydrophobic (A) or polar (B) pseudoatoms (beads).

Those monomers replace the original residues on their
α-carbon positions occupied at the same peptidic backbone
structure. The interaction energy (H) among the N pseu-
doatoms in the chain is given by

H = 1

4

N−2∑
k=1

(1 − cos αk) + 4
N−2∑
i=1

N∑
j=i+2

�(rij ; Cσi,σj
), (1)

where the first term describes the virtual bending angle
(0 � αk � π ) between three successive monomers, while the
second term,

�(rij ; Cσi,σj
) = [

r−12
ij − C(σi,σj )r−6

ij

]
, (2)

provides a long-distance (rij ) pairwise interaction between
residues i and j , depending on their hydrophobic character

σ ∈ {A,B}. That is,

C
(
σi,σj

) =
⎧⎨
⎩

+1, σi,σj = A,

+1/2, σi,σj = B,

−1/2, σi �= σj .

(3)

Then, attractive (CA,A,CB,B) or repulsive (CA,B,CB,A)
forces will naturally emerge from primary sequences of amino
acids once they are properly translated on a two-letter code by
a hydrophobic scale [16] used as a lexicon.

Because aggregation is a many-body effect, it shall be
provided by a multiprotein potential [13]

�multiprot =
M∑

k=1

⎡
⎣Hk +

∑
l>k

N∑
i,j=1

�
(
rlikj

; Cσli
,σkj

)
⎤
⎦ . (4)

Thus, in addition to the intraprotein energy Hk, from Eq. (1)
there is a contribution from all pairs of residues (li ,kj ) located
in different proteins (l or k) of a set of M proteins. It should be
noted that in such a coarse-grained model, long-range forces
are only due to hydrophobic/polar effective interactions, so any
interacting pair (i,j ) of pseudoatoms in the system is equally
described by the same Cσi,σj

coupling constants [Eq. (3)].
This is clearly a simplifying hypothesis inspired by mean-field
descriptions, justified as a leading-order approach, in the sense
of a renormalization-group analysis.

III. SIMULATIONS AND THERMODYNAMIC RESULTS

To obtain the microcanonical entropy associated with the
aggregation of segments of IAPP isoforms, and thus their
caloric and specific-heat curves, we have focused on perform-
ing Monte Carlo multicanonical (MUCA) simulations [14]
of multiple (amyloidogenic) IAPP20-29 segments. Coefficients
ak and bk in multicanonical weights ωMUCA(Ek) = ebkEk−ak

can be determined by an iterative procedure using energy
histograms HMUCA(E) for energies Ek in an interval E =
[E0, . . . ,Emax]. Thus, in the beginning, one sets ω0

MUCA(E) =
1 for all energies, which is used to run a usual METROPOLIS

simulation to build H 0
MUCA(E). The next guess for the weights

in the simplest update scheme is given by ω1
MUCA(E) =

H 0
MUCA(E)/ω0

MUCA(E). Such an iterative procedure is then
repeated until the energy histogram converges to a “flat”
distribution. In our implementation, we have employed ac-
cumulated error-weighted histograms, so the statistics for
weights estimation improves every run, while convergence is
ensured by Berg’s weight recursion [21].

Once MUCA weights are established, they provide a
good piecewise approximation to the microcanonical entropy
Smicro(Ek) = bkEk − ak. Then, numerical derivatives of the
entropy can be employed to compute thermodynamic quanti-
ties of interest [11], as the microcanonical caloric curve

β(E) ≡ T −1(E) = ∂S

∂E
, (5)

the microcanonical specific heat

CV (E) = dE

dT
= −

(
∂S

∂E

)2 (
∂2S

∂E2

)−1

, (6)
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TABLE I. The inverse temperature at aggregation βc, the free-energy barriers �H , and latent specific-heat L, for human (hIAPP), cat
(cIAPP), and rat (rIAPP) segments of amylin isoforms obtained by microcanonical analysis from MUCA simulations.

Peptide Sequence AB Sequence βc �H L

hIAPP20-29 SNNFGAILSS BBBABAAABB 2.60(2) 0.079(1) 0.520(5)
cIAPP20-29 SNNFGAILSP BBBABAAABA 2.09(1) 0.092(1) 0.636(10)
rIAPP20-29 SNNLGPVLPP BBBABAAAAA 1.48(1) 0.124(1) 0.698(10)

and the free energy

H (E) = E −
(

∂S

∂E

)−1

S(E). (7)

In particular, we have applied the finite-differences method
with central derivatives and stability constraints to fix their
maximal kernel sizes.

After the original protein sequences of amyloidogenic
IAPP20-29 segments were mapped on the AB model (in
the second and third columns of Table I, respectively)
through a hydrophobicity scale [16], simulations with different
ensembles—having up to eight copies—of interacting peptides
were done. For the Monte Carlo evolution of a set having
N pseudoatoms, we performed 103 MUCA iterations, in a
total of about 3N×109 updates, by mixing spherical-cap [13]
and pivoting [22] algorithms. The independence of our results
with energy-bin size—i.e., �E = Ek+1 − Ek—and finite-box
effects was checked to certify the robustness of the data (see
the Appendix). In particular, as containers we have used
spherical boxes (of radius R � 100), whose interior was
initially populated with stretched and randomly positioned
peptides. The Boltzmann constant was taken as kB = 1, and
the distances of nearest-neighbor residues were normalized to
unity. For convenience, we use intensive units for the system
energy ε = E/N. Error bars were computed by data-blocking
and resampling techniques.

The data analysis of our simulations shows that (see Fig. 1
and Table I for a summary), as is usually observed in first-
order phase transitions, described under the microcanonical
formalism of statistical mechanics [11], negative specific heats
are seen in regions where the microcanonical entropy presents
a convex intruder. Inside such regions, delimited by a minimum
energy below whom proteins are completely aggregated
(εmin = εagg) and a maximal one above which aggregates
dissolve by fragmentation (εmax = εfrag), the caloric curves
β(ε) × ε display signals of thermodynamic metastability.
Those configurations induce a forbidden region for the canon-
ical ensemble, which entails the need to apply a well-known
Maxwellian prescription around the (inverse) temperature of
transition βc, whereas the (upper) A+ and (lower) A− areas
of the bumps formed by the backbending of β(εfrag < ε <

εagg) �= βc become equal. As a result, this implies not only
the inequivalence of canonical and microcanonical ensembles
during the phase transition, once a bijective mapping between
the system temperature and energy is only possible for ε < εagg

or ε > εfrag, but also the rising of a latent heat defined by
L = εfrag − εagg.

After evaluating βc for the aforementioned amylin seg-
ment isoforms of humans, βc-hIAPP = 2.60(2), cats, βc-cIAPP =
2.09(1), and rats, βc-rIAPP = 1.48(1), we found the foregoing

description to be appropriate for those regions of phase tran-
sition. Negative microcanonical specific heats, and thus latent
(canonical) heats, can be seen inside εhIAPP = [−0.439,0.008]
for humans, εcIAPP = [−0.595,0.041] for cats, and εrIAPP =
[−0.683,0.015] for rats. Among such isoforms, hIAPP has
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FIG. 1. (Color online) The thermodynamic behavior of segments
of amylin isoforms such as cIAPP in green (light gray), rIAPP in
black (black), and hIAPP in red (dark gray) as a function of energy
(E) per residue ε = E/N. Upper panel: caloric curve. Center panel:
microcanonical specific heat. Lower panel: the Helmholtz free-energy
barrier (error bars are smaller than the circles).
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in fact the smallest latent heat of transition LhIAPP = 0.520
and the lowest energetic barrier �HhIAPP = 0.079(1) for ag-
gregation, which is followed by cIAPP, where LcIAPP = 0.636
and �HcIAPP = 0.092(1), and rIAPP with LrIAPP = 0.698 and
�HrIAPP = 0.124(1). Latent heat is a consequence of the
free-energy barrier and prevents the system from moving to a
stable configuration in the new phase. Therefore, the smaller
the latent heat, the higher the probability that a spontaneous
thermal fluctuation will give rise to the aggregate phase.

IV. AGGREGATION PROPENSITIES

Since polypeptide aggregation is an example of a nucleated
polymerization reaction where from a tiny nucleating event
larger aggregates grow into fibrillar structures, the efficiency
of these reactions is related to the rate of aggregation [23].
By the Arrhenius equation, it is also widely known [24]
that thermodynamic and kinetic properties are connected
by the relation �H = NAβ−1 ln KD, where �H is the free
energy of aggregation, NA is the Avogadro number, and
KD is the dissociation equilibrium constant related to the
ratio of dissociation(k−)/association(k+) rates in a two-state
binding reaction. Higher aggregation propensities (henceforth
denoted “z”) are therefore associated with lower values of
KD , or equivalently with faster association rates, which is
thermodynamically favored by smaller energetic barriers (so
z ∝ �H−1). This implies a causal relation, experimentally
already observed for variants of β-amyloid proteins, where
the more stable aggregates are also the ones that aggregates
more readily [25].

Thus, in principle, one would expect that accurate infor-
mation about phase transitions such as protein aggregation
could be obtained only by atomic-level simulations. However,
in the vicinity of critical phase transitions—where correlation
lengths become greater than the characteristic system sizes—
different physical systems can exhibit the same universal
behavior, which constitutes a powerful predictive tool of
statistical mechanics. For instance, in the context of protein
folding, an effective lattice gauge field theory built only upon
symmetry arguments [26] was shown to be, in the sense of the
compactness index, in the same universality class of proteins
deposited in the Protein Data Bank. Despite the conceptual
simplicity of such a model, even the secondary structural
motifs of all studied proteins could be reconstructed with a
backbone RMSD accuracy of about 1 Å [27]. This success
arguably relies on the fact that in such field-theoretic language,
the formation of protein loops can be described by topological
domain-wall solitons, interpolating among ground states given
by α-helices and β-strands, despite the local details of their
Hamiltonian interactions [27].

In a somehow similar scenario, the long-standing conjecture
by Svetitsky and Yaffe [28], relating the magnetic phase
transitions in d-dimensional ZN Potts-like spin models and
deconfinement in SU (N ) quantum gauge theories in (d + 1)
dimensions, has been widely verified beyond usual realms of
critical exponents and universal amplitude ratios (see [29] and
references therein). In fact, through universality, the emer-
gence of bound states in the broken symmetry phase of spin
systems was unveiled to be a phenomenon closely related to
the formation of a quark-gluon plasma (QGP) [29], where the

gluonic potential among static quark charges becomes short-
ranged by acquiring a spectrum of effective Debye-screening
masses (mD). There, changes in the system free energy H (r,T )
at (asymptotic) large quark-distances are given by �H∞(T ) ≡
limr→∞ H (r,T ) ∝ mD (T ) [30]. Regardless of the fact that
those excited spectra are not universal, the ratios computed
among their mass states (in the same channel) were shown to
be [29]. More surprisingly, even when phase transitions are
weak first-order—as it happens in quenched SU (3) QCD and
the Z3-Potts model—those respective ratios computed from
both (approximate) universality-related theories still coincide
up to a precision of 30% [31].

Inspired by those concepts, we propose that the aggregation
propensities za and zb for peptidic isoforms a and b may
be combined to form a dimensionless ratio rab that depends
only on relative changes in the system free energy, i.e.,
rab = zaz

−1
b = [�Ha]−1 [�Hb] . Thenceforth, by performing

such analysis over the data obtained from our AB-model
simulations (see Table I), we have obtained relative aggre-
gation propensities shown by the following ratios: rAB

hc �
1.16 (2) ,rAB

hr � 1.57 (2), and rAB
cr � 1.35 (2) . How far one can

lead such an argument is a matter for numerical verification, so
we intend to cross-check our results with alternative methods
for further validation.

To accomplish this very end, we have chosen two different
heuristic algorithms designed to accurately predict—after
being properly calibrated—the aggregation propensities z

of a plethora of in vitro (zagg) as well as in vivo (zscan)
experiments. First, we evaluated the so-called zagg score from
Zyggregator [17], a phenomenological model that incorporates
both intrinsic factors of peptides such as hydrophobicity,
charge, and the propensity of the polypeptide chain to adopt α-
helical or β-sheet structures as well as extrinsic ones (physico-
chemical properties related to the environment). Consequently,
higher scores mean that a sequence is more suitable to
aggregation. This approach for the primary sequences of IAPP
has resulted in the following aggregation-propensity scores:
zhIAPP

agg = 1.30(9),zcIAPP
agg = 1.05(15), and zrIAPP

agg = 0.92(13).
So, computing the ratios among those scores—such that
r

zagg

ab = [za
agg][zb

agg]−1—has produced these relative aggre-

gation propensities r
zagg

hc � 1.24(19),r
zagg

hr � 1.41(22), and
r

zagg
cr � 1.14(23).

On the other hand, AGGRESCAN [18] is an online
aggregation-propensity predictor based solely on in vivo
experimental data. It assumes that short and specific segments
of peptidic sequences modulate protein aggregation, and, as
an outcome, the effects of genetic mutations on aggregation
propensities (of an input sequence) can be precisely predicted
from comparisons with a databank. The generated score zscan

for amylin isoforms is given by zrIAPP
scan = −8.80, zcIAPP

scan =
−6.60, and zhIAPP

scan = −5.60, where more negative values
imply naturally less aggregation-prone sequences. After due
normalization, the ratios among relative aggregation propensi-
ties are analogously obtained: r

zscan
hc � 1.18,r

zscan
hr � 1.57, and

rzscan
cr � 1.39.

Thus, our results for rAB are compatible (within less than
1 stdv.) with ratios of aggregation propensities estimated from
in vitro phenomenological methods (rzagg ), whereas when
compared to ratios obtained from in vivo data-based methods
(rzscan ) discrepancies were lower than 2%, in even better
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agreement. Such numbers reinforce not only our previous
working hypothesis that hydrophobic mutations play an essen-
tial role in the determination of peptide stability, but also that
(pathological) substitutions are strongly sequence-dependent
on the so-called protein hot spots, as is the case of IAPP20-29 [3].

More interestingly, from a thermodynamic viewpoint, the
height of energetic barriers is associated not only with nucle-
ation rates but also with reaction kinetics as the required time
(time-lag τc) for reaching steady-state nucleation, that is, τc ∝
exp(β�H ) [32]. From such a perspective, less stable molecular
isoforms of IAPP—i.e., the ones with smaller latent heats, or
equivalently having lower energetic barriers—would induce
a quicker production of IAPP aggregates on a mammalian
pancreas, as is the case of humans (hIAPP) and cats (cIAPP).
For more stable isoforms, as in rats (rIAPP), the huge time
scales associated would be a deterrent pathophysiological
factor for the onset of Diabetes II.

This could lead to an alternative pathway for in silico
designing of artificial peptides aiming to act as adjuncts for
DM-II, under the constraint that they must keep biocompati-
bility with usual amylin, while they should avoid its notorious
metastability. For instance, until recently, these features could
be found just in Pramlintide [33], an experimentally screened
rat-modified version of IAPP.

V. CONCLUDING REMARKS

In this article, we have shown that by performing micro-
canonical analysis of a simple coarse-grained hydrophobic-
polar heteropolymer model for aggregation of proteins, which
are mapped by a hydrophobicity scale in a two-letter code
lexicon, the onset of type-2 Diabetes mellitus in different
mammalian species correlates with aggregation propensities
derived from the thermodynamics of first-order aggrega-
tion transitions of specific segments of amylin isoforms
(IAPP20-29). The (almost) universal ratios among such aggre-
gation propensities extracted from our ab initio multicanonical
simulations were in nice agreement with well-established
heuristic predictors. It corroborates to a rationale underlying
the thermodynamics of sequence-dependent hydrophobic mu-
tations on peptides (hot spots) with the kinetic aspects of their
associated polymerization reactions, hence more aggregation-
prone (i.e., less stable) sequences shall aggregate faster. These
findings may bring potentially new insights for designing and
screening peptides as adjuncts for DM-II therapy from in silico
methods.

Still, such conclusions are confirmed by recent studies,
where some groups have been succeed on simulating the aggre-
gation processes of IAPP through molecular-dynamics (MD)
techniques using all-atom potentials with an implicit [34]
or explicit solvent [35]. For instance, in [35] the authors
investigated the aggregation of decamers of hIAPP and rIAPP
in double layers. Then, by comparing average intermolecular
distances (R) and the van der Waals interaction energies
(�H ) among those rIAPP and hIAPP aggregates, it was
found that RhIAPP � (3.7 ± 0.3) Å and RrIAPP � (4.2 ± 0.7) Å
while �HhIAPP = (−233.6 ± 24.7) kcal/mol and �HrIAPP =
(−326.5 ± 64.5) kcal/mol. So it has arguably been verified
that differences in stability between those IAPP isoforms—
concerning their molecular compactness index and free-energy

differences—are most likely due to the existence of β-sheet
breaking (hydrophobic) Prolines in the rIAPP25-29 segment,
which is missing in hIAPP25-29.

Surprisingly enough, by using the aforementioned data
in our present methodology, one finds a relative aggregation
propensity rMD

hr � 1.39(31), which is in remarkable agreement
with our result rAB

hr � 1.57(2). This provides not only a
compelling verification for the correctness of our working
hypothesis in Sec. IV, which relies on general universality-
based arguments, but it also constitutes further evidence
for the breakout character of IAPP hydrophobic mutations
at the onset of type-2 diabetes. Finally, it would be very
interesting to investigate how slightly extended letter codes for
amino acids (as in [36]), together with more refined coarse-
grained models [10,19], may impact quantitative predictions of
aggregation propensities of other mammalian IAPP isoforms
eventually able to work as natural aggregation deterrents.
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APPENDIX

In a microcanonical simulation [11], the entropy S(Ek) =
bkEk − ak is estimated as a piecewise function, hence energies
are discretized in M bins: �E = Ek+1 − Ek. Thus, S(E) is
built up through a recursive process, where energy histograms
are accumulated during a series of Monte Carlo runs [14,21].
After the entropy is obtained, up to good numerical precision,
numerical derivatives can be employed to directly extract
the system thermodynamics, Eqs. (5)–(7). Therefore, in such
simulations, not only are statistical and finite (box) size effects
important factors to ensure data robustness, but also evaluating
the most appropriate energy bin size and checking against
finite-difference instabilities.

As an illustration, we provide the output of some data
analysis we have performed as preliminary simulations to
set the parameters for our production runs. The system we
have chosen is a small ensemble consisting of two hIAPP20-29

molecules (N = 2×10), which was simulated by methods
already described in Sec. III, and whose parameters—energy-
bin sizes �E, the radius of the spherical container R, and the
kernel size of numerical derivatives dE—were systematically
varied. For every MUCA run, we have accumulated statistics
during 106 Monte Carlo evolution steps; a summary of our
results is given in Fig. 2. Error bars were computed by usual
data-blocking and resampling methods [37]

Concerning our checks for energy-bin sizes, for each value
of �E we have initially evaluated the ground-state Eground

for the dimerization of hIAPP20-29 during 350 MUCA runs.
There we have obtained Eground = {−18.69,−18.23,−17.84,

−20.32}, respectively, for �E = {0.1,0.2,0.5,1.0}. Thus,
while larger values of �E apparently favor sampling lower-
energy states—most likely due to improved signal-to-noise
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FIG. 2. (Color online) Caloric curves for 2×hIAPP20-29 as a
function of energy (E) per residue ε = E/N as an illustration of
various error sources in microcanonical simulations. Upper panel:
energy bin-size effects for �E = 0.1 in black (black), �E = 0.2
in green (dark gray), �E = 0.5 in orange (gray), and �E = 1.0
in light gray (light gray). Central panel: finite-volume effect as a
function of the linear size of the container radius for R = 80 in green
(dark gray), R = 100 in black (black), R = 120 in orange (gray),
and R = 150 in light gray (light gray). Lower panel: kernel-sized
effects in finite-difference derivatives for dE = 0.5 in light gray (light
gray), dE = 1.0 in orange (gray), dE = 1.5 in green (dark gray), and
dE = 2.0 in black (black).

ratios—they provide us with a coarser mesh that prevents
smooth numerical derivatives of S(E) to be safely employed
around the transition. This fact is demonstrated by the caloric
curve β(ε) × ε—where ε = E/N—depicted in the upper
panel of Fig. 2, where one perceives the coarsening effects
induced by �E in a region in the vicinity of the phase
transition. In general, the peak of β(ε) × ε was shifted by no
more than 6% when considering the extreme values of the
bins employed here.

By fixing �E = 0.1, we have investigated along about 300
MUCA runs the effect of taking a different radius R in our
simulations. Analogously to our previous analysis, we have
obtained Eground = {−20.21,−18.68,−17.59,−19.59} when
taking R = {80,100,120,150}. The fluctuation of energy
values found as ground states as a function of increasing
volumes is compatible with an unbiased statistical fluke, thus
presenting no systematics. Also, except for an exceptional 5%
deviation on the height of the peak of β(ε) × ε—implying
a small shift on its energy location �ε/ε < 1%—seen when
R = 150, all curves physically match. Additionally, it also
deserves to be noted that the smaller container we employed
has a linear extension about 20 times larger than fully distended
peptides simulated here. Thus, as observed in the central panel
of Fig. 2, the volume independence of our aggregation studies
seems to us to be a plausible working hypothesis.

The effects of finite-difference derivatives on data analysis
was checked by considering the output from a full-scale
MUCA simulation, performed using �E = 0.1, R = 100,
and 1000 MUCA iterative runs, each taking 107 MC steps.
Here the derivatives of S(E) were computed as central
finite differences dE for n-point kernels, which is translated
on our setup as n = {5,10,15,20} ↔ dE = {0.5,1.0,1.5,2.0}.
Results observed (in the Lower Panel of Fig. 2) for β(ε)
clearly show that employing relatively small kernel sizes (e.g.,
5 � n � 15) may notably improve signal-to-noise levels when
computing (high-order) derivatives of S(E), at the expense of
introducing some systematics in highly curved regions. More
interestingly, despite gradually incrementing the kernel size
from n = 5 up to n = 15—which is able to fully suppress most
statistical noise—it only induces a maximal 7(1)% shift on the
height of the peak of β(ε) × ε. Thus, while using this technique
is mandatory to compute quantities such as Eq. (6), the deter-
mination of transition temperatures as in Sec. III may be more
successful not by employing Maxwell’s constructions over
caloric curves, but by using “shifted entropies” [20]. Hence,
in such an approach one has just to iteratively operate directly
on S(ε) by numerically searching for βc while imposing
the following physical constraint: H (ε)|ε=εfrag ≡ H (ε)|ε=εagg =
[ε − β−1

c S(ε)]|ε=εc
, which is equivalent to saying that at the

temperature of transition β−1
c , the free energy H (ε) on Eq. (7)

has an equal and doubly degenerate minimum.
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