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Mixed Poisson distributions in exact solutions of stochastic autoregulation models
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In this paper we study the interplay between stochastic gene expression and system design using simple
stochastic models of autoactivation and autoinhibition. Using the Poisson representation, a technique whose
particular usefulness in the context of nonlinear gene regulation models we elucidate, we find exact results
for these feedback models in the steady state. Further, we exploit this representation to analyze the parameter
spaces of each model, determine which dimensionless combinations of rates are the shape determinants for
each distribution, and thus demarcate where in the parameter space qualitatively different behaviors arise. These
behaviors include power-law-tailed distributions, bimodal distributions, and sub-Poisson distributions. We also
show how these distribution shapes change when the strength of the feedback is tuned. Using our results, we
reexamine how well the autoinhibition and autoactivation models serve their conventionally assumed roles as
paradigms for noise suppression and noise exploitation, respectively.
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I. INTRODUCTION

Stochastic fluctuations in the numbers of key biochemicals
may be significant compared to their mean levels. Such
fluctuations arise even in a population of cells that were
initially identical due to the inherently probabilistic nature
of chemical reactions and the small numbers of reactants
involved in key cellular processes such as gene activation,
transcription, and translation [1,2]. Consequently, there may
be significant cell-to-cell variability of gene products, in
particular, protein numbers. Stochastic gene expression and,
specifically, such intrinsic fluctuations in protein numbers
have been the focus of several experimental and theoretical
studies [1–9]. Biologically, the fluctuations in the number of a
given protein could be either desirable or detrimental, and thus
requiring suppression, for the relevant cellular function [10].
An important system biological goal is to understand how the
noise characteristics associated with a given gene regulatory
network inform the biological function of the corresponding
protein.

Previous studies have indicated that tight control of protein
numbers, when desired, is often achieved by an autorepression
motif of gene expression [11–15]. It has even been argued
that the reason why this network motif occurs far more
frequently in nature (40% of the known transcription factors
in E. Coli are controlled by negative autoregulation [16])
than in studies of randomized networks is because it achieves
stability against fluctuations [17]. On the other hand, bimodal
distributions of protein numbers may be exploited by cells to
dynamically switch between different expression states; this
is especially useful for cellular processes where conditional
locking of subpopulations of cells into distinct fates needs
to be achieved without changing the underlying network
structure. The autoactivation motif has been implicated in
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systems in which such tunable population heterogeneity is
desirable [18–21].

Here we explore the interplay between stochastic gene
expression and system design by examining two simple
stochastic gene pulsing models with autoregulation. It is
now well established that many genes transcribe and/or
translate in bursts, i.e., mRNA or proteins are produced
with significantly varying dead times in between successive
rounds of production [2,3,8,22,23]. This important aspect of
gene expression is encapsulated in a model in which the
gene can stochastically switch between long-lived off states
and on states leading to intermittent mRNA and protein
expression. (We prefer the term pulsing to bursting since
the latter terminology could be misleading [22].) Therefore,
in the positive (negative) feedback model considered here,
the amount of protein produced is assumed to proportionally
increase the propensity of the gene to dwell in the on (off)
states.

We use the Poisson representation, first introduced in [24],
a technique whose particular usefulness in the context of
analyzing feedback models of gene expression we elucidate
here. While models of stochastic gene expression, includ-
ing those for autoregulation, have been previously consid-
ered [7,8,22,23,25,26], what has been lacking is a systematic
prescription for classifying where in the multidimensional
parameter space of each model qualitatively distinct distri-
butions are obtained. Typical solutions and examinations of
these models utilize the generating function method to solve
the corresponding master equation or numerical simulations
based on the exact Gillespie algorithm or combinations thereof.
However, in both these approaches, systematically classifying
the entire parameter space of the model is not feasible in
general. Here we show how such a classification is possible
when the physically well-motivated Poisson representation is
instead used, since it naturally yields the particular dimen-
sionless combinations of parameters that are the important
ones for each model. We use this representation to both derive
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the exact steady-state protein distributions in the two models
considered here and also analyze the respective parameter
spaces, demarcating where in them bimodal, power-law-
tail, sub-Poissonian, and other distributions occur. Using the
classification of allowed distributions, we then reexamine how
well the models of negative and positive feedback considered
here serve their conventional roles as paradigms for noise
suppression and noise exploitation, respectively.

While the idea of writing down protein distributions
as exact linear superpositions of Poisson distributions is
relatively new [8], mixtures of Poisson distributions have been
long studied in various contexts including photon statistics
in quantum optics [27] and in accident proneness models
in actuarial sciences [28]. Remarkably, in both the autoac-
tivation and the autorepression cases, we find classes of mixed
Poisson distributions [29]. Moreover, they arise dynamically
in these models. We also show that the beta-Poisson mixture,
which has been previously utilized as a versatile prior
distribution in accident proneness models [28], naturally arises
as a limiting case from these dynamics.

II. THEORETICAL FRAMEWORK

A. Poisson representation

Detailed expositions of the Poisson representation can be
found in [24,28,30]. We have briefly discussed application of
the Poisson representation to linear models of gene regulation
without feedback in [8]. Here we analyze how the exact steady-
state protein distributions P (p) of the models with feedback,
positive or negative, may be represented as a superposition
of Poisson distributions, with a weighting probability density
ρ(λ) for the Poisson mean λ. In other words, we determine
whether a probability density ρ(λ) can be found such that

P (p) =
∫ ∞

0

e−λ λp

p!
ρ(λ) dλ. (1)

If indeed such a probability density ρ(λ) can be found, an
immediate implication is that the corresponding P (p) must
be super-Poissonian, i.e., its variance must be greater than its
mean, and thus the ratio of the two, the Fano factor (FF) F ,
must be greater than unity. (In contrast, the Poisson distribution
has variance equal to mean and thus an FF equal to 1.)

The superposing or mixing density ρ(λ) is a function of a
continuous variable λ. In contrast, P (p) is a function of p,
which is only allowed discrete (positive integer) values. Thus
the convexity and monotonicity properties of ρ(λ) are easier to
ascertain than that for P (p). In turn, these properties determine
the allowed shapes of P (p) for a given stochastic gene
expression model. Specifically, bimodal P (p) distributions
correspond to concave (upward) ρ(λ); power-law tails in
P (p) arise when ρ(λ) itself has a monotonically decreasing
power-law tail; a monotonically increasing ρ(λ) leads to a
unimodal P (p) distribution with the mode approximately
at the upper edge of the λ interval; when ρ(λ) is concave
downward with a maximum at some intermediate value of λ,
then unimodal P (p) distributions with a mode around the same
value result. We use the exact, analytical expressions that we
derive for ρ(λ), to map out where in the parameter space each
qualitatively distinct shape of P (p) arises.

B. Master equations for the autoactivation and
autorepression models

1. Autoactivation

The autoactivation model considered here is given by the
following reactions, with the protein switching the gene from
the off to the on state:

D
cf

�
cb

D∗,

D + P
a−→ D∗ + P,

(2)
D∗ pb−→ D∗ + P,

P
pd−→ ∅ .

We use P0(p,t) and P1(p,t) to denote the probabilities that
there are p proteins at time t and that the gene is in the
off and on state, respectively. The master equations for the
time evolution of these probabilities are then obtained using
standard techniques [30]. They are

dP0(p,t)

dt
= − cf P0(p,t) + cbP1(p,t) − apP0(p,t)

+pd [(p + 1)P0(p + 1,t) − pP0(p,t)],

dP1(p,t)

dt
= cf P0(p,t) − cbP1(p,t) + apP0(p,t) (3)

+pd [(p + 1)P1(p + 1,t) − pP1(p,t)]

+pb[P1(p − 1,t) − P1(p,t)].

We define ρ0(λ) and ρ1(λ) as

Pα(p,t) ≡
∫ ∞

0
dλ ρα(λ,t)e−λ λp

p!
for α = 0 or 1 (4)

and note that ρ(λ) = ρ0(λ) + ρ1(λ) satisfies the normalization
condition

∫
dλ ρ(λ) = 1. The corresponding master equa-

tions for ρα(λ) are then given by

∂tρ0(λ,t) = −cf ρ0(λ,t) + cbρ1(λ,t) + ∂λ[λρ0(λ,t)]

− a[λρ0 − ∂λ(λρ0)],

∂tρ1(λ,t) = cf ρ0(λ,t) − cbρ1(λ,t) + ∂λ[λρ1(λ,t)]

+ a[λρ0 − ∂λ(λρ0)] − pb∂λρ1(λ,t), (5)

with the boundary condition

± ae−λ λp

p!
λρ0(λ)

∣∣∣∣
λmax

0

= 0 (6)

for 0 � λ � λmax; λmax needs to be computed. In going from
Eq. (3) to Eq. (5) we have imposed the condition that the
boundary terms resulting from integration by parts vanish.
The solution we obtain does indeed behave as required and so
the assumption that the boundary terms vanish can be justified
a posteriori (see Sec. III).

052712-2



MIXED POISSON DISTRIBUTIONS IN EXACT . . . PHYSICAL REVIEW E 90, 052712 (2014)

2. Autorepression

The autorepression model considered here is given by the
reactions

D
cf

�
cb

D∗,

D∗ + P
r−→ D + P,

(7)
D∗ pb−→ D∗ + P,

P
pd−→ ∅.

We can derive the master equations satisfied by the λ densities
as before,

∂tρ0(λ,t) = −cf ρ0(λ,t) + cbρ1(λ,t) + ∂λ[λρ0(λ,t)]

+ r[λρ1 − ∂λ(λρ1)],

∂tρ1(λ,t) = cf ρ0(λ,t) − cbρ1(λ,t) + ∂λ[λρ1(λ,t)]

− r[λρ1 − ∂λ(λρ1)] − pb∂λρ1(λ,t), (8)

with the boundary condition

− e−λ(pb − λ − rλ)
λp

p!
ρ1(λ)

∣∣∣∣
λmax

0

= 0 (9)

for 0 � λ � λmax, where such a λmax must be found.

III. RESULTS

To place our results for the autoactivation and autorepres-
sion models in context, we will find it useful to compare these
results with those derived for the linear pulsing model in [8].
Both autoregulation models reduce to the linear pulsing model
(LPM) in the limit where the autoactivation strength a or the
autorepression strength r tends to 0. In [8] we have also shown
how the phase diagram of all possible distributions for the LPM
can be classified in terms of the two rescaled dimensionless
rates cf /pd and cb/pd .

A. Autoactivation

The coupled master equations (5) can be solved using
standard techniques and give

ρ(λ) = N e[a/(pd+a)]λλcf /(pd+a)−1

(
pb

pd

− λ

)cb/(pd+a)−1

, (10)

with 0 � λ � pb/pd ; N is the normalization constant. The
choice of λmax = pb/pd ensures that the boundary terms
vanish, as required. This exact expression leads naturally to
the correct parametrization of the combinations of the rate
constants that are relevant for analyzing this nonlinear model.
We rescale λ by pb/pd so that it lies between 0 and 1. It is
useful to rescale all rates by the effective protein degradation
rate pd . For convenience in classifying the different kinds
of protein distributions that arise in this model, we define the
following parameters: α ≡ a pb/(1 + a), φ ≡ cf /(1 + a), and
β ≡ cb/(1 + a). We then have

ρ(λ) = N eαλλφ−1(1 − λ)β−1. (11)

Note that φ and β characterize the singularity at the upper
and lower limits of λ. Using this superposition of the Poisson

representation, we have found that in each of the four quadrants
determined by φ and β greater than or less than 1, the protein
distribution has a distinct shape. Since the superposing density
ρ(λ) is found to extend from λ = 0 to λ = pb, P (p) extends
until ∼pb. When the density diverges at both limits, i.e., φ

and β < 1, yielding a ρ that is concave upward, the protein
distribution is bimodal. When ρ vanishes at both limits, i.e.,
φ and β > 1, yielding a ρ that is concave downward, a broad
bell-shaped distribution of proteins arises.

As the autoactivation strength a → 0, α → 0, φ → cf , and
β → cb the protein distribution of the autoactivation model
becomes the exact steady-state distribution [8] obtained in the
LPM. The latter is a beta distribution

ρ(λ) = Nλcf −1(1 − λ)cb−1. (12)

Thus, the phase diagram of possible distributions in this model
is very similar, in large regions of the parameter space φ and β,
to that of the LPM, despite the autoactivation, once we identify
φ and β in this model with cf and cb in the simple pulsing
model.

We focus on the most interesting feature that arises in this
phase diagram in this model. Consider the quadrant where
φ < 1 and β > 1. When a = 0, i.e., in the LPM, we have
found [8] long-tail distributions with power-law behavior.
In the autoactivation model, in contrast, two possibilities
arise depending on whether α is less than or greater than
αc ≡ (

√
1 − φ + √

β − 1 )2. In the former case long-tail
distributions with power-law regions arise, with an exponent
φ − 1 as in the a = 0 case.

For α > αc the distribution becomes an unusually behaved
bimodal distribution. To appreciate its nature we recall that
when both φ and β are less than 1 (Fig. 1) bimodal distributions
occur with the two modes always at 0 and pb, i.e., at the edges
of the allowed values of λ. As a the activation strength in-
creases, the weights around 0 and pb are redistributed without
affecting the separation between the modes. This is the classic
binary response [18] typically associated with autoactivation:
Cells may be thought to be divided into two subpopulations
with low and high protein numbers and increasing activation
strength only changes their relative proportions. In contrast, the
present bimodal distribution exhibits a second mode not at pb,
the maximum allowed value of λ, but at intermediate values.
As α is increased by increasing a, the protein distribution
goes from being a monotonically decreasing power law to
bimodal because autoactivation affects cells with intermediate
numbers of proteins the most. Thus, when the feedback
strength is strong enough that α > αc, a new minimum and
a new maximum develop in ρ(λ), at intermediate values of
λ. Correspondingly, P (p) becomes bimodal with the second
mode arising at a value of p < pb. As the activation strength
increases, this mode tends to higher values of p, but the weight
at 0 (the first mode) simultaneously erodes rapidly, making the
distribution effectively unimodal for strong enough activation.
Thus, in this quadrant, even though bimodal distributions arise
for intermediate activation strength, the response to increasing
activation is really graded, as illustrated in Fig. 1. As a

increases, the protein distribution goes from being negatively
skewed, with a large likelihood of obtaining a small number
of proteins, to a positively skewed distribution, with a large
likelihood of obtaining a large number of proteins.
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FIG. 1. The top left shows that the response of the protein
distribution to increasing activation strength in the φ < 1,β < 1
quadrant in the autoactivation model resembles the classic binary
response associated with autoactivation systems. The bottom left
shows that the effect of increasing activation strength a on the protein
distribution in the fourth quadrant (φ < 1,β > 1) is graded. The
top right shows the effect of increasing autorepression strength r

on the Fano factor of the protein distribution in the autorepression
model. For the values chosen, both β and the Fano factor go through
maximum values at (different) intermediate values of r , before the
distribution becomes sub-Poissonian after the threshold value r = r0;
this happens exactly when β = 0. The bottom right shows the effect
of increasing autorepression strength r on the protein distribution in
the autorepression model. Six different points from the above figure
are chosen from the range where β remains positive. The other rates
are the same as the ones used in the top right figure. Here r increases
from lighter to darker values.

We point out the possible relevance of our results to the
observation in an experiment of To and Maheshri [31] of
bimodal protein expression in a synthetic yeast system with
positive feedback and no cooperativity as in our model. As
the activation increases, their distribution goes from a broad
bell-shaped distribution to the bimodal distribution similar to
the one described above. Our model explains their observation
of graded response of the 1xtetO promoter with increasing
autoactivation strength. As expected from our model, with
increasing a, the mode at larger value travels further towards
the right and acquires more weight until a Poisson-like
distribution occurs.

Since this model is nonlinear the equations for all the
moments are coupled and one needs the full distribution to
obtain even the lowest two moments. Using the exact solution
for the distribution, one can evaluate the FF, the ratio of
the variance to the mean of a distribution. The FF may or
may not go through a maximum value as a is increased,
but beyond a threshold the FF always decreases with a and
tends to 1 as a → ∞. Thus increasing autoactivation results
in noise reduction, a role not conventionally associated with
positive feedback. This is true since the gene is always on
as the activation strength tends to infinity and a Poisson
protein distribution with F = 1 results. For any initial choice
of parameters, for large enough a, both φ and β fall below
1 and the protein distribution becomes bimodal. However,

in the limit a → ∞, the mode at 0 is entirely eroded and
ρ(λ) → δ(pb − λ): P (p) becomes Poissonian.

B. Autorepression

The analysis of this model proceeds along the same lines as
the autoactivation model. Once again, this formulation leads
naturally to the correct parametrization of the combinations of
the rate constants that are relevant for analyzing this nonlinear
model. We define the parameters α ≡ rpb/(1 + r)2, φ ≡ cf ,
and β ≡ pbr/(1 + r)2 + (cb − cf r)/(1 + r). All rates have
been scaled by the protein degradation rate pd as before. In
terms of these variables, the steady state generating function
is identical in form to that derived in the autoactivation model.

However, there is a subtle difference that has profound
consequences: The parameter β can become negative for
suitably chosen rates pb, cf , cb, and r in this model, unlike the
autoactivation case. Thus the weighting probability density
ρ(λ) can be found only if β > 0. This immediately implies
that for β > 0, the protein distribution in the autorepression
model is super-Poissonian, i.e., its FF is greater than 1 and thus
noisier than the Poisson distribution that arises in the simple
birth-death model.

When β < 0, we find that the protein distribution becomes
sub-Poissonian, i.e., its FF becomes less than 1. Thus, only
when β < 0 can the autorepression be said to be strong enough
to cause reduction of the noise level in related models, such
as the LPM and the autoactivation model. On analyzing the
condition β < 0, we find that for any given value of the rates
cf , cb, and pb, there is a threshold value of the repression
strength r0 such that when r increases beyond this threshold
value, the distribution becomes sub-Poissonian (as illustrated
in Fig. 1). As seen in the top right panel of Fig. 1, this
suppression occurs for large values of r and over a narrow
range. Exactly at the threshold value, the Fano factor is found
to be unity. The expression for r0 is

r0 = cb + pb − cf + √
(cb + pb − cf )2 + 4cf cb

2cf

. (13)

For values of r > r0, i.e., when the distribution is sub-
Poissonian, a formal expression for ρ(λ) may be derived, with
the understanding that it can no longer be interpreted as a
probability density. In fact, λ now extends over the complex
plane. Remarkably, even in this case, the functional form of
ρ(λ) remains the same for a suitably chosen contour. In this
case, depending on whether cf is less than or greater than
1, the protein distribution is a monotonically decreasing or a
sharply peaked bell-shaped distribution, respectively.

When β > 0, we find that the different possible distribu-
tions of the autoactivation models all occur for autorepression
for appropriate values of α, β, and ν when β > 0, as illustrated
in Fig. 1. This underscores the inadvisability of naively infer-
ring that the choice of autoinhibition motif is designed to obtain
noise suppression without further exploring the specific details
of the system. See also [32] for a control and information
theoretical perspective on the issue. Quantitatively, λ is in
the range 0 � λ � pb/(1 + r) and so the protein distribution
extends to about p ∼ pb/(1 + r). The effective parameter β

is now a function of all the rates in the problem while the
effective parameter φ = cf as in the linear pulsing model.
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IV. CONCLUSION

The autoregulation motif is ubiquitous in gene regu-
lation [2,17]. The autoregulation models studied here are
admittedly simplified descriptions of those observed in nature:
We have not included separate transcription and translation
steps. In prokaryotes, since mRNAs are rapidly translated
into proteins, this is typically a reasonable approximation.
For eukaryotic systems, when the mRNA time scale is
significant, these results should not be applied literally.
Further, the effects of cooperative autoregulation are not
included in our models. However, even in this simple model a
plethora of behaviors is observed including power laws and
bimodal distributions that behave in a graded fashion and
sub-Poissonian statistics. We have also established the utility
of the Poisson representation, which yields quite naturally the

important, scaled, dimensionless parameters that characterize
nonlinear gene regulation models. We have shown that au-
toactivation produces binary responses to increasing activation
strength and that autorepression produces noise-suppressed
sub-Poissonian protein distributions in very limited regions
of the parameter space. Our work serves to add a note of
caution to assuming that positive and negative feedback, when
found in natural biological systems, are present to serve these
purposes.
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