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Modeling the dynamics of dendritic actin waves in living cells
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The actin cytoskeleton in living cells exhibits a high degree of capacity for dynamic self-organization.
Recent experiments have observed propagating actin waves in Dictyostelium cells recovering from complete
depolymerization of their actin cytoskeleton. The propagation of these waves appear to be dependent on a
programmed recruitment of a few proteins that control actin assembly and disassembly. Such waves also arise
spontaneously along the plasma membrane of the cell, and it has been suggested that actin waves enable the cell
to scan a surface for particles to engulf. Based on known molecular components involved in wave propagation,
we present and study a minimal reaction-diffusion model for actin wave production observed in recovering cells.
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I. INTRODUCTION

The intracellular actin cytoskeleton is a dynamical system
where actin filaments treadmill, growing and disassembling
continuously, and the actin polymer network undergoes
constant and rapid reshaping. Actin dynamics plays a vital
role in processes such as cell motility, active cell shape
control, generation of cleavage furrow during cell division,
and phagocytosis. An understanding of the spatiotemporal
dynamics and of self-organization of the cytoskeleton would
be of great importance for cellular biophysics. In order to
study the the capacity of the intracellular actin system to
self-organize, Gunther Gerisch and coworkers studied the
temporal evolution of Dictyostelium cells treated with the
depolymerizing agent Latruculin A [1,2]. In these experiments,
the cells were attached to a planar substrate, and, following
actin depolymerization, the Latrucilin A was washed away
and the subsequent reorganization of actin was studied. The
authors reported a defined sequence of patterns: first, the
appearance of mobile actin spots, followed by the generation
of propagating waves of actin along planar substrate-attached
membrane, before the normal organization and polarity of
motile cells is restored. Though less frequent and vigorous,
similar propagating actin waves have also been observed in
normal motile cells. During recovery from depolymerization,
in the intermediate wave-forming state, cells exhibit added
capability to phagocytose, suggesting a link between the
observed actin waves and formation of phagocytic cup in
response to curved particles. Moreover, phagocytic cups
display a zonal pattern of proteins resembling the pattern
of propagating actin waves, suggesting a connection between
actin waves and phagocytosis [3].

Bretschneider et al. [2] have shown that actin self-
organization associated with wave formation involves the
ordered recruitment of proteins from the cytoplasmic pool.
Three proteins and protein complexes, myosin IB, Arp 2/3
(actin-related protein 2-3 complex) complexes, and coronin,
were found to form distinct three-dimensional patterns in
association with the actin waves. Myosin IB is enriched at the
wave front and close to the plasma membrane, the Arp2/3
complex is distributed throughout the waves, and coronin
forms a sloping layer on top of them. CARMIL (capping
protein, Arp2/3, and myosin I linker) is also recruited to the
waves. The localization of Arp2/3 complexes, which nucleate

new actin filaments by branching, suggests the association of
propagating waves with dendritic actin. Myosin IB may link
the actin network to the membrane, and coronin facilitates
disassembly of actin networks. Wave formation does not
depend on signals transmitted by heterotrimeric G proteins,
nor does their propagation require SCAR (suppressor of G
protein-coupled receptors, the cARs), a regulator upstream of
the Arp2/3 complex.

Actin waves have been observed in living cells under
a variety of other conditions as well. Different types of
reaction-diffusion waves of actin have been proposed to
determine locomotion and shape of mouse melanoma cells
and Dictyostelium cells [4]. Actin-based waves of Hem-1
(hematopoietic protein-1) have been discovered in neutrophils
and shown to be directed by chemoattractants toward the
front of the cells [5]. The waves generated in their study
are spontaneously generated in association with the Arp2/3
complex. Related theoretical work has been carried out by
several groups, including, for example, in Ref. [6], where
the authors proposed a model coupling calcium actin waves
with the cell membrane. In Ref. [7], the authors sought to to
explain the actin waves in recovering cells in terms of a model
where the actin system was treated as an excitable system.
In this context, the author of Ref. [8] studied a in silico
molecular-scale model of stochastic growth of actin which
generated traveling waves, though it was not clear whether
the model would generate the expanding ringlike wavefronts
highlighted in the experimental studies [1]. In Ref. [9], the
authors introduced a model of treadmilling actin filaments
coupled to the membrane, with waves generated by nucleating
proteins that are active when bound to the membrane. While
the model is likely to be relevant for a number of scenarios
where actin waves are observed, it is most likely not directly
applicable to the experiments by Gerisch and coworkers, where
the waves are believed to be associated with the assembly
and disassembly of dendritic actin. In Ref. [10] a mechanism
was proposed in terms of bistability between two structurally
distinct forms of the actin network. We will discuss this model
under Discussion, noting here only that, to our knowledge,
there is no known mechanism for direct interconversion
between the two forms; rather, we believe that one form of the
network will have to be disassembled for the other form to grow
in the same region of space, which has not been adequately
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accounted for in the dynamic model proposed by the author.
The authors of Ref. [11] have looked at the phenomenon
of actin waves by considering the growth of actin filaments
in conjunction with signaling proteins. Their model is far
more complex than ours with many more parameters. It also
incorporates some details of filamentous actin structure but
assumes that filaments grow perpendicularly to the substrate
and hence that free actin was being added to the filaments
close to the membrane. However, in the case of dendritic actin
filaments growing at an angle of 70◦ to each other, it is difficult
to understand this addition of free actin to the filaments only
close to the membrane. The importance of this assumption for
wave production in their model was not discussed. There is
also very little discussion about the robustness of their model,
the nature of the phase diagrams, and the essential physical
mechanism of wave production in their model.

In this paper we develop and study a minimal model for
actin wave generation involving known components whose
participation in actin propagation has been verified experimen-
tally, while also accounting for dendritic nucleation in relation
to actin polymerization. One of our aims is to understand
whether the observed dynamics can be accounted for by
relatively simple reaction-diffusion type models or whether it
will be necessary to invoke more complex models that would
account for the detailed dendritic structure of actin. Despite
previous theoretical studies, this remains an open question. In
our modeling, we refrain from including components that have
not been experimentally verified and identify a core motif of
the network of chemical reactions that are involved in actin
phenomenology. We note, however, that our model is quite
robust to addition of new components as we will discuss later,
in particular, in the context of myosin IB, which has been
hypothesized as being a player in controlling actin polymer-
ization. Our model should help us identify the core underlying
physical mechanism for actin wave formation in this system.

II. THE MODEL

The dendritic nucleation model Ref. [12,13] has been
proposed to explain the growth dynamics of dendritic actin
within cells Fig. 1. External stimuli cause the activation of
GTPases [hydrolase enzymes that can bind and hydrolyze
guanosine triphosphate (GTP)] and PIP2 (phosphatidylinositol

FIG. 1. (Color online) Dendritic nucleation model.

FIG. 2. (Color online) A schemata of the biochemical reactions
underlying actin wave generation.

4,5-bisphosphate) signaling proteins. These then activate the
WASP-SCAR (WASP is a acronym for Wiskott-Aldrich
syndrome protein) cascade which, in turn, activates the Arp2/3
proteins, enabling them to bind to growing actin filaments. The
protein complex Arp2/3 is necessary for promoting branching
of filamentous actin, thus stabilizing and strengthening den-
dritic actin structures against stress. Arp2/3 protein units help
nucleate new branches of actin filaments at 70◦ to the mother
filament. We expect the growth of dendritic actin to be autocat-
alytic since in an increase in the number of dendritic actin fila-
ments should increase the number of nucleation events, leading
to new branches. The growth of actin filaments is stopped
by capping proteins, whose function is to limit the length of
filaments and thus to aid the generation of new actin branches at
different sites, aiding in strengthening the dendritic structure.

In light of our goal of identifying a base motif of chemical
reactions, we simplify the above process in our endeavor to
develop a minimal model. In our model, the growth of bound
dendritic actin is treated as a simple autocatalyic process, with
free ATP-actin (adenosine triphosphate–attached actin) getting
converted to bound ATP-actin. Bound ATP-actin hydrolyzes
to ADP-actin (adenosine diphosphate–attached actin), which
can bind to coronin, which destabilizes dendritic actin; the
bound states of ADP-actin with coronin can then result in
actin disassembly. Free ADP-actin is converted back to free
ATP-actin and the cyclic process continues. In our minimal
model, we refrain from explicitly including the effect of the
Arp2/3 complex, structural details such as the 70◦ angle made
by actin filaments with their branches, as well as the role
of capping proteins. These and other features are indirectly
incorporated within the various elements of the model, be they
rate constants, the autocatalytic production of bound dendritic
actin, and so on. However, we propose that these additional
details could be easily incorporated into the model as per future
modeling needs. The chemical reactions of our minimal model
are shown in Fig. 2, where AB:ATP represents ATP actin in the
bound state and AB:ADP the ADP actin. A,D,AD, AADP are
the free actin, coronin (which promotes actin disassembly), the
actin-coronin bound state, and the free ADP actin, respectively.

The rate equations for the above reactions can be written as

∂[AB:ATP]

∂t
= {

k1[A] + k1
B[A]([AB:ATP] + α1[AB:ADP]

+ α2[AD])
}

×
{

ρmax − ([AB:ATP] + [AB:ADP] + [AD])

ρmax

}

− k2[AB:ATP], (1)
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∂[AB:ADP]

∂t
= k2[AB:ATP] − k3[AB:ADP][D], (2)

∂[AD]

∂t
= k3[AB:ADP][D] − k4[AD], (3)

∂[AADP]

∂t
= D∇2[AADP] + k4[AD] − k5[AADP], (4)

∂[D]

∂t
= D∇2[D] + +k4[AD] − k3[AB:ADP][D], (5)

∂[A]

∂t
= D∇2[A] + k5[AADP] − {

k1
B[A]([AB:ATP]

+ α1[AB:ADP] + α2[AD]) + k1[A]
}

× ρmax − ([AB:ATP] + [AB:ADP] + [AD])

ρmax
. (6)

Here k1-k5 are constants representing reaction rates and D
represents the diffusion constant for ATP, ADP, and coronin.
For simplicity, we assume the same diffusion constant for all
free molecular species.

The first equation describes the production of bound actin.
The first term, k1[A](S([AB:ATP] + α1[AB:ADP] + α2[AD] +
s), describes the production of bound actin, which depends on
the concentration of free actin [A]. We find that the constants
α1 and α2 have to be nonzero for the production of waves. This
autocatalytic dependence of the polymerization rate on bound
actin is mediated through Arp2/3 for the proposed mechanism.
There is also evidence of the role of PIP3 [phosphatidylinositol
3,4,5-trisphosphate] [3] for wave formation, presumably via
coupling of PIP3 localization to polymerized actin and the
regulation of actin polymerization by PIP3. While we do
not explicitly include PIP3 in our minimal model, PIP3 will
contribute to the autocatalytic process and might play an
important role in controlling the values of α1 and α2. PIP3

along with other proteins may bind to both bound ATP-actin
as well as bound ADP-actin and may attract free ATP-actin
to it. This could explain why actin polymerization depends
not only on bound ATP-actin but also on bound ADP-actin.
The term k1[A] inside the bracket was added to ensure that
formation of bound actin even in the absence of bound actin
to start with. k2[AB:ATP] takes into consideration degradation
of bound actin. The multiplicative factor [ρmax − ([AB:ATP] +
[AB:ADP] + [AD])]/ρmax is included in order to ensure that the
local concentration of the total bound actin does not increase
beyond ρmax. In our model, for the purpose of simplicity we
do not explicitly incorporate the third dimension (depth) in
the model. In the experimental system, the finite thickness
of the cell perpendicular to substrate would imply that
polymerization of dendritic actin cannot continue arbitrarily
and presumably there is a buildup of mechanical stress as the
thickness or depth of dendritic actin continues to grow, leading
to a reduction in polymerization rate, leading eventually to
saturation. The ρmax term captures this effect.

The k2[AB:ATP] in the second equation describes the
hydrolysis of bound ATP-actin to bound ADP-actin [AB:ADP].
The binding of bound ADP-actin to the depolymerizing agent
is described by the second term k3[AB:ADP][D] and also by the
first term in the third equation. This bound state destabilizes
the actin filament, leading to actin depolymerization and the
generation of free ADP-actin [AADP] and free destabilizing

agent (coronin) [D]. The fourth equation gives the evolution
of free ADP-actin, with the first term k4[AD] corresponding to
the production of free ADP-actin from bound ADP-actin and
coronin, while the final term represents the conversion of free
ADP-actin in to free ATP actin. The fifth equation above is the
rate equation for coronin and the final equation describing the
evolution of the free actin concentration.

III. SIMULATION OF THE EQUATIONS

The equations were simulated in two dimensions using pe-
riodic boundary conditions on a square lattice with 100 × 100
points (see the Supplementary Material [14]). Unfortunately,
the values of the rate constants are not known. A different
system which nevertheless exhibits somewhat similar behavior
in terms of the generation of traveling waves in a reaction-
diffusion system is the MinD-MinE system in bacteria; our rate
constants are similar to the ones used there [15], which seems
reasonable since we do not expect the rate constants to differ by
orders of magnitude. In Fig. 3 we show results from simulation
of these reaction diffusion equations with the values of the rate
constants set at k1

B = 0.003 μM−1 s−1, k3 = 0.1 μM−1 s−1,
k4 = 0.5 s−1, k5 = 1 s−1, k2 = 20 s−1, k1 = 0.05 s−1, α1 =
0.6, α2 = 0.3, and ρmax = 2 mM. The diffusion constants
for the free elements were set to be 2.5 μm2/s. The total
concentrations of the actin and depolymerizing agent in the
free and bound forms were 1 and 0.3 mM, respectively.
We clearly observe wave formation where we find an initial
state of homogeneous free actin concentration developing into
heterogeneous regions containing mixtures of bound and free
actin. These later separated into moving patches of bound
actin, ultimately culminating into a pattern of a periodic
show of rings of actin growing in size radially outwards (in
interpreting the figures, we note that the boundary conditions
are periodic in both directions). This pattern was also seen
to be a dominating effect in the actin wave experiments by
Bretschneider et al. [2]. In Fig. 3, 100 units corresponds to a
length of 10 μ. The time steps between images in the movie
is 0.69 s. The movies skim through 1575 − 1507 = 68 frames
as the waves traverse a distance of 50 units, indicating an
average velocity of 0.11 μ m/s, which is consistent with the
experimentally observed velocity for wave propagation.

We supplemented these numerical simulations with a linear
stability analysis of the system of equations. This involved,
first, finding a homogeneous fixed point involving the con-
centrations of the various molecular components associated
with wave propagation elements involved in the process of
wave production, for which there exists a fixed point. A
linear stability analysis was then carried out about this fixed
point. Among the eigenvalues calculated, we identified one
eigenvalue with a positive real part. In Fig. 4, we plot the
real and imaginary component of this eigenvalue ω as a
function of wave number q. The real part governs the growth
of a sinusoidal perturbation (with wave number q) about the
homogeneous fixed point, while the imaginary part gives us
the frequency of oscillation (as a function of q). In Fig. 4 it is
seen that for really small values of q we have Reω > 0 when
Imω = 0, implying a Turing-like instability for very small
values of q [this feature is more easily visible in Fig. 5(c)] and
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FIG. 3. (Color online) Results of the simulation of Eqs. (1)–(6) in
the text. In (a) and (b) we see the homogenous actin breaking up into
heterogenous free actin and bound actin. Panels (c)–(f) illustrate these
evolving into moving portions of bound actin. Panels (g)–(h) illustrate
the formation of rings of bound actin expanding radially outwards
(bearing in mind that we implement periodic boundary conditions).
These rings die out and reappear periodically, showing similarities to
the expanding rings of actin waves seen in the experiments.

FIG. 4. (Color online) Real and imaginary parts of the eigenvalue
of the stability matrix (s−1) with the largest real part plotted against
wave number q (μm −1).

for a bigger range of q we have Reω > 0, Imω > 0, implying
a wave like instability.

The maximum slope of the Im(ω)-k graph in Fig. 4 is around
0.1 μm/s, which gives us an estimate of the wave velocity.
We find that its value obtained from linear stability analysis
agrees with the velocity obtained through an explicit computer
simulation of the reaction diffusion equations.

IV. THE PHYSICS OF WAVE PRODUCTION

In order to understand the underlying physical mechanism,
we can study the first equation corresponding to the rate of
generation of bound ATP-actin. We will seek first to understand
why nonzero values of the parameters α1 and α2 are essential
for wave formation. For that purpose, let us assume that α1 as
well as α2 are set to zero. If we ignore the ρmax multiplicative
factor, the rate of change of bound ATP-actin, [AB:ATP], is
given by k1[A] + kB

1 [A][AB:ATP] − k2[AB:ATP]. If at time t =
0, [AB:ATP] = 0 and all actin exists as free ATP-actin, the level
of [AB:ATP] will continue to build up at a rate dominated by
the term k1[A], while simultaneously the level of [A] will
continue to be depleted. Once the level of [AB:ATP] becomes
high enough the rate of change goes to zero, with the level
of [AB:ATP] satisfying the equation [AB:ATP] = k1[A]/(k2 −
k1[A]). There is no mechanism in the model to bring the level
of [AB:ATP] back down to lower levels, without which it would
be impossible to have stable propagating waves.

In contrast, let us set α1 = α2 = 1, in which case the rate
of change of [AB:ATP] is given by k1[A] + kB

1 [A][AB:Total] −
k2[AB:ATP], where AB:Total is the total bound actin both in the
ATP and ADP bound forms. Now the autocatalytic component
of the growth rate depends on the total bound actin. If we
now carry through the previous analysis, as the level of AB:ATP

starts to build up, so does the the level of AB:ADP, which also
contributes to the autocatalytic process. Coronin D attaches
to AB:ADP and destabilizes it. This leads to a fall in the level
of bound actin, the autocatalytic growth rate for AB:ATP goes
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down and could lead to a decay in the level of [AB:ATP], thus
bringing its level back down.

In order to understand the associated spatiotemporal pattern
of localization, consider a propagating wavefront of dendritic
actin. At the the front of the wave we have newly generated
dendritic ATP-actin. Towards the back of the wave most of
the dendritic actin exists as ADP-actin, with some fraction
attached to the destabilizing agent D. New actin branches
are being polymerized towards the front and dendritic actin
continues to be depolymerized (or destabilized) at the back.
Once D is released following depolymerization, it diffuses
and attaches to adjacent regions of dendritic ADP-actin.
Thus the region towards the back of the wave has enhanced
concentration of D, while the front of the wave has enhanced
growth rate. For a smooth operation of this mechanism, it is
essential both that the concentration of D is small enough so
a significant fraction of D is in bound form and that there
exists a maximum density of dendritic actin characterized by
ρmax that serves to localize growth of dendritic actin to the
front of the wave (assuming that the density of dendritic actin
in the middle of the wave is sufficiently close to ρmax). It is
worth noting that, despite the difference in the details, this
mechanism resembles wave formation involving the proteins
MinD and MinE in bacteria, with the role of actin resembling
that of MinD [15].

In the limit of relatively high levels of free actin and limited
amount of coronin (as might be the case for cells recovering
after complete depolymerization), we can understand the
behavior of the system as a coupled activator-inhibitor system.
Here bound actin plays the role of activator while free coronin
acts as the inhibitor. Bound actin enhances its own production
while also effectively acting as a source for coronin (assuming
a significant portion of coronin is bound to dendritic actin).
Since it is free coronin that diffuses and not bound actin,
in this limit we have a system of local activator and global
deactivator, a system that has been studied extensively by
Meinhardt and others [16]. However, it is important to note
while such a system is expected to exhibit stationary patterns,
we do not expect traveling waves. Our intuition is that in order
to obtain traveling waves it is important to introduce a delay
in the deactivator-induced disassembly. Thus the following
two equations might capture the essence of our proposed
mechanism in the simplest form (though our equations are
strictly not reducible to these in any limit):

du

dt
= κ1u(1 − u) − κ2v(t − τ ),

(7)
dv

dt
= D∇2v + κ3u − κ4v,

where u and v represent dendritic actin and free coronin,
respectively, and κ1, κ2, κ3, and κ4 represent effective rate
constants and τ is a delay time so the rate of degradation of
actin depends on the level of deactivator at some previous
time. In the full model, this time delay is incorporated by
the intermediate steps of binding of coronin to dendritic
actin and the subsequent disassembly of dendritic actin
(there is an additional time delay related to the conversion
bound ATP-actin to ADP-actin that is not incorporated in
this simplified model). The resulting waves resemble pursuit

waves in predator-prey models, with the deactivator (predator)
following the the activator (prey), which is consistent with
the observed localization profile of coronin. The simplified
equations resemble somewhat the equations presented in Ref.
[7], though there the constituents u and v were not identified
and the authors did not have time delay incorporated into
their model and had instead included a form of diffusion for
the activator as well, which presumably was crucial for wave
formation in their analysis. While their model is reasonable
for cortical actin, in this case where the propagating wave
corresponds to generation and disassembly of dendritic actin,
we believe our model is far more grounded in the underlying
biochemistry. Finally, in the limit of lower actin concentration,
as is probably the case in normal mobile cells, this simplistic
model breaks down and the pattern of actin polymerization
following disassembly is governed by diffusion of free actin.
In this case, the reduced model is unable to capture even
qualitatively the behavior of the system and we need to
study the more complete set of reaction-diffusion equations
presented earlier.

V. PHASE DIAGRAMS FOR THE MODEL

In the previous section we demonstrated the generation
of actin waves for a particular set of parameters and noted
that we obtained a value of wave velocity consistent with
experimental measurements. Since most of the parameters
in our model are effective parameters, we do not know
the precise values of these parameters. Thus it would be
important to have an understanding of the robustness of
wave generation to variations in these parameters. We would
also like to characterize systematically the different regimes
of behavior exhibited by our model. To do so, we carry
out the linear stability analysis as described in the previ-
ous section for different values of the parameters. Due to
the high dimensionality of parameter space, we study the
phase diagrams for variations of two parameters at a time,
keeping others fixed at the values k1

B = 0.003 μM−1 s−1,
k3 = 0.093 μM−1 s−1, k4 = 0.5 s−1, k5 = 1 s−1, k2 = 20
s−1, k1 = ×0.05 s−1, α1 = 0.6, α2 = 0.3, ρmax = 2 mM.
The diffusion constants for the free elements were set to be
2.5 μm2/s. The total concentrations of the actin and coronin
in the free and bound forms were 1 and 0.3 mM, respectively.
For each value of the two parameters in question the wave
number was varied over a particular interval. An instability
about the homogeneous state was identified by checking if
the real part of any eigenvalue was positive. If the interval of
the wave number, q, over which the real part of the leading
eigenvalue was positive, the imaginary part being zero for at
least some subrange of q implied the occurrence of a Turing
instability and while the imaginary part being nonzero implied
the existence of a wave like instability. Thus we look for
four possibilities: a homogeneous stable steady state with
no instabilities, wavelike instability, Turing instability, and
mixed Turing wave-like instability. For wavelike instability,
we expect stable propagating waves, for Turing instability we
expect formation of stationary patterns consisting of regions
with different chemical concentrations, and for the case of
mixed instability we expect traveling waves for some set of
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FIG. 5. (Color online) (a) Region plot showing the regions of Turing and wave instabilities for various values of the total actin concentration
and total destabilizing agent concentration. (b) Real and imaginary parts of the eigenvalue with the largest real component (s−1) plotted against
q (μm −1) for 1000 μM of total actin concentration and 350 μM total destabilizing agent (coronin) concentration, clearly showing the presence
of a wavelike instability. (c) Real and imaginary parts of the corresponding eigenvalue with the largest real component (s−1) plotted against q

(μm−1) for 790 μM of total actin concentration and 195 μM total destabilizing agent concentration, clearly showing the presence of a Turing
as well as a wave instability. (d) Real and imaginary parts of the stability matrix with the largest real component (s−1) plotted against q (μm −1)
for 600 μM of total actin concentration and 300 μM total coronin concentration showing the lack of instabilities.

wavelengths coexisting with stationary patterns for a different
range of wave numbers.

Let us look at Fig. 5(a). The total actin concentration is
plotted along the x axis and the total coronin concentration
[D] along the y axis. The shaded region with positively
sloped hashed lines correspond to the wave instability and the
regions shaded by negative sloped lines correspond to Turing
instabilities. We do not find pure Turing instability for any
actin or coronin concentration (for this set of parameters) but
do find both regions of wave and mixed instability; however,
the phase space corresponding to wavelike is far larger than
that for mixed instability. The regions of no instability are the
white regions. There are three regions that can be identified
with no instability: (1) very low coronin concentrations, (2)

low actin, very high coronin concentrations, and (3) similar
actin and coronin concentrations. The wavelike instabilities lie
between these three regions. Regions (1) and (2) correspond to
insufficient concentrations of coronin and actin, respectively,
to destabilize the homogeneous state. In region (3) the reason
the homogeneous state is stable is more subtle and corresponds
to cancellations of unstable behaviors. Moreover, we note that,
for a given coronin concentration, there are two regions of
wavelike instability, one for lower actin concentrations and
one for higher actin concentrations, and speculate that the
region for higher actin concentration might correspond to
recovering cells following actin depolymerization, while the
other region might correspond to cells under physiological
conditions (since it is expected that there is relative low
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FIG. 6. The phase-space diagrams showing the regions of wave and Turing instabilities as well as the regions where the homogeneous
steady state is stable for variations of different parameters in the model.

concentrations of free actin not directly associated with the
cytoskeleton in normal cells).

Next, lets look at Fig. 6(a), which plots variations of α1

versus α2 along the x and y axes, respectively. We note that
there is a larger region for wavelike instability than for Turing
instability. However, unlike the previous case, there are regions
with only Turing instabilities. It seems that very small values
of α1 and α2 favor Turing instabilities over wave instabilities.
This agrees with our previous discussion of the importance of
time delay for wave generation.

For variations in k1 and kB
1 , we would like to highlight

that the value of k1 has to be relatively small in order to get
traveling waves as for larger values of k1 the homogeneous
state is stable. The presence of traveling waves seems to be
relatively robust, however, to variations in kB

1 .
Next, let us consider Fig. 6(b) with values of k1

B plotted
along the x axis and k2 along the y axis. We find a state of
Turing phase separation at high values of kB

1 , noting, however,

that the values of kB
1 has to be orders of magnitude larger than

our chosen value in order to get such a state. For the appropriate
window of kB

1 , the existence of the traveling wave instability
appears to be robust to variations in k2. However, we note
the appearances of small patches at small values of kB

1 and
regions of k2 where no instabilities occur. We also note certain
regions which are bounded by regions of pure wave and Turing
instabilities which have both Turing and wave instabilities.

When we analyze the variations over k2 versus k3 in
Fig. 6(c), with k2 plotted along the x axis and k3 along the
y axis, we find that Turing instabilities are possible over the
entire phase space while wave patterns co-occur for k3 below
a particular critical value.

Next, let us consider the variations of k3 and k4 as seen in
Fig. 6(d), with k3 plotted along the x axis and k4 along the
y axis. We see a band in the k3 versus k4 phase space where
the instabilities occur. Turing instabilities occur over a larger
region compared to the wave instabilities which always occur
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FIG. 7. (Color online) Speed variations of bound actin with
changing actin and depolymerizing agent concentrations. The speed
is in the unit of μm/s while the concentrations are in units of μM.

as mixed Turing-wave like instability. We note the absence of
instability for larger values of k4, leading us to the conclusion
that rapidity of disassembly destroys the wave instability, in
agreement with our discussion of the importance of time delay
in the previous section

In the final subfigure with variations of k4 versus k5 as seen
in Fig. 6(e), with k4 plotted along the x axis and k5 along the
y axis, we note that most of the phase space is about stable
regions, implying that k4, which is the rate of degradation
of bound actin, has to be finely tuned in order to get any
instabilities.

To sum up, for instability generation, we notice particular
sensitivity to the parameters k1, which is the background rate
for bound actin formation, and k4, which is the rate of dis-
assembly of dendritic actin bound to coronin. This highlights
the importance of auto-activation compared to the background
dendritic actin assembly rate, as well as the importance of time
delay in coronin-induced actin disassembly.

VI. SPEED VARIATIONS

Figure 7 shows the variation of speed of actin waves
with variations in actin and depolymerizer concentrations.
Comparing to Fig. 5(a), we can see that the wave speed is
higher in regions with mixed wave and Turing instabilities
compared to regions with pure wave instabilities. Higher
speeds would point to faster reaction times by the cell. Turing
patterns, on the other hand, would point to constructs of bound
actin within the cell that could be utilized for cell processes.
Hence a faster reaction time in conjunction with formation of
cell constructs within the cell point to a maximizing of a cell’s
survival response after being subject to a depolymerization of
its cytoskeleton.

VII. DISCUSSION

In this paper, we have developed and studied a basic
minimal model based on known ingredients in order to
understand actin wave generation in recovering Dictyostelium
cells. The model clearly does not capture the complexity of
the in vivo system, but we believe it captures the essential

physical mechanism of wave generation. Our hope is that
the model presented here would provide the foundation for
more detailed modeling studies. A more detailed study might
include structural details of dendritic actin and finer details
of the mechanism by which the coronin destabilizes dendritic
actin. Coronin might be far more efficient in destabilizing actin
than our model suggests, and thus our proposed regime might
actually correspond to significantly lower concentrations of
coronin. Moreover, we have not included explicitly the effects
of myosin IB and PIP3 in our model, both of which we believe
contribute to the autocatalytic step.

As a first step, let us consider including the role of myosin
IB in our model. Myosin IB does seem to be involved in
aiding the production of bound actin [17–19]. How it actually
does this is not entirely clear. However, we see that we can
easily augment the motif of chemical reactions in our model
to take into consideration the possible role that myosin IB
plays in the autocatalysis of bound actin formation, through
the chemical reactions below. [MY] and [MYF ] correspond to
the concentrations of the bound and free myosin IB. The values
for the parameters from the minimal model described in the
previous sections just carry over to the model with addition of
myosin. The extra equations for [MY] and [MYF ] introduce
new parameters whose values are chosen as kon = 1 and
koff = 1. Also, ρmax is chosen to be 70 000 μM. The waves
produced through the simulation of these equations are
illustrated in the Supplementary Material [14]. The changed
equations are shown below.

∂[AB:ATP]

∂t
= {

k1
B[MY][A]([AB:ATP] + α1[AB:ADP]

+ α2[AD]) + k1[MY][A]
}

×ρmax − ([AB:ATP] + [AB:ADP] + [AD])

ρmax

− k2[AB:ATP]

∂[A]

∂t
= D∇2[D] + k5[AADP] − {

k1
B[MY][A]([AB:ATP]

+ α1[AB:ADP] + α2[AD]) + k1[MY][A]
}

×ρmax − ([AB:ATP] + [AB:ADP] + [AD])

ρmax

∂[MY]

∂t
= −koff[MY] + kon[AB][MYF ]

∂[MYF ]

∂t
= D∇2[MYF ] + koff[MY] − kon[AB][MYF ].

(8)

As a further comment, let us revisit the mechanism
proposed in Ref. [10] in terms of a sharp transition between
bundled actin and dendritic actin, with dendritic actin present
in the interior of the wave and bundled actin existing exterior
to the wave. In the absence of a known mechanism for direct
interconversion between bundled actin and dendritic actin, we
do not find particular justification for a dynamical model as
proposed in Ref. [10]. Instead, it seems reasonable to assume
free actin can either polymerize to form bundled actin or
dendritic actin, both drawing from the same pool of free actin,
which could be incorporated in an extension of our proposed
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model with two sets of coupled reaction-diffusion type models
feeding from the same pool of free actin, the first corresponding
to dendritic actin as proposed here and a second corresponding
to formation and disassembly of bundled actin. We will not
attempt such a construction in this paper, nevertheless noting
that our model of dendritic actin can, by itself, produce a
relatively sharp edge for the dendritic actin wavefront, as
observed in vivo, without the need for a direct transition
between the two forms of bound actin.

VIII. CONCLUSIONS

The actin cytoskeleton is a prime player in cell locomotion
and in determining cell shape. Understanding the various
components of actin phenomenology inside cells is crucial in
our understanding of cell biology. From a systems viewpoint,
we treat the cell as a system whose components function
in concert and where this functioning can be understood at
varying degree of complexity. In this work we are guided by
the goal of identifying a critical motif of chemical reactions
underlying actin wave formation in recovering Dictyostelium
cells in order to uncover the essential physical mechanism. We
concentrate on the temporal evolution of actin in a cell with
its bound actin depolymerized. The core system associated
with wave formation in cells recovering from complete
depolymerization also appears to be involved in the formation
of phagocytic cups involved in phagocytosis and important for
nutrient intake [3]. In this paper, we presented a minimalistic
reaction diffusion model as a motif in actin phenomenology
to explain this phenomenon of production of actin waves.
We identified the physical mechanism responsible for wave
production. The simulation of the reaction diffusion equations
showed the explicit formation of growing rings of bound
actin as seen in experiments. The reaction diffusion system
of equations utilized only experimentally known aspects of
actin phenomenology. The formation of actin waves in our
model was not constrained with the addition of a large
number of parameters that had to be specifically tweaked in
order to produce wavelike behavior. We found that the base

motif of chemical reactions was robust to additions of other
components which we explicitly illustrated by inclusion of
myosin IB in to our model

Our model suggests that bound ADP-actin as well as the
ADP-actin and the disassembling agent bound state need to
contribute to the autocatalytic process of production of bound
ATP-actin for the production of stable actin waves. We note
also that the formation of instabilities in general is very
sensitive to the background rate of bound actin formation and
the rate of bound actin degradation, clarifying the role of these
processes for wave generation.

As far as experimental predictions go, we note that the
parameters that we could change in the model experimentally
are the total actin and total coronin concentrations. If the
concentrations of the actin and coronin were comparable,
neither wavelike nor Turing instabilites were observed in our
modeling studies. A similar lack of instabilities was also seen
when the ratio of the actin versus the coronin concentrations
was “extremely” high or “extremely” low. It was in the
“intermediate” regions of low actin and high coronin and
high coronin and low actin concentrations that instabilities
were seen. We also noted the sensitivity of wave generation
to the rate constants k3 and k4 related, respectively, to coronin
binding to actin and the subsequent disassembly of dendritic
actin, where wave generation would be disrupted for higher
values of the rate constants which might be experimentally
testable by using mutant forms of coronin.

In future work, we plan to couple our model to membrane
mechanics in order to elucidate the relation to phagocytosis.
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