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Spontaneous polarization in an interfacial growth model for actin filament networks
with a rigorous mechanochemical coupling
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Many processes in eukaryotic cells, including cell motility, rely on the growth of branched actin networks from
surfaces. Despite its central role the mechanochemical coupling mechanisms that guide the growth process are
poorly understood, and a general continuum description combining growth and mechanics is lacking. We develop
a theory that bridges the gap between mesoscale and continuum limit and propose a general framework providing
the evolution law of actin networks growing under stress. This formulation opens an area for the systematic study
of actin dynamics in arbitrary geometries. Our framework predicts a morphological instability of actin growth
on a rigid sphere, leading to a spontaneous polarization of the network with a mode selection corresponding to
a comet, as reported experimentally. We show that the mechanics of the contact between the network and the
surface plays a crucial role, in that it determines directly the existence of the instability. We extract scaling laws
relating growth dynamics and network properties offering basic perspectives for new experiments on growing
actin networks.
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I. INTRODUCTION

Cells often migrate in response to external signals, includ-
ing chemical and mechanical signals. Thereby the interfacial
growth of filamentous actin polymer networks plays an
important role [1,2]. For example, cell crawling on a two-
dimensional substrate involves the formation of a cytoplasmic
membrane protrusion pointing in the direction of motion.
Thereby, the necessary force for extending the membrane is
provided by the polymerization of actin, a process far from
chemical equilibrium, which converts chemical into mechani-
cal energy. The same molecular machinery is also responsible
for the propulsion of cellular organelles [3], pathogens [4,5],
or biomimetic objects, such as spherical beads [6–11], vesi-
cles [10,12,13], droplets [14], and ellipsoids [15]. In contrast,
cell motion in three-dimensional substrates can be based on
several mechanisms, e.g., swimming using flagella or cilia [16]
or shape changes via blebbing, a process which relies on the
contraction of the actin cortex by myosin motors to form
protrusions [17].

On the time scale of actin filament growth (∼1 s)
actin networks behave as nonlinear elastic solids [18,19].
Typically, the linear elastic modulus of actin networks formed
during the propulsion of pathogens or biomimetic objects is
in the range of 1 to 10 kPa [20,21]. This raises the question
of the coupling mechanism between growth dynamics and
deformations (or stresses) in the network, a property which
is often either neglected [22–24] or included via ad hoc
assumptions, which do not necessarily respect all symmetries
in the system [9,25]. Our objective is therefore to derive
macroscopic evolution equations of actin networks combining
a macroscopic constitutive law for its mechanical behavior
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and the actin polymerization kinetics in a rigorous way. The
general formulation we present can be adapted to diverse
situations relevant for actin dynamics. As a proof of principle
we treat here the case of an elastic actin network growing from
a spherical surface, where a spontaneous symmetry-breaking
and the onset of motion has been observed experimentally [6–
11].

To briefly outline the experimental observations (more
details can be found in Ref. [26]), actin polymerizes on the
surface of a sphere with a radius of about 1 μm into a cross-
linked and entangled network, which forms initially a closed
spherical shell. Growth and cross-linking is restricted to a zone
close to the surface of the sphere. Monomers diffuse freely
through the network to reach the growth zone and are inserted
between the already existing network and the sphere, which
leads to a relative motion between older network layers and the
surface and to the buildup of mechanical stresses. Eventually,
the actin shell undergoes a spontaneous symmetry-breaking,
leading to the formation of an actin tail. Two mechanisms for
symmetry-breaking have been proposed: (i) the external actin
shell ruptures at one point due to elongational stresses [9], or
(ii) the instability is due to actin polymerizing slower on one
side of the surface than on the other side [10].

Our understanding of these processes has been advanced
through several theoretical studies based on discrete models
on the scale of the filament [6,27], mesoscopic models [22–
24], or phenomenological continuous models [9,25,28,29].
Rather surprisingly, a general growth law based on first
thermodynamic principles that links the stresses in the network
(which depend on the growth history itself and the relevant
boundary conditions) to the interface dynamics is lacking.
Our approach closes this gap. In this brief exposition, we
exploit the framework to show that an instability arises from the
interplay between interfacial growth kinetics and mechanical
stresses, which reflect the growth history of the network.
Thereby the nature of the contact formed between the network
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and the bead surface (fixed versus sliding) is crucial in the
overall macroscopic dynamics. In a spherical geometry, a
spontaneous polarization into front and back is possible when
the filaments can slide on the surface but not when they are
fixed to the surface. Furthermore, we derive scaling laws for
the instability characteristics, which form a consistent picture
with experiments.

The problem of symmetry-breaking has been studied
theoretically on the continuum level in Refs. [25,29]. However,
in contrast to Refs. [25,29] we describe here the buildup of
stresses and strains in the network due to growth and the
subsequent mechanochemical coupling in a rigorous way,
consistent with a hyperelastic macroscopic constitutive law
of the network. For example, the model in Ref. [25] tacitly
assumes a vanishing Poisson ratio and the stress distribution
can only be solved consistently in an axisymmetric or
spherical configuration. The model in Ref. [29] is limited
to small deformations arising from a small displacement at
the internal bead-network interface. Moreover, our descrip-
tion distinguishes between reference and deformed network
configurations, which is essential for describing a growing
interface in contact with a solid stationary substrate (the
spherical surface), where the growth process manifests itself as
a displacement of a free interface (in contact with the solvent).
This crucial distinction between reference and deformed frame
is absent inRefs. [25,29] and limits their predictive power.

II. MODEL

A. Mechanical description of the network

Recently we proposed a macroscopic mechanical model of
actin networks starting from a microscopic description and
showed that it captures the basic bulk rheological properties
of actin networks [30]. A major issue is now how to properly
combine interfacial growth and mechanics. We first briefly
recall the description of the network mechanics and then
introduce the dynamical equations for the interfaces. For
simplicity, we consider a 2D geometry (albeit a 3D study
does not pose a specific challenge, but increases the technical
complexity).

We assume a structurally periodic planar filament network
with the topology shown in Fig. 1, which is in contact with
the surface of a cylinder of radius R0. The typical scale of

Cylinder

R0

B2

B1

B3

(n1,n2)

FIG. 1. (Color online) Sketch of a small part of the filament
network showing the different types of elementary vectors Bi of one
elementary cell labeled (n1,n2).

the elementary cell l0 is small compared to a macroscopic
scale R0, which introduces the small parameter η = l0/R0 �
1. Each elementary cell contains one node, identified by a
doublet of integers (n1,n2), and three filaments, described by
the vectors Bi with i = 1, 2, 3. It has a quadrilateral shape with
the filaments B1 and B3 forming the sides and the filament B2

forming a diagonal. A node is formed by the intersection of six
filaments, three of which belong to the same elementary cell as
the node, the other three belonging to neighboring elementary
cells. For example, the node (n1,n2) shown in Fig. 1 connects
the filaments B1, B2, and B3 of the same node with the filaments
B1 from node (n1 − 1,n2), B2 from node (n1,n2 − 1), and B3

from node (n1 + 1,n2 − 1). This network topology is one of
the most simple topologies. Other structures involving several
nodes per elementary cell are possible. However, the resulting
mechanical equilibrium equations are much more involved
than for simple structures with only one node per elementary
cell.

In a simple picture, the filaments behave as entropic
springs [18] and the elastic energy of the filament Bi is given
by a harmonic potential,

fi = k

2l0
(li − l0)2, (1)

with the equilibrium strand length l0 and the actual strand
length li = |Bi | = √

Bi · Bi . We find it a bit more convenient
to rewrite Eq. (1) in a different way, which is valid as long as
the actual length li is close to l0. Indeed, in this case, since
(l2

i − l2
0)2 � 4l2

0(li − l0)2, we can write

f = k

8l3
0

3∑
i

(
l2
i − l2

0

)2
. (2)

Once the microscopic model is introduced, we can now write
the macroscopic equation. Owing to the fact that η = l0/R0 �
1, one introduces a set of continuous variables (λ1,λ2) [30],
such that the node positions are approximated by a continuous
vector function φ(λ1,λ2) and the filament vectors Bi are given
by Taylor expansions of φ up to O(η):

B1,3 = ±h1 + 1
2 h2 and B2 = h2, with hi = η∂λi

φ.

(3)

The surface in contact with the cylinder is called “inner
interface” as opposed to the “outer interface” in contact with
the solvent. In the axisymmetric situation, λ1 ∈ (0,�1) and
λ2 ∈ (0,2π ) correspond to the radial and angular directions,
respectively. The unit vector in the radial direction is given by
r̂ = cos (λ2)x̂ + sin (λ2)ŷ. Consequently, the vectors h1 and h2

point into the radial and angular directions, respectively.
In the continuum limit, the discrete sum of Eq. (2) over all

nodes can be converted into an integral over the continuous
variables in the domain � occupied by network, so that the
total network energy reads

F [φ] = 1

η2

∫
�

f (φ) dλ1 dλ2, (4)

where by using Eqs. (2) and (3), f can be expressed only in
terms of the continuous function φ. Since growth occurs on a
slow time scale, as compared to the propagation of sound in
the actin network, the system can be viewed at each instant at

052706-2



SPONTANEOUS POLARIZATION IN AN INTERFACIAL . . . PHYSICAL REVIEW E 90, 052706 (2014)

mechanical equilibrium, which corresponds to a minimum of
F with respect to a variation of φ. This yields 0 = ∂λ1 T1 +
∂λ2 T2 (divergence-free stress, as in classical linear elasticity).
The stress is defined as Ti = ∂f/∂hi (the two components of
the vectors Ti define the stress tensor). The Ti are explicitly
given by

T1 = k

l3
0

[(
l2
1 − l2

0

)
B1 − (

l2
3 − l2

0

)
B3

]
, (5)

T2 = k

l3
0

[(
l2
1 − l2

0

)
2

B1 + (
l2
2 − l2

0

)
B2 +

(
l2
3 − l2

0

)
2

B3

]
, (6)

and define the constitutive law (relation between stress and
strain). Physically, the vector T1 (T2) denotes the force exerted
on a facet oriented in the direction h2 (h1) with length |h2|
(|h1|). The associated boundary conditions are

|φ| = R0 and T · t = 0 at the inner interface, (7)

T = 0 at the outer interface, (8)

where T and t denote the traction force and the tangent vector
at the interface. Equation (7) is equivalent to a shear-free inner
interface (where actin filament nucleators are present), which
is everywhere in contact with the cylinder surface and Eq. (8)
is equivalent to a force-free outer interface.

It has been shown [30] that the potential energy per node
f [Eq. (2)] is equivalent to the strain energy density of
an isotropic St. Venant-Kirchhoff hyperelastic solid with the
Lamé coefficients λ = μ = √

3k/(4l0), the Young’s modulus
Y = 2k/(

√
3l0), and the Poisson ratio σ = 1/3. This constitu-

tive law results in a strain stiffening and negative normal forces
under a simple volume conserving shear, a typical behavior
observed experimentally for semiflexible networks [18,19].

B. Growth kinetics and interface dynamics

The main issue that remains to be addressed is how
one could link mechanics with actin growth dynamics in
a consistent way and what the far-reaching consequences
are. For simplicity, we consider the case that the network
grows at the inner interface. That is, the topology of the
network remains unchanged while adding or subtracting an
elementary material element at the interface. The cost in
energy by adding (subtracting) a material element will define
the chemical potential difference 	μ that drives the interface
using the following kinetics relating the normal velocity vn to
the chemical potential balance

vn = −M	μ = −M(	μc + 	μm). (9)

M is a positive mobility constant. 	μ is composed of an
attachment part 	μc due to chemical bond formation (we
assume it to be a constant) and an elastic part 	μm = ∂F

∂�
,

which is given by the functional derivative of the total strain
energy F , Eq. (4), with respect to a change in the shape of
the network by respecting the boundary condition Eqs. (7)
and (8). We merely focus here on the main outcomes (details

are in Appendix A). For the inner interface, we find

	μmi = 1

η2
[f − T · h] , (10)

where T = Tiνi denotes the traction force at the interface
with νi being the ith component of the unit normal outward
vector in the material frame (λ1,λ2). h = hiνi is a measure
for the displacement of the old network interface due to the
insertion of new material between the solid cylinder and the
soft network. All quantities are calculated at the interface posi-
tion where the material is added. Intuitively, one can interpret
Eq. (10) in the following way. The energy cost for inserting a
material element at the internal boundary contains the straining
of the material element to the same state as neighboring
interfacial elements and also the work, which is necessary
to displace the old interface against the traction force to make
room for the new material (the cylinder being rigid cannot be
displaced). Equation (10) is the general form of the chemical
potential difference at the internal interface, which is valid for
any material whose constitutive law can be expressed in the
form of Eqs. (5) and (6). At the force-free external interface,
the elastic chemical potential is simply given by μme = 1

η2 f .
Setting 	μm = 	μmi and reporting Eqs. (5) and (6) into
Eq. (10) leads to a nonlinear evolution Eq. (9), relating growth
speed and direction vn [Eq. (9)] to the configuration of the
network φ. The resulting Eq. (9), together with Eqs. (5)
and (6) and boundary condition Eqs. (7) and (8) constitute the
general framework that can be applied to any configuration
and geometry. We treat here only the problem inspired by the
actin comet formation on rigid beads.

III. RESULTS

Having defined the mechanical and dynamical equations in
a consistent manner, we will now explore some consequences.
We first consider the case of an axisymmetric state of the
network and analyze then its linear stability with respect to a
morphological perturbation.

A. Axisymmetric network

In the axisymmetric state the network geometry is described
by the “radial layer number” �1. Recall that if in the discrete
network the true number of nodes in the radial direction is
N1 (with N1 being a large integer), in the continuum limit the
relation �1 = N1η = N1l0/R0 holds. We look for an axisym-
metric configuration of the form φ = φR r̂. Equations (2)–(8)
are solved numerically using continuation methods [31].

Figure 2(a) shows the observable thickness h of the network
h = φR(�1) − R0 in the mechanical equilibrium configuration
depending on the radial layer number �1. The distinction
between the observable thickness and the radial layer number
is important, since they are not necessarily related in a
linear manner. For thin networks, h increases linearly with
�1 and one finds h/R0 = √

3�1/2. For larger networks the
tangential tension at the outer network interface leads to a
radial compression and h nearly saturates for �1 � 0.8. An
interesting property follows naturally from our formulation,
which is that for an axisymmetric state the elastic chemical
potential difference is identical at the two interfaces, denoted
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FIG. 2. Observable network thickness h depending on the radial
layer number �1.

as 	μ(0)
m . If the thickness of the network is modified, there

is no way to discriminate between the fact that material has
been exchanged at the cylinder surface or at the free surface,
only the initial and the final thickness matter, and not the path
followed by the system. This property is not only comforting
the theory but can even be exploited to extract some interesting
results. Indeed, it is possible to determine analytically the
chemical potential at the external surface, which is linked
to the observable network thickness h in a simple way (see
Appendix A for details),

	μ(0)
m = kh2

8l0R
2
0

(h + 2R0)2 , (11)

where we have used the fact that the filaments of type 1 and
3 (cf. Fig. 1) are at equilibrium length [to ensure a vanishing
traction force Eq. (8)] and the filaments of type 2 have length
l2 = l0/R0φR(�1) = l0(h + R0)/R0. Now we consider growth
of an axisymmetric network, whereby polymerization only
occurs at the internal interface with 	μc < 0. Dendritic actin
networks nucleated by the Arp2/3 complex typically show a
kinetic polarity with a rapidly polymerizing “plus”-end inter-
face directed toward the nucleating surface, i.e., 	μci < 0,
and a slowly depolymerizing “minus”-end oriented toward the
solvent, i.e., 	μce > 0 [32]. For more clarity we consider
here only the case that the motility medium does not contain
any fragmentation proteins, such as cofilin, and we treat the
limiting case that growth only occurs at the internal interface
while the external interface is stationary. The model can be
straightforwardly extended to two dynamical interfaces, which
gives, for example, the treadmilling behavior.

If growth occurs only at the internal interface, the interface
velocity, Eq. (9), vanishes in steady state and one finds in the
limit h � 2R0 for the observable stationary network thickness,

h̄ =
√

−2l0	μc

k
, (12)

where h̄ stands for the steady thickness. Recall that in steady
state the radial layer number is related to the observable
thickness by h̄ = φR(�̄1) − R0. Equation (12) can be further
related to the network properties and geometry and to the
known rate equations of actin polymerization, which offers
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FIG. 3. (Color online) Dispersion relation for the shear-free (slip
BC) and the Dirichlet (fixed BC) boundary condition. Parameters are
�̄1 = 0.7. The time scale is t0 = l0/(MkR2

0). The inset shows the
positive growth rate β1 depending on the radial layer number �1.

interesting scaling relations, which will be discussed at the
end of this paper.

The next important step is to analyze the linear stability
against modulations of the gel thickness.

B. Linear stability analysis

We introduce a small perturbation of amplitude ε at the
internal interface, while the structure of the external interface
remains unchanged. The perturbation is encoded in the growth
velocity at the internal surface. Since we consider a system,
which is periodic (period 2π ) and translationally invariant
in λ2, a perturbation of any quantity (shape, strain, growth
velocity) can be expressed in terms of a cos series with
wavenumber q and growth rate βq . We have solved the model
equations in the linear regime. Figure 3 shows a typical
dispersion relation. Also shown is the dispersion relation
for an alternative boundary condition, that the network is
fixed and cannot slide on the cylinder surface; i.e., condition
Eq. (7) is replaced by φ = R0r̂ at the internal interface. A
robust and interesting outcome is that only perturbations with
the wave number q = 1 are unstable (i.e., β1 > 0), while
all other modes are stable. For relatively thin networks we
find β1 = MkR2

0�̄
2
1/l0. This instability is only present when

the network can slide on the cylinder surface. When the
bonds are fixed, no instability is found. The mode selection
arises naturally within the model. Damping of high modes
is naturally present in the model due to the accumulation of
elastic shear-stresses in the bulk.

The instability corresponding to wave number q = 1 means
that the network shrinks at one side of the cylinder and grows
at the opposite side of the cylinder, i.e., the instability initiates
the formation of an actin comet as observed in biomimetic
motility experiments [6,9–14]. Figure 4 shows typical shapes
of the network before and after symmetry-breaking. Also
shown is the strain energy density [Fig. 4(a)] and the change
in strain energy density compared to the axisymmetric shape
[Fig. 4(b)]. Interestingly, the symmetry is broken by increasing
the strain energy density in the thin network regions (front)
and by decreasing it in the thick network regions (back). As
time evolves the instability should be amplified and other
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FIG. 4. (Color online) Network shape before (a) and after
symmetry-breaking (b). (b) was obtained by superimposing the
axisymmetric shape and the unstable mode with the amplitude
0.15 �1. The color encodes the spatial distribution of the strain energy
density (a) and the change in strain energy density (b). The energy
density scale is k/l0.

mechanisms (e.g., fracture) may get important and lead to
a larger comet. A detailed study of the subsequent nonlinear
regime will be dealt with in the future.

C. Scaling properties and comparison with experiments

In the following, we will discuss some scaling relations (see
Appendix B for more details). We base our calculations on the
assumptions that the filaments behave as entropic springs with
persistence length lp [18], and that free monomers (concentra-
tion c, size lm) polymerize into linear filaments with the known
kinetics k+(c − cc) in the absence of mechanical stress [32],
where k+ denotes the rate constant of polymerization and
cc denotes the critical monomer concentration, at which the
polymerization speed is zero. We find the following scaling
for the observable stationary network thickness, Eq. (12):

(h̄/R0)2 ∼ l3
0(c − cc)

l2
plmcc

. (13)

Using typical values for l0 = 100 nm, lp = 10 μm, lm =
3 nm, and c/cc = 10, we find h̄/R0 ∼ 0.2. This value and the
linear scaling of h̄ with R0 are consistent with experiments [9].
The growth rate scales as β ∼ k+(c − cc)lm/R0, which yields
a time scale for the birth of the instability

τ ∼ R0

lmk+(c − cc)
. (14)

Using R0 = 1 μm and k+(c − cc) = 1 s−1 [32], one finds a
typical time τ = 5 min, which is a reasonable value [9].

IV. DISCUSSION

We have provided a general theoretical framework for stress
and actin growth coupling. Application to actin growth on
beads led to the following major results: (i) the surprising
mode selection q = 1 and the stabilization of all higher modes
without needing an ad hoc cutoff length, (ii) the role of the
boundary conditions at the nucleating surface (sliding and
fixed) for the existence of the instability, (iii) the scaling
laws, which are consistent with experiments. The instability
reported here is induced by growth and not by fracture.
Experiments on vesicles [10] as a nucleating surface are
consistent with this mechanism. They suggest that for vesicles,
symmetry-breaking does not occur via a fracture mechanism

at the external network interface but via a variation in the
growth speed along the internal vesicle-network interface. In
Ref. [10] it was observed that shortly after symmetry-breaking,
the newly formed network layers at the internal interface had
a varying thickness (thin on one side, thick on the opposite
side of the vesicle), whereas older network layers at the exter-
nal network interface maintained a homogeneous thickness.
This observation is consistent with an asymmetric network
polymerization at the internal interface. It is reasonable to
expect bonds at the membrane to slide due to the fluid nature
of the membrane, supporting our outcome that only in this
case an instability takes place. For experiments with rigid
beads [9] it is not obvious (albeit not excluded) that bonds
can slide, but still an instability could be observed. It has been
proposed by the authors [9] that the instability is triggered by
fracture of the network. In this study we have only considered a
network structure with stable cross-links. The Arp2/3 complex
cross-links two actin filaments with a half time of 500 s [33],
which is about the time scale of symmetry-breaking and
therefore justifies our approach. However, to extend the
model to other interesting problems, one could potentially
include age-dependent or space-dependent modification of
the microscopic mechanical parameters to mimic an aging or
the dissassembly of the network. In preliminary calculations
we have also identified a morphological instability of purely
mechanical origin. However, this instability requires a critical
network thickness, beyond the thickness that we considered
here. A further investigation of this problem as well as other
growth geometries (lamellipodium) and the effect of active
stresses [34] will be part of future work.
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APPENDIX A: DERIVATION OF THE ELASTIC
CHEMICAL POTENTIAL DIFFERENCE

In the derivation of the elastic chemical potential we will
assume a strain energy functional with the boundary conditions
defined in Eqs. (2)–(8) in the main text. The elastic chemical
potential difference 	μm for inserting a material element at
the network interface can be calculated from the variation of
the elastic strain energy F with respect to a change in shape
of the elastic body in the material frame � by respecting the
prescribed boundary conditions,

	μm = δF

δ�
. (A1)

Upon a modification of � by δ�, the change in the strain
energy is given to lowest order in δ� by

δF = 1

η2

∫
�

Ti · δhi dλ1dλ2 + 1

η2

∫
δ�

f dλ1dλ2, (A2)
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with Ti = ∂f/∂hi and hi = η∂λi
φ. Upon partial integration of

Eq. (A2), one finds

δF = −1

η

∫
�

∂λi
Ti · δφ dλ1d λ2 + 1

η

∫
S

T · δφ ds

+ 1

η2

∫
δ�

f dλ1dλ2, (A3)

with T = T1ν1 + T2ν2 and where ν1 and ν2 denote the
components of the unit outward normal vector ν in the material
frame (λ1,λ2).

The first integral in Eq. (A3) vanishes due to the mechanical
equilibrium condition ∂λi

Ti = 0 and only the second and
third integral in Eq. (A3) will contribute to the chemical
potential difference. Now, we assume that the perturbation
of the interface is described by a function ε(|s − s0|)ν(s), with
ε(|s − s0|) � 1. Since the perturbation of the boundary is local
and ε is decaying rapidly with |s − s0|, we can evaluate the
third integral in Eq. (A3) to the lowest order,∫

δ�

f dλ1 dλ2 =
∫

S

f (s)ε(|s − s0|) ds = f (s0)δ�. (A4)

The second integral over the boundary of the unperturbed
domain depends crucially on the boundary condition. First,
we will consider the simple case of a material exchange at the
external force-free interface with T = 0. In this case also the
line integral in Eq. (A3) vanishes, and we find

δF = 1

η2
f (s0)δ�, (A5)

which leads to the elastic chemical potential difference for a
perturbation at s0 at the external interface,

	μme = 1

η2
f (s0). (A6)

In the axisymmetric configuration, Eq. (A6) can be linked
to the observable network thickness h = φR(�1) − R0 in a
simple way. Making use of the fact that the traction vector
T at the external interface vanishes for l1 = l3 = l0 and since
l2 = ηφ(�1) = η(R0 + h), one finds after some manipulation
of Eq. (A6), one recovers Eq. (11) from the main text,

	μ(0)
me = kh2

8l0R
2
0

(h + 2R0)2 . (A7)

Next, we consider the more complex case of a material
exchange at the internal interface. Taking advantage of the
boundary conditions [Eq. (7) in the main text] we note first
that after a modification of the internal boundary we find for
the position of the internal boundary up to lowest order in the
perturbation

R2
0 = φ · φ + 2φ · (

δφ + ∂λi
φνiε

)
. (A8)

The position of the boundary before the perturbation φ fulfills
|φ| = R0 and it follows that

0 = φ · (
δφ + ∂λi

φνiε
)

and φ · δφ = −φ · ∂λi
φνiε.

(A9)

Since the vectors φ and T are parallel to the normal direction
of the boundary, we can write, using identity Eq. (A9),

T · δφ = 1

R2
0

(T · φ)(φ · δφ) = −T · ∂λi
φνiε. (A10)

After an elementary manipulation, we find from Eqs. (A3)
and (A4),

δF = − 1

η2

∫
S

T · h ε(|s − s0|) ds + 1

η2
f (s0)δ�

= 1

η2
[f − T · h]0 δ�, (A11)

with h = η∂λi
φνi and where the subscript 0 indicates that all

quantities are calculated at the position s0. From Eq. (A11) we
infer the elastic chemical potential difference at the internal
interface [Eq. (10) in the main text],

	μmi = 1

η2
[f − T · h] . (A12)

APPENDIX B: SCALING BEHAVIOR

Here we demonstrate some scaling relations, relevant for
biomimetic experiments on actin driven motility. First, we
note that the polymerization part of the chemical potential
	μc used in Eq. (10) in the main text is based on a material
exchange in Lagrangian coordinates. Therefore, the change in
chemical potential per node is given by η2	μc, which can
be related to the chemical potential difference per monomer
	μ̃c by assuming that each node contains three filaments of
length l0 and that each filament contains l0/lm monomers of
size lm. Consequently,

	μ̃c = l0lm

3R2
0

	μc = −kBT ln
c

cc

, (B1)

where c denotes the actual concentration of monomers in
solution, cc denotes the critical monomer concentration where
the polymerization speed vanishes, and kBT denotes the
thermal energy. Using Eq. (B1), we can write(

h̄

R0

)2

= −2l0	μc

kR2
0

= 6kBT

klm
ln

c

cc

. (B2)

Assuming now, that the filaments behave as entropic springs
with spring constant k = kBT l2

p/ l3
0 [18], where lp denotes the

persistence length, we find(
h̄

R0

)2

= 6l3
0

l2
plm

ln
c

cc

≈ 6l3
0

l2
plmcc

(c − cc). (B3)

Note the linear scaling of h̄ with R0 as observed experimentally
in Ref. [9]. Using typical values for l0 = 100 nm, lp = 10 μm,
lm = 3 nm, and c/cc = 10, one finds h̄/R0 ≈ 0.2.

Now, we use the known kinetic equation of polymerization
of actin to estimate the time scale of symmetry breaking
t0 = l0/(MkR2

0); i.e., we estimate the mobility constant M .
Typically, the polymerization of actin without mechanical
stresses is described by the following kinetic equation [32]:

vp = k+(c − cc), (B4)
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where k+ denotes the rate constant of polymerization. The
normal interface velocity [Eq. (9) in the main text] is related
to the polymerization speed by vn ≈ lm/R0vp, and we find

vp = R0

lm
vn = −R0

lm
M	μc = 3MR3

0kBT

l0l2
m

ln
c

cc

= 3MR3
0kBT

l0l2
mcc

(c − cc). (B5)

Comparisson of Eq. (B5) with Eq. (B4) gives the following
expression for the mobility constant:

M = k+ccl0l
2
m

3R3
0kBT

, (B6)

and the time scale t0 can be rewritten as

t0 = l0

MkR2
0

= 3R0l
3
0

k+ccl2
pl2

m

. (B7)

As stated in the main text, the growth rate for symmetry-
breaking scales as β1 ∼ �̄2/t0 for relatively thin networks.
Assuming �̄2

1 ∼ (h̄/R0)2 and using Eq. (B3) and Eq. (B7)
we find the following scaling: β1 ∼ k+(c − cc)lm/R0. Conse-
quently, the typical time scale for symmetry-breaking scales
linearly with R0, as shown experimentally in Ref. [9]. For R0 =
1 μm and k+(c − cc) = 1 s−1 [32], one finds a typical time
scale of symmetry-breaking of 5 min, which is a reasonable
result [9].
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